漠河盆地构造特征演化与成盆动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
漠河盆地是兴安岭盆地群中的一个独特盆地,具有独特的盆地展布方向和构造方向及成盆时代。沉积盆地所处的大地构造决定着盆地的类型,而基底的构造演化制约着盆地的演化类型,因此开展对漠河盆地构造特征及演化分析有助于我们更加清楚的认识东北地区盆地的构造特点、成盆动力学机制乃至晚中生代火成岩的成因,及其对于中国东部岩石圈伸展与减薄过程的正确理解。
     本文在借鉴前人大量研究成果基础上,综合野外调查测量、地球物理资料、分析测试资料及室内资料的整理,从构造-岩浆-盆地的演化关系入手,并结合分析区域动力学演化。研究发现漠河盆地主要由前中生代基底变质岩、晚侏罗世陆相碎屑沉积岩、早白垩世火山-火山碎屑岩三个大的组成单元。
     晚侏罗世时期,漠河盆地的主体构造格局呈近EW向展布,具有南北高,中部低的分带构造特征。这一时期形成了近EW向的基底断裂和局部地区NE向断裂,控制晚侏罗世沉积。同时,漠河地区在接受北部造山带及南部基底剥蚀的碎屑物共同沉积作用下,发育了额木尔河群冲积扇、辫状河、扇三角洲、辫状河三角洲和湖泊相沉积岩,形成了漠河前陆盆地。这一阶段的晚期,在盆地西部地区发生了由北向南逆冲-推覆作用,使得地层强烈变形,并在局部有变质作用发生。
     到了早白垩时期,漠河盆地原有的构造格局发生改造,形成了NW-SE向的堑垒相间的格局,早期形成的NE向断裂重新活化,并且发育了NNE向的断裂,控制了火山岩的分布。在129±17Ma~117±3Ma分别形成了塔木兰沟组、上库力组和之后的依列克得组中基性-中酸性火山熔岩,角度不整合覆盖在上侏罗统沉积岩之上,形成了双盖层的特点,形成了火山断陷盆地。
     漠河盆地是一个白垩纪火山断陷盆地与侏罗纪前陆盆地复合叠加的叠合盆地。在晚侏罗世时期,受到华北板块和西伯利亚板块的拼合、蒙古-鄂霍茨克洋关闭的影响,漠河地区受到近南北向强烈的挤压作用,造成盆地南北边缘隆起,形成了近东西向的控盆断裂,进入了前陆盆地演化阶段。在早白垩世时期,区域应力场发生重大转变,早期南北向挤压转变为NW-SE向伸展。由于剧烈的岩浆活动、地幔的上隆导致岩石圈发生伸展-减薄作用,在这种陆内到板缘的伸展环境下漠河地区发生断陷并形成大面积火山岩,进入火山断陷盆地演化阶段。
The Mohe basin is a unique basin in Hinggan Mountains basin group. It is different from the other basins in its extension, directions of structural lines and age of basin formation. The type of basin was governed by tectonic setting, but the evolution of the basin is often controlled by the structural evolution of basin basement. The analysis of structural characteristics and evolution of the Mohe basin will contribute to our better understanding of the structural characteristic of basins in Northeast China, dynamic mechanisms of basin formation, the genesis of late Mesozoic igneous rock in adjacent areas, and the tectonic process of lithosphere extension and thinning in East China.
     Based on synthetic field geological survey, analysis of geophysical data, and geochemical analysis, this paper discussed the relationship between tectonic and magmatic processes and basin evolution, moreover studies of regional geodynamic evolution. We found the Mohe basin is constituted by three parts, a pre-Mesozoic basement of metamorphic rocks, a group of late Jurassic terrestrial clastic sedimentary rocks and a sequence of early Cretaceous volcano-pyroclastic rocks.
     During late Jurassic, the main tectonic framework of Mohe basin trends EW,with structural characteristic that the north and south parts are higher than the middle part. Basement faults which trends E-W and some small scale faults trending N-E are formed during the period. They controlled late Jurassic sedimentation. Affected by clastic deposition which denuded from the orogenic belts at the northern side and basement at the southern, sedimentary rocks of the Eumr River group are deposited. They are of alluvial fans, braid river, fan delta, braid river delat and lacustrine facies. As a result, a foreland basin was developed in Mohe area. Later in this stage, thrust-nappe from north to south, which caused intense deformation and regional metamorphism of the sedimentary rocks, was formed in the western part of basin.
     During early Cretaceous,the tectonic framework of Mohe basin was changed into the graben- horst pattern trending NE-SW. Pre-existing faults trending NE was reactivated, and faults trending NNE was developed. They controlled distribution ofvolcanic rocks of early Cretaceous. During 129±17Ma and 117±3Ma, intermediate basic- intermediate to acidic lava, of Tamulangou formation, Shangkuli formation and subsequent Yiliekede formation, was formed. An angular unconformity was formed between lower Cretaceous and upper Jurassic, leading to the occurrence of the bi-mantles of the basin with a volcanic faultdepression.
     The Mohe basin is a superimposed basin formed by a late volcanic fault basin of Cretaceous superimposed on a foreland basin of late Jurassic. In late Jurassic, influenced by closing of Mongolian -Okhotsk ocean due to convergence of North China plate with Siberia plate, a SN compression affected the Mohe basin. The southern and northern margins of the basin were uplifted due to faulting in EW direction. This is foreland stage of the Mohe basin. During early Cretaceous, there is a significant change of orientation of regional stress field. Regional stress field changed from SN compression into NW-SE extension. Extensive uplifting of mantle, magma activity resulted in subsequent lithosphere thinning. Large scale fault depression was formed in this area and extensive volcanic rocks were erupted at the background of extensional setting from intracontinental to plate margin. The Mohe basin at this stage was evolving into a new stage of volcanic fault depression.
引文
[1] A.D.迈尔.沉积盆地分析原理.北京:石油工业出版社,1991
    [2] 表尚虎,李仰春,何晓华,等.黑龙江省塔河绿林林场一带兴华渡口群岩石地球化学特征.中国区域地质,1999,18(1):28-33
    [3] 陈发景、汪新文、陈昭年等. 伸展断陷盆地分析.北京:地质出版社,2004
    [4] 大庆油田有限责任公司勘探分公司.漠河盆地重磁资料连片处理、解释成果报告.科研报告,2004
    [5] 大庆油田有限责任公司.东北中新生代断陷盆地群油气资源战略调查及评价项目工作报告.科研报告,2004
    [6] 邓晋福,罗照华,苏尚国,等. 岩石成因、构造环境与成矿作用.北京:地质出版社.2004
    [7] 葛文春,林 强,李献华,等. 大兴安岭北部伊列克得组玄武岩的地球化学特征卷.矿物岩石,2000,20(3):14-18.
    [8] 葛文春,吴福元,周长勇,等. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约.科学通报,2005,50(12):1239-1247.
    [9] 和政军,李锦轶,莫申国等. 2003. 漠河前陆盆地砂岩岩石地球化学的构造背景和物源区分析. 中国科学(D 辑),33(12):1219-1226.
    [10] 黑龙江地矿局.中华人民共和国区域地质调查报告:1:200000,开库康幅
    [11] 黑龙江省地矿局. 中国人民共和国区域地质调查报告(1:200000)开库康幅,1985
    [12] 黑龙江省地矿局. 中国人民共和国区域地质调查报告(1:200000)漠河幅、连崟幅、老沟幅、二十五站幅,1988
    [13] 黑龙江省地矿局. 中国人民共和国区域地质调查报告(1:200000)伊西肯幅、十八站幅、兴华幅、鸥浦幅,1989
    [14] 黑龙江省地矿局. 中国人民共和国区域地质调查报告(1:250000)呼中镇幅,2000
    [15] 黑龙江省地矿局. 中国人民共和国区域地质调查报告(1:50000)二十一站幅,1993
    [16] 黑龙江省地矿局. 中国人民共和国区域地质调查报告(1:50000)古鲁干幅、二十二站幅,1995
    [17] 黑龙江省地矿局. 中国人民共和国区域地质调查报告(1:50000)七号林场幅、二十五站幅,1999
    [18] 黑龙江省地矿局. 中国人民共和国区域地质调查报告(1:50000)砂宝斯林场幅、老沟林场幅、邱林公司幅,2003
    [19] 黑龙江省地矿局.黑龙江省区域地质志[M].北京:地质出版社,1993.1-734.
    [20] 黑龙江省地矿局.黑龙江省岩石地层[M].武汉:中国地质大学出版社,1996.1-344.
    [21] 黑龙江省区域地层表编写组. 东北地区区域地层表-黑龙江省分册. 北京: 地质出版社, 1979: 3-96.
    [22] 吉林大学地球科学学院. 大庆探区外围中、新生代相关盆地群沉积充填特征及成盆规律.科研报告,2007
    [23] 匡永生,赵书跃,秦秀峰,等.大兴安岭北段早石炭世洋岛型玄武岩的确立及成因意义.吉林大学学报(地球科学版).2005,35(4):423-429
    [24] 李捷,王海云. 东北晚中生代断陷盆地 J3-K1 地层砂岩成因作用特征. 大庆石油学院学报,1998,22(1):1-5
    [25] 李锦轶,莫申国,和政军,等.大兴安岭北端地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约.地学前缘.2004,11(3):157-168
    [26] 李锦轶. 中国东北及邻区若干地质构造问题的新认识. 地质评论,1998,44(4):339-347
    [27] 李思田,解习农,王华,等. 沉积盆地分析基础与应用.北京:高等教育出版社,2004
    [28] 李思田,路凤香,林畅松. 中国东部及邻区中新生代盆地演化和动力学背景.武汉:中国地质大学出版社,1997
    [29] 李仰春,刘宝山,赵焕力,等.大兴安岭北段根河地区中生代构造应力场特征.大地构造与成矿学.2005,29(4):433-450
    [30] 李仰春,周兴福,李永秀,等.大兴安岭北段兴华渡口岩群多期褶皱解析及变质变形关系.前寒武纪研究进展.2000,23(1):44-50
    [31] 李仰春. 大兴安岭地区劲涛额木尔河韧性剪切带及其边界条件.黑龙江地质.2001,12(1):1-7
    [32] 林强,葛文春,曹林,等. 大兴安岭中生代双峰式火山岩的地球化学特征. 地球化学,2003,32(3):208-222.
    [33] 林强,葛文春,孙德有,等. 中国东北地区中生代火山岩的大地构造意义. 地质科学,1998,33(2):129-139.
    [34] 林强,葛文春,孙德有,等.大兴安岭中生代两类流纹岩与玄武岩的成因联系.长春科技大学学报,2000,30(4):322-328.
    [35] 林强,葛文春,吴福元,等. 大兴安岭中生代花岗岩类的地球化学. 岩石学报,2004,20(3):403-412.
    [36] 刘德来,陈发景,杨丰平. 中国东北地区中生代火山岩与板块构造环境. 大庆石油学院学报,1994,18(2):1-8
    [37] 刘俊来,关会梅,纪沫,等. 华北晚中生代变质核杂岩构造及其对岩石圈减薄机制的约束. 自然科学进展,2006,16(1):21-26
    [38] 吕志成,郝立波,段国正,等. 满洲里-额尔古纳地区中生代火山岩地球化学研究. 矿物学报,2000,20(4):406-414
    [39] 莫申国,韩美莲,李锦轶. 蒙古-鄂霍次克造山带的组成及造山过程. 山东科技大学学报(自然科学版).2005,24(3):50-53
    [40] 莫申国. 上黑龙江盆地堆积物的构造变形特征:[硕士论文].北京:中国地质科学院,2002
    [41] 内蒙古自治区地矿局.内蒙古自治区区域地质志[M].北京:地质出版社,1991.1-784.
    [42] 内蒙古自治区地矿局.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社,1996.1-344.
    [43] 其和日格. 黑龙江漠河地区中侏罗统二十二站组的遗迹化石. 中国区域地质,1995,3:243-244
    [44] 邱家骧.应用岩浆岩石学.武汉:中国地质大学出版社.1991
    [45] 任建业,胡祥云,张俊霞. 中国大陆东部晚中生代构造活化及其演化过程. 大地构造与成矿学,1998,22(2):89-96
    [46] 任建业,解习农. 大陆裂陷作用及盆地发育系统.地质科技情报.1996,15(4):26-32
    [47] 任建业,刘文龙,林畅松,等. 中国大陆东部晚中生代裂陷作用的表现形式及其幕式扩展. 现代地质,1996,10(4):526-531
    [48] 任收麦,黄宝春. 晚古生代以来古亚洲洋构造域主要块体运动学特征初探. 地球物理学进展,2002,17(1):113-120
    [49] 邵济安,张履桥,牟保磊. 大兴安岭中生代伸展造山过程中的岩浆作用. 地学前缘,1999,6(4):339-346.
    [50] 邵济安、张履桥、肖庆辉等.中生代大兴安岭的隆起——一种可能的陆内造山机制[J].岩石学报,2005,21(3):789-794
    [51] 沈阳地质矿产研究所.华北板块与西伯利亚板块之间重大地质构造问题综合研究报告.科研报告,2004
    [52] 孙德有,吴福元,高山,路孝平.吉林中部晚三叠世和早侏罗世两期铝质 A 型花岗岩的厘定及对吉黑东部构造格局的制约.地学前缘,2005,12(2):263-275.
    [53] 万天丰. 中国大地构造学纲要.北京:地质出版社.2004
    [54] 万渝生,罗照华,李莉. 3.8Ma:青藏高原年轻碱性玄武岩锆石离子探针 U-Pb 年龄测定. 地球化学,2004,33(5):442-446
    [55] 王世辉、王立民、唐金生.兴安岭盆地群成盆机制及含油气远景评价.大庆石油地质与开发,2001,20(5):5-6.
    [56] 吴河勇,辛仁臣,杨建国,等. 漠河盆地中侏罗统沉积岩演化及含油气远景. 石油实验地质. 2003,25(2):116-121
    [57] 吴河勇,杨建国,黄清华,等. 漠河盆地中生代地层层序及时代. 地层学杂志,2003,27(3):193-198.
    [58] 吴河勇、王世辉、杨建国,等.大庆外围盆地勘探潜力.中国石油勘探,2004,4:23~31.
    [59] 肖庆辉,邓晋福,马大铨,等. 花岗岩研究思维与方法. 北京:地质出版社,2002
    [60] 谢鸣谦. 拼贴板块构造及其驱动机理-中国东北及临区的大地构造演化.北京:科学出版社,2000
    [61] 辛仁臣,吴河勇,杨建国. 漠河盆地上侏罗统层序地层格架. 地层学杂志.2003,27(3):199-204
    [62] 姚超,焦贵浩,王同和,等. 中国含油气构造样式.北京:石油工业出版社,2004
    [63] 尹志刚,张跃龙,杨晓平,等.大兴安岭北部中生代火山岩特在及岩浆演化. 世界地质.2006,25(2):120-128
    [64] 尹志刚,赵海滨,赵寒冬,等.大兴安岭北端塔木兰沟组玄武质岩石的地球化学特征及构造背景. 世界地质.2005,24(9):848-853
    [65] 翟让明,高维亮.中国石油地质学.北京:石油工业出版社,2005
    [66] 张成功,徐宏. 中国东北部晚中生代裂陷作用与伸展构造. 长春科技大学学报,1998,28(3):266-272
    [67] 张宏,马俊孝,权恒,等.大兴安岭北段中生代火山岩形成的动力学环境贵金属地质.1999,8(1):56-64
    [68] 张旗,简平,刘敦一,等. 宁芜火山岩的锆石 SHRIMP 定年及其意义. 中国科学(D),2003,33(4):309-314
    [69] 张顺、林春明、吴朝东,等.黑龙江漠河盆地构造特征与成盆演化.高校地质学报,2003,9(3):411-419
    [70] 张昱,赵焕力,韩彦东.大兴安岭北段塔木兰沟组玄武岩地球化学及构造背景.地质与资源.2005,14(2):87-96
    [71] 张岳桥,赵越,董树文,等. 中国东部及邻区早白垩世裂陷盆地构造演化阶段. 地学前缘.2004,11(3): 123-133.
    [72] 赵海玲,邓晋福,陈发景,等. 中国东北地区中生代火山岩岩石学特征与盆地形成. 现代地质,1998,12(1):56-62
    [73] 赵太平,翟明国,夏斌,等. 熊耳群火山岩锆石 SHRIMP 年代学研究:对华北克拉通盖层发育初始时间的制约. 科学通报,2004,49(22):2342-2349
    [74] 赵越,杨振宇,马醒华. 东亚大地构造发展的重要转折. 地质科学,1994,29(2):105-114
    [75] 中国地质调查局. 中华人民共和国地质图(1:2500000)说明书.中国地图出版社.2004
    [76] 中国地质科学院.中国东部侏罗纪-白垩纪古生物及地层. 北京:地质出版社,1989
    [77] 周长勇,葛文春,吴福元,等. 大兴安岭北段塔河辉长岩的岩石学特及其构造意义.吉林大学学报(地球科学版),2005,35(2):143-149
    [78] 周长勇,吴福元,葛文春,等. 大兴安岭北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因. 岩石学报,2005,21(3):763-775
    [79] 周永胜、王绳祖.裂陷盆地成因研究现状综述与讨论.地球物理学进展,1999,14(3):29-46
    [76] Baranov BV,Werner R,Hoernle KA,er al.Evidence for compressionally induced high subsidence rates in the Kurile Basin(Okhotsk sea).Tectonophysics,2002,350:63-97
    [77] Chen JC,Hsu CN,Ho KS. Geochemistry of Cenozoic volcanic rocks and related ultramafic xenoliths from the Jilin and Heilongjiang provinces, northeast China, Journal of AsianEarth Sciences,2003,21:1069-1084
    [78] Crosdale PJ,Sorokin AP,Wolfe KJ,et al.Inertinite-rich Tertiary coals from the Zeya-Bureya Basin,Far Eastern Russia.Inertnational Journal of Coal Geology,2001,51:215-235
    [79] Dewey J F.Extensional collapse of orogens. Tectonics,1988,7(6):1123-1139.
    [80] Fan WM,Guo F,Wang YJ,et al.Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains,northeastern China.Journal of Volcanology and Geothermal Research,2003,121:115-135
    [81] Gao S, Luo TC, Zhang BR, et al.Chemical composition of the continental crust as revealed by studies in East China.Geochimica et Cosmochimica Acta, 1998 ,62: 1959–1975
    [82] Kirillova GL.Cretaceous tectonics and geological environments in east Russia. Journal of Asian Earth Sciences,2003,21 :967-977
    [83] Kirillova GL.Late Mesozoic-Cenozoic sedimentary basins of active continental margin of Southeast Russia:paleogeography,tectonics,and coa-oil-gas presence.Marine and Petroleum Geology,2003,20:385-397
    [84] Klinin MA,Kuzmin YV,Bazarova VB,et al.Late Glacial-Holocene environmental changes and its age in the Lower Amur River basin,Russian Far East:the Gursky peatbog case study.Nuclear Instruments and Methods in Physics Research 2004,B223-224:676-680
    [85] Li JY,He ZJ,Mo SG,et al. The Late Mesozoic Orogenic Processes of Mogolia-Okhotsk Orogen:Evidence from Field Investigations into Deformation of the Mohe Area, NE China. Jour Gesci Res NE Asia,1999,21(2):172-178
    [86] Meng QR . What drove late Mesozoic extension of the northern China-Mongolia tract? Tectonophysics, 2003, 369: 155-174
    [87] Meng QR,Hu J,Jin J,et al. Tectonics of the late Mesozoic wide extensional basin system in the China-Mngolia border region. Basin Research ,2003 ,15:397-415
    [88] Nadir Halim,Vadim Kravchinsky,Stuart Gilder,et al. A palaeomagnetic study from the Mongol–Okhotsk region- rotated Early Cretaceous volcanicand remagnetized Mesozoic sediments. Earth and Planetary Science Letters,1998,159:133–145
    [89] Parfenv LM.Mesozoic tectonic evolution of Northeastern Asia. Tectonophysics 1986, 127:291-304
    [90] Pargenov. Mesozoic tectonic evolution of Norheastern Asia.Tectonophysics,1986,127: 291-304
    [91] Ren JY, Tamaki K,Li ST, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas, Tectonophysics ,2002,344:175-205
    [92] Schellart WP,Lister GS.Therole of the East Asian active margin in widespread extensional and srike-slip deformation in East Asia.Journal of the Geological Society,2005,162:959-972
    [93] Wu FY,Jahm BM,Wilde S,et al.Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in nrhteastern China.Tectonophysics,2000,328:89-113
    [94] Wu, F.Y., Walker, R.J., Ren, X.W., et al.Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chem. Geol., 2003, 197: 107-129.
    [95] Zhang YQ, Ma YS.Cenozoic extensional stress evolution in North China. Journal of Geodynamics, 2003, 36: 591-613
    [96] Zhou XM,Li WX.Origin of late Mesozoic igneous rocks in Sotheastern China:implication for lithosphere subduction and underplating of mafic magmas.Tectonophysics,2000, 326:269-287
    [97] Zorin YA.Geodynamics of the western part of the Mongolia–Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics,1999,306:33–56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700