猪粪堆肥的理化特征及腐熟度评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
好氧堆肥是固体有机废弃物资源化的主要手段。评估堆肥腐熟度是确保堆肥产品质量必不可少的步骤,但常规的堆肥腐熟度评价指标存在耗时较长、费用昂贵的问题。本研究拟发展基于三维荧光光谱与荧光区域指数(Excitation emission matrix-fluorescence regional index, EEM-FRI)的堆肥腐熟度快速评估方法,通过其与堆肥腐熟度评估指标相关性分析,寻求一种简单、快速的堆肥腐熟度评估方法。
     本文通过不同配比的猪粪和稻草、砻糠堆肥试验,研究了堆肥过程中主要物质的物理、化学、生物学指标以及光谱学特征的动态变化,揭示了不同辅料配比的猪粪堆肥过程中物质变化的基本规律,并评价了EEM-FRI表征猪粪堆肥腐熟度的可行性。
     通过不同辅料配比的猪粪堆肥试验,考察了不同辅料配比条件下,堆体中的物理、化学及生物学指标的动态变化。结果表明,碳氮比(17.7)最高,水溶性碳氮比(1.4)最低的堆体发酵效果最好;碳氮比(13.9)最低,水溶性碳氮比(2.8)高的堆体发酵效果最差,且该堆体至堆肥结束时,仍未完全腐熟。
     通过变性梯度凝胶电泳(DGGE)方法和多重荧光标记-激光共聚焦显微镜(CLSM)观察,确定细菌主要作用于升温阶段和高温阶段的初始期,且G+C含量低的菌体在堆肥的前期较降温期多;蛋白类物质主要存在于猪粪中,而α-多糖类物质主要存在于秸秆等植株细胞中,细胞主要存在于猪粪和稻草的表面和内部,但死亡细胞主要分布在稻草的杆状内部;在高温阶段存活的微生物主要用于降解纤维素和α-多糖类物质。堆体建堆26天后,堆体中的蛋白质、α-多糖、纤维素的含量和死亡细胞的数量逐渐降低,微生物总体的数量逐步升高。
     红外光谱和核磁共振光谱的结果表明,随堆肥时间的延长,有机肥的芳香度不断上升。堆肥水溶性物质中约90%的碳是以脂肪化形式存在的,仅有少部分的碳以芳香化形式存在。脂肪族碳主要集中在烷基碳和碳水化合物中,芳香族碳主要在表征烯烃碳的112-145ppm区域中。
     酚、醇和氨基酸,脂肪长链中的亚甲基,芳香结构的烯烃或酰胺键,羧酸盐,粘土矿物硅质,其他微生物降解易降解有机物及稻草中的木质素、纤维素、半纤维素、多糖等存在于堆肥的全过程。升温期和高温期是蛋白质等降解为简单的酰胺类物质的主要阶段。在建堆后18天为纤维素、木质素等的主要降解阶段。
     EEM-FRI结果表明,在猪粪堆肥过程中,蛋白类物质的含量逐步下降,腐殖酸类物质和富里酸类物质的含量均呈整体上升趋势。通过EEM-FRI与化学、生物学指标的相关性分析确定,EEM-FRI可用于评价猪粪堆肥的腐熟度。
Composting is a cheap, efficient and sustainable way for solid wastes utilization. Assessment of compost maturity is of utmost importance for achieving high quality compost to guarantee its marketability. However, traditional methods to assess compost maturity were time-consuming and high-costing. Therefore, excitation-emission matrix combined with fluorescence regional integration (EEM-FRI) method is developed as an easy-operated and fast method to assess compost maturity in this study.
     Composts with different ratios of pig manure, rice husk and straw were carried out in this study. Parameters of chemical, biological and spectrum of composts were characterized to reflect variations of organic matters during composting process, and the feasibility of EEM-FRI method to assess compost maturity were tested. The results were listed as follows.
     The highest quality composts came from the treatment with the highest carbon to nitrogen ratio (17.7) and the lowest water soluble carbon to water soluble nitrogen ratio (1.4), while the treatment with the lowest carbon to nitrogen ratio (13.9) and the highest water soluble carbon to water soluble nitrogen ratio (2.8) did not mature till the end of composting process.
     Multiple fluorescence labeling combined with confocal laser scanning microscopy (CLSM) and denaturing gradient gel electrophoresis (DGGE) were adopted to study the composition, architecture, and function of biofilms constituents at the microscale and change of bacteria, respectively. Bacteria with low G+C content played an important role in mesophilic and thermophilic phases. Most proteins were found in pig manure, whileα-polysaccharides existed in straw. Dead cells presented in the inner of straw, while cellulose and total cells existed in both pig manure and straw.
     Microorganisms in thermophilic phase mainly degraded cellulose andα-polysaccharides matters. Straw and pig manure were not completely degraded in thermophilic phase. Compared with thermophilic phase, the intensity of proteins,α-polysaccharides, cellulose and dead cells of cooling phase reduced while the number of microorganisms increased.
     The degree of aromaticity increased with composting process. More than ninety percent of carbon in water-soluble compounds was aliphatic carbon, and most of it was alkyl carbon and carbon in carbohydrates. Majority of aromatic carbon was olefinic carbon.
     Phenolic, alcoholic, amino acid, aliphilatic methylene, aromatic and olefinic, carboxyl, silicate, easy-degradable compounds and lignin, cellulose, hemi-cellulose were found in the whole composting process.
     Proteins were degraded in mesophilic and thermophilic phase, while cellulose and lignin were degraded in thermophilic and cooling phase.
     With the composting process, protein-like substances decreased while the concentration of fulvic-like and humic-like matters increased. EEM-FRI method was suitable to assess the maturity of pig manure compost.
引文
[1]Abid, N., Sayadi, S. Detrimental effects of olive mill wastewater on the composting process of agricultural wastes [J]. Waste Management,2006,26 (10):1099-1107.
    [2]Adani, F., Genevini, P. L., Tambone, F. A new index of organic matter stability [J]. Compost Science and Utilization,1995,3 (2):25-37.
    [3]Adav, S.S., Lin, J.C., Yang, Z., Whiteley, C.G., Lee, D.J., Peng, X.F., Zhang, Z.P. Stereological assessment of extracellular polymeric substances, exo-enzymes, and specific bacterial strains in bioaggregates using fluorescence experiments [J]. Biotechnology Advances,2010,28:255-280.
    [4]Antl'zar-Ladislao, B., Lopez-Reala, J., Becka, A.J. Investigation of organic matter dynamics during in-vessel composting of an aged coaltar contaminated soil using fluorescence excitation-emission spectroscopy [J]. Chemosphere,2006,64:839-847.
    [5]Baker, A. Fluorescence properties of some farm wastes:implications for water quality monitoring [J]. Water Research,2002,36:189-194.
    [6]Bernal, M.P., Alburquerque, J.A., Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review [J]. Bioresource Technology,2009,100:5444-5453.
    [7]Bernal, M.P., Paredes, C., Sanchez-Monedero, M.A., Cegarra, J. Maturity and stability parameters of composts prepared with a wide range of organic wastes [J]. Bioresource Technology,1998,63: 91-99.
    [8]Bishop, P.L., Godfrey, C. Nitrogen transformations during sludge composting [J]. BioCycle,1983, 24:34-39.
    [9]Broddie, H.L., Carr, L.E. and Condon, P. A comparison of static pile and turned windrow methods for poultry litter compost production [J]. Compost Science and Utilization,2000,8 (3):178-189.
    [10]Caricasole, P., Provenzano, M.R., Hatcher, P.G., Senesi, N. Chemical characteristics of dissolved organic matter during composting of different organic wastes assessed by 13C CPMAS NMR spectroscopy [J]. Bioresource Technology,2010,101:8232-8236.
    [11]Cayuela, M.L., Mondini, C., Sa'nchez-Monedero, M.A., Roig A. Chemical properties and hydrolytic enzyme activities for the characterisation of two-phase olive mill wastes composting [J]. Bioresource Technology,2008,99:4255-4262.
    [12]Cegarra, J., Alburquerque, J.A., Gonza'lvez, J., Tortosa, G., Chaw, D. Effects of the forced ventilation on composting of a solid olive-mill by-product ("alperujo") managed by mechanical turning [J]. Waste management,2006,26:1377-1383.
    [13]Chanyasak, V., Kubota, H. Carbon/organic nitrogen ratio in water extract as measure of compost degradation [J]. Journal of Fermentation and Bioengineering,1981,59:215-219.
    [14]Chen, M.Y., Lee, D.J., Tay, J.H. Distribution of extracellular polymeric substances in aerobic granules [J]. Applied Microbiology Biotechnology,2007,73,1463-1469.
    [15]Chen, W., Westerhoff, P., Leenheer, J.A., Booksh, K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter [J]. Environmental science and technology,2003,37:5701-5710.
    [16]Claudio, M., Maria, T.D., Liviana, L. An integrated chemical, thermal and microbiological approach to compost stability evaluation [J]. Journal of Environmental Quality,2003,32: 2379-2386.
    [17]Coble, P.G, Schultz, C.A., Mopper, K. Fluorescence contouring analysis of DOC intercalibration experiment samples:a comparison of techniques [J]. Marine Chemistry,1993,41:173-178.
    [18]de Bertoldi, M., Vallini, G., Pera, A. The biology of composting:a review [J]. Waste Management and Research,1983,1:157-176.
    [19]deBeer, D., Flaharty, V.O., Thaveesri, J., Lens, P., Verstraete, W. Distribution of extracellular polysaccharides and flotation of anaerobic sludge [J]. Application of Microbiology and Biotechnology,1996,46:197-201.
    [20]Dou, Z., Zhang, GY., Stout, W.L. Efficacy of alum and coal combustion by-products in stabilising manure phosphorus [J]. Journal of Environmental Quality,2003,32:1409-1479.
    [21]E and A Environmental Consultants, Inc. Results of a growth compost and sawdust-sewage sludge. report to Las Virgenes municipal water district, Las Virgenes, CA.
    [22]Epstein, E., Wilson, G.B., Parr, J.F. The Beltsville aerated pile method for composting sewage sludge. In:New proeess of waste water treatment and recovery [M]. Soc. Of Chem. Ind. London, 1997:201-213.
    [23]Raj, D., Antil, R.S. Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes [J]. Bioresource Technology,2011,10:2868-2873.
    [24]Flemming, H., and Wingender, J. Relevance of microbial extracellular polymeric substances (EPSs): part I. Structural and ecological aspects [J]. Water Science and Technology,2001,43:1-8.
    [25]Fukushima, M., Yamamoto, K., Ootsuka, K., Komai, T., Aramaki, T., Ueda, S., Horiya, S. Effects of the maturity of wood waste compost on the structural features of humic acids [J]. Bioresource Technology,2009,100:791-797.
    [26]Goldstein, N. Sewage sludge composting facilities on the rise [J]. Biocycle,1985,26 (6):19-24.
    [27]Gondek, K., Filipek, M.B. Biomass yields of shoots and roots of plants cultivated in soil amended by vennicomposts based on tannery sludge and content of heavy metals in plant tissues [J]. Plant Soil Environment,2003,49 (9):402-409.
    [28]Gonzalez-Perez, M., Matin-Neto, L., Saab, S.C., Novotny, E.H., Milori, D.M.B.P., Bagnato, V.S, Colnago, L.A., Melo, W.J., Knicker, H., Characterization of humic acids from a Brazilian Oxisol under different tillage systems by EPR,13CNMR, FTIR and fluorescence spectroscopy [J]. Geoderma,2004,118:181-190.
    [29]Halet, D., Boon, N., Verstraete, W. Community Dynamics of Methanotrophic Bacteria during Composting of Organic Matter [J]. Journal of Bioscience and Bioengineering,2006,101 (4): 297-302.
    [30]Hassen, A., Belguith, K., Jedidi, N., Cherif, A., Cherif, M., Boudabous, A. Microbial characterization during composting of municipal solid waste [J]. Bioresource Technology,2001,80: 217-225.
    [31]Hatcher, P.G., Nanny, M.A., Minard, R.D., Dible, S.D., Carson, D.M. Comparison of two thermochemolytic methods for the analysis of lignin in decomposing gimnosperm wood:the CuO oxydation method and the method of thermochemolysis with tetramethylammonium hydroxyde (TMAH) [J]. Organic Geochemistry,1995,23:881-888.
    [32]Hirai, M.F, Chanyasak, V., Kubota, H.A. Standard measurement for Maturity [J]. Biocyle,1983, 54-56.
    [33]Huang, G.F., Wong, J.W.C., Wu, Q.T., Nagar, B.B. Effect of C/N on composting of pig manure with sawdust [J]. Waste Management,2004,24:805-813.
    [34]Hue, N.V., Liu, J. Predicting compost stability [J]. Compost Science and Utilization,1995,3:8-15.
    [35]Iannotti, D.A., Pang, T., Toth, B.L., Elwell, D.L., Keener, H. M., Hoitink, H.A.J. A quantitative respirometric method for monitoring compost stability [J]. Compost Science and Utilization,1993, 1:52-65.
    [36]Iglesias, E.J., Alvarez, C.E. Apparent availability of nitrogen in composting municipal refuse [J]. Biology and Fertility of Soils,1993,16:313-318.
    [37]Inoko, A., Miyamatsu, K., Sugahara, K., Harada, Y. On some organic constiruents of city refuse composts produced in Japan [J]. Soil Science and Plant Nutrition,1979,25:225-234.
    [38]Keeling, A.A., McCallum, K.R., Beckwitheling, C.P. Mature green waste compost enhances growth and nitrogen uptake in Wheat(Triticum aestivum L.) and Oilseed Rape(Brassica napus L.) through the action of water-extractable factors [J]. Bioresource Technology,2003,90 (2):127-132.
    [39]Keller, P. Methods to evaluate maturity of compost [J]. Compost Science and Utilization,1961,2 (7):20-26.
    [40]Klausen, M., Heydorn, A., Ragas, P. Biofilm formation by Pseudomonas aeniginosa wild type, flagella and type Ⅳ pili mutants [J]. Molecular Microbiology,2003,48 (6):1511-1524.
    [41]Kornittowicz-Kowalska,T., Bohacz, J. Dynamics of growth and succession of bacterial and fungal communities [J]. Bioresource Technology,2010,101:1268-1276.
    [42]LaMontagne, M.G., Michel, Jr F.C., Holden, P.A., Reddy, C.A. Evaluation of extraction and purification methods for obtaining PCR-ampifiable from compost for microbial community analysis [J]. Journal of Microbiological Methods,2002,49:255-264.
    [43]Lindeman, L.P., Adams, J.Q. Carbon-13 nuclear magnetic resonance spectroscopy:chemical shifts for the paraffins through C9 [J]. Analytical Chemistry,1971,43:1245-1251.
    [44]Lu, X.Q., Hanna, J.V., Johnson, W.D. Source indicators of humic substances:an elemental composition, solid state 13C CP/MAS NMR and Py-GC/MS study [J]. Applied Geochemistry,2000, 15:1019-1033.
    [45]Mao, J.D., Hu, W.G., Schmidt-Rohr, K., Davies, G, Ghabbour, E.A., Xing B. Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance [J]. Soil Science Society of American Journal,2000,64:873-884
    [46]Marhuenda-Egea, F.C., Marti'nez-Sabater, E., Jorda', J., Moral, R., Bustamanteb, M.A., Paredes, C., Pe'rez-Murcia, M.D. Dissolved organic matter fractions formed during compostingof winery and distillery residues:Evaluation of the process by fluorescence excitation-emission matrix [J]. Chemosphere,2007,68:301-309.
    [47]Martins, O., Dewes, T. Loss of nitrogenous compounds during composting of animal wastes [J]. Bioresource Technology,1992,42:103-111.
    [48]Mengchun, G Evaluation of stability and maturity during forced-aeration composting of chicken manure and sawdust at different C/N ratios [J]. Chemosphere,2010,78:614-619.
    [49]Meunchang, S., Panichsakpatana, S., Weaver, R.W. Co-composting of filter cake and bagasse by producets from a sugar mill [J]. Bioresource Technology,2005,96:437-442.
    [50]Michael, T.M., John, M., Marrin ko J.P. Brock Biology of Microorganisms, Ninth Edition, Prentite Hall International,2000.
    [51]Miller, F.C. Composting as a process based on the control of ecologicallyselective factors. In: Metting, F.B., Jr. (Ed.), Soil Microbial Ecology, Applicationsin Agricultural and Environmental Management [M]. Marcel Dekker, Inc., New York,1992:515-544.
    [52]Morel, T. L., Colin, F., Germon, J.C. Methods for the evaluation of maturity of municipal refuse compost [M]. Science publishers. London:New York,1985:56-72.
    [53]Neu, T. R., Kuhlicke, U., Lawrence, J. R. Assessment of fluorochromes for two photon laser scanning microscopy of biofilms [J]. Applied and Environmental Microbiology.2002,68:901-909.
    [54]Ouatmane, A. Etude du compostage de quelques dechets organiques:I-CApproche physico-chimique, calorim etrique et spectroscopique de l'etude de 1' etat de maturation des composts.Ⅱ-CAnalyse qualitativeet quantitative de la fraction humique [D]. University Cadi Ayyad, Semlalia Faculty of Sciences, Marrakech, Morocco,2000.
    [55]Parlanti, E., Worz, K., Geoffroy, M., Lamotte, L. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs [J]. Organic Geochemistry,2000,31:1765-1781.
    [56]Pereia, J.T., Stentiford, E.I., Mara, D.D. Low cost controlled composting of refuse and sewage sludge [J]. Water Science and Technology,1987,19:839-845.
    [57]Plaza, C., Senesi, N., Brunetti, G., Mondelli, D. Evolution of the fulvic acid fractions during co-composting of olive oil mill wastewater sludge and tree cuttings [J]. Bioresource Technology, 2007,98:1964-1971.
    [58]Preston, C.M., Schnitzer, M. Effects of chemical modifications and extractants on the carbon-13 NMR spectra of humic materials [J]. Soil Science Society of America Journal,1984,48:305-311.
    [59]Provenzano, M.R., de Oliveira, S.C., Silva, M.R.S., Senesi J. N. Assessment of maturity degree of composts from domestic solid wastes by fluorescence and fourier transform infrared spectroscopies [J]. Journal of Agricultural and Food Chemistry,2001,49:5874-5879.
    [60]RegaladoV., RodrlguezA., Perestele F. Ligin degradation and modification by the soil inhibating fungus Fusarium Proliferatum [J]. Applied and Environmental Microbiology,1997,63 (9): 3716-3718.
    [61]Roletto E. R Barberis et al. Chemical parameters for evaluating compost maturity [J]. Biocycle, 1985,26 (2):46-47.
    [62]Said-Pullicino, D., Erriquens F.G., Gigliotti, G. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity [J]. Bioresource Technology,2007,98:1822-1831.
    [63]SanchezMonedero, M., Roig, A., Cegarra, J. Relationships between water-soluble carbohydrate and phenol fract ions and the humification indices of different organic wastes during composting [J]. Bioresource Technology,1999,70:193-201.
    [64]Santamaria-Romero, S., Ferrera-Cerrato, R. Dynamics and relationships among microorganisms, C-organicand N-total during composting and vermicomposting [J]. Agrociencia,2001,35:377-383.
    [65]Senesi, N., Brunetti, G. Chemical and physico-chemical parameters for quality evaluation of humic produced during composting [M]. In:De Bertoldi, M., Sequi, P., Lemmes, B., Papi, T. (Eds.), The Science of Composting. Blackie Academic and Professional, Glasgow,1996:195-212.
    [66]Senesi, N., Miano, T.M., Provenzano, M.R., Brunetti, G. Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy [J]. Soil Science,1991,152: 259-271.
    [67]Sierra, M.M.D., Giovanela, M., Parlanti, E., Soriano-Sierra, E.J. Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques [J]. Chemosphere,2005,58,715-733.
    [68]Skoog, D.A., West, D.M. Principles of instrumental analysis (second edition) [M]. America: Saunders College,1980:377.
    [69]Soler-Rovira, P.A., Brunetti, G., Polo, A., Senesi, N. Effects of amendment with composted sludge on soil humic acid properties [J]. Compost Science and Utilization,2003,11:176-184.
    [70]Stentiford, E.I., Pereira, J.T., Mara, D.D. Low cost composting:Research monographs in tropical public health engineering [M]. Department of Civil Engineering, University of Leeds. March.1996.
    [71]Stevenson, F.J. Humus Chemistry:Genesis, Composition, Reactions. Second ed., John Wiley Sons, New York,1994:496.
    [72]Stewart, P.S., Franklin, M.J. Physiological heterogeneity in biofilms [J]. Nature Reviews Microbiology,2008,6:199-210.
    [73]Tiquia, S.M. Microbiological parameters as indicators of compost maturity [J]. Journal of Applied Microbiology,2005,99,816-828.
    [74]Tiquia, S.M., Tam, N.F.Y.Composting of spent pig litter in turned and forced-aerated piles [J]. Environmental Pollution,1998,99:329-337.
    [75]Tuomela, M., Oivanenl, P., Hatakka, A. Degradation of synthetic 14C-lignin by various white rot fungi in soil [J]. Soil Biology and Biochemistry,2002,34:1613-1620.
    [76]Unichi, F., Akihirom, Ysaunari, M. Vision for utilization of livestock residue as bioenergy resource in Japan [J]. Biomass and Bioenergy,2005,29:367-374.
    [77]Wang, P., Changa, C.M., Watson, M.E., Dick, W.A., Chen, Y., Hoitinka, H.A.J. Maturity indices for composted dairy and pig manures [J]. Soil Biology and Biochemistry,2004,36:767-776.
    [78]Wong, J.W.C., Mak, K.F., Chan, N.W., Lam, A., Fang, M., Zhou, L.X., Wu, Q.T., Liao, X.D. Co-composting of soybean residues and leaves in Hong Kong [J]. Bioresource technology,2001,76: 99-106.
    [79]Woods End Research. Guide to Sovita testing for compost maturity index [J]. Compost Manual, 2002,11:1-8.
    [80]Xu, H.C., He, P.J., Wang, G.Z., Shao, L.M. Three-dimensional excitation emission matrix fluorescence spectroscopy and gel-permeating chromatography to characterize extracellular polymeric substances in aerobic granulation [J]. Water Science and Technology,2010,61: 2931-2942.
    [81]Yu, G. H., He, P. J., Shao, L. M., Zhu, Y. S. Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment [J]. Water Research,2008,42: 1925-1934.
    [82]Yu, G.H., He, P.J., Shao, L.M. Novel insights into sludge dewaterability by fluorescence excitation-emission matrix combined with parallel factor analysis [J].Water Research,2010,44: 797-806.
    [83]Yu, GH., Luo, Y. H., Wu, M. J., Tang, Z., Liu, D. Y, Yang, X. M., Shen, Q. R. PARAFAC modeling of fluorescence excitation-emission spectra for rapid assessment of compost maturity [J]. Bioresource Technology,2010,101:8244-8251.
    [84]Yu, G.H., Luo, Y.H., Wu, M.J., Tang, Z., Liu, D.Y., Yang, X.M., Shen, Q.R., PARAFAC modeling of fluorescence excitation-emission. spectra for rapid assessment of compost maturity [J]. Bioresource Technology,2010,101:8244-8251.
    [85]Yu, Z.T. Mark Morrison. Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by pCR-denaturing gradient gel electrophoresis [J]. Applied and Environmental Microbiology,2004,8:4800-4806.
    [86]Zaller, J.G. Foliar spraying of vermicompost extracts:Effects on fruitquality and indications of late-blight suppression of field grown tomatoes [J]. Biological Agriculture and Horticulture,2006, 24(2):165-180.
    [87]Zbytniewski, R., Buszewski, B.2005.Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1:chemical and spectroscopic properties [J]. Bioresource Technology,2005,96:471-478.
    [88]Zhang, Q., Xu, G,Yue, J. Energybalancemodel and method of the ecotypic orchard with biogas digester as a link[M]//MIRKO B. Sino-germanworkshop on energetic utilization of biomass. Beijing:China. Science Press,2003:23-33.
    [89]Zmora-Nahum, S., Markovitch, O., Tarchitzky, J., Chen, Y. Dissolved organic carbon (DOC) as a parameter of compost maturity [J]. Soil Biology and Biochemistry,2005,37:2109-2116.
    [90]Zucconi, F., de Bertoldi, M. Compost specifications for the production and characterization of compost from municipal solid waste [M], In:de Bertoldi, M., Ferranti, M.P., L'Hermite, P., Zucconi, F. (Eds.), Compost:Production, Quality and Use. Elsevier, Barking,1987:30-50.
    [91]Zucconi, F., Monaco, A., Forte, M., Bertold i, M. Phytotoxins during the stabilization of organic matter. In:Composting of agricultural and other wastes[M], Gasser, J.K.R., Eds., Elsevier Applied Science:London, New York,1985:73-88.
    [92]Zucconi, F., Monaco, A., Forte, M., de Bertoldi, M. Phytotoxins during the stabilization of organic matter. In:Gasser, J.K.R. (Ed.), Composting of Agricultural and Other Wastes [M]. Elsevier Applied Science Publishers, Barking,1985:73-85.
    [93]鲍士旦.土壤农化分析[M].北京:中国农业出版社,1999:438.
    [94]卞有生.生态农业中废弃物的处理与再生利用[M].北京:化学工业出版社,2005:441.
    [95]仓龙,李辉信,胡锋,何锋,陈庆青.蚯蚓堆制处理牛粪的腐熟度指标初步研究[J].农村生态环境,2003,19(4):35-39.
    [96]曹明慧,冉炜,杨兴明,沈其荣,沈标.烟草黑胫病拮抗菌的筛选及其生物效应[J].土壤学报,2011,48(1):151-159.
    [97]柴晓利,张华,赵由才.固体废物堆肥原理与技术[M].化学工业出版社,2005.
    [98]陈银节,缪九军,张宗元.三维荧光光谱的油气指示意义[J].天然气地球科学,2005,16(1):69-72.
    [99]程凯,江欢欢,沈标,徐阳春,沈其荣,杨兴明.棉花黄萎病拮抗菌的筛选及其生物防治效果[J].植物营养与肥料学报,2011,17(1):166-174.
    [100]段旭光,曾雷,付美云,朱进春,宋光桃.红外光谱对有机废弃物堆肥的监测研究[J].湖南农业科学,2009,5:74-76.
    [101]范小建.切实加强有机肥料建设,努力提高农业综合生产能力[N].农民日报,2005-06-21.
    [102]傅平青,刘丛强,尹祚莹,吴丰昌.腐殖酸三维荧光光谱特性研究[J].地球化学,2004,33(3):301-308.
    [103]关松荫等.土壤酶及其研究法[M].北京:农业部出版社,1983:14-40.
    [104]郭春华,魏荣禄,陶文清,陈智华,陶正.微生物发酵蛋白饲料在奶牛饲养中的应用研究[J].西南民族大学学报自然科学版,2009,(4):759-763.
    [105]郭肖颖,朱丽君,李布青.沼渣肥的特性与应用效果研究[J].安徽农业科学,2010,38(27):14986-14988.
    [106]郝瑞霞,曹可心,邓亦文.三维荧光光谱法表征污水中溶解性有机污染物[J].分析试验室,2007,26(10):41-44.
    [107]何飞译.对家禽生产中环境问题的认识何策略[J].中国家禽,2002,24(1):35-36.
    [108]贺健,周秀英,侯桂芝,高文渊,邢忠,戴晖.热喷技术与饲料资源开发[J].畜牧与饲料科学,2010,31(6-7):362-365.
    [109]胡代泽.综合利用农业副产物资源建立饲-能-环生态工程[J].资源开发与保护,1992,8 (4):243-246.
    [110]黄吕勇等.土壤学[M].北京:中国农业出版社,1999:38-44.
    [111]黄婷婷,曹慧,王兴祥,崔中利.一种十壤微生物总DNA的高效提取方法[J].土壤,2004,36(6):662-666.
    [112]江欢欢,程凯,杨兴明,徐阳春,沈其荣,沈标.辣椒青枯病拮抗菌的筛选及其生物防治效应[J].十壤学报,2010,47(6):1225-1231.
    [113]蒋凤华,杨黄浩,黎先春,王小如,王修林,殷月芬.胶州湾海水溶解有机物三维荧光特征研究[J].光谱学与光谱分析,2007,9(27):1765-1769.
    [114]金继运,李家康.施肥技术升级战略研究报告.第三届中国国际农业科技年会,1999.
    [115]李国学,李玉春,李彦富.固体废物堆肥化及堆肥添加剂研究进展[J].农业环境科学学报,2003,22(2):252-256.
    [116]李国学,张福锁编著.固体废弃物堆肥化与有机复混肥生产[M].北京:化学工业出版社,2000.
    [117]李吉进,邹国元,徐秋明,杨振玲.鸡粪堆肥腐熟度参数及波谱的形状研究[J].植物营养与肥料学报,2006,12(2):219-226.
    [118]李季伦译Moat. A.G. Foster w., Pcctor M.P.编著.微生物生理学[M].北京:高等教育出版社,2005.
    [119]李清伟,吕炳南,李慧莉,王红.猪粪好氧堆肥研究的进展[J].农机化研究,2007,1(1):63-65.
    [120]李朕,尚丽平,邓琥,职统兴.色氨酸和酪氨酸的三维荧光光谱特征参量提取[J].光谱学与光谱分析,2009,7(29):1925-1928.
    [121]李自刚,黄为一.微生物腐熟菌剂对牛粪堆肥产品中低分子量有机物的影响[J].植物营养与肥料学报,2006,12(3):437-444.
    [122]廖新悌,吴银宝,汪植三,戴苗,钱兆洲.堆体大小对猪粪堆肥影响和袋装堆肥的研究[J].农业工程学报,2003,19(4):287-290.
    [123]林聪.沼气技术理论与工程[M].北京:化学工业出版社,2007,(1):183-200.
    [124]刘东,马林,王方浩,卞芬茹,马文奇,张福锁.中国猪粪尿N产生量及其分布的研究[J].农业环境科学学报,2007,26(4):1591-1595.
    [125]刘天学,牛天岭,常加忠,杨青春.焚烧秸秆不利于玉米幼苗和根际微生物的生长[J].植物生理学通讯,2004,40(5):564-566.
    [126]刘卫星,顾金刚,姜瑞波,洪坚平.有机固体废弃物堆肥的腐熟度评价指标[J].土壤肥料,2005(3):3-7.
    [127]农业部环能司主编.沼气技术手册[M].成都:四川科技出版社,1990.
    [128]钱晓雍,沈根祥,黄丽华,奚刚.畜禽粪便堆肥腐熟度评价指标体系研究[J].农业环境科学学报,2009,28(3):549-554.
    [129]秦海生.秸秆热喷处理养畜技术[J].河北农机,2003,4:23.
    [130]曲强,王立阁.畜禽粪便污染与资源化利用吉林畜牧兽医[J].2005(6):31-32.
    [131]苏峰峰,曾光明,黄丹莲,冯冲凌,胡霜.胞外酶对堆肥中微生物群落演替的影响[J].中国环境科学2009,29(5):524-530.
    [132]谭小琴,邓良伟,伍钧,徐耀波.猪场废水堆肥化处理过程中微生物及酶活性的变化[J].农业环境科学学报,2006,25(1):244-248.
    [133]王春铭,卢建文,雷恒毅,陈桂珠,李丕学,黄洁妍.城市污泥堆肥过程中微生物研究[J].生态环境,2007,16(2):462-466.
    [134]王丹丹,李辉信,胡锋,王霞,杨文霞.蚯蚓处理城市生活垃圾的现状与趋势[J].江苏农业科学,2005(4):4-8.
    [135]王艮梅,刘洋.江苏省畜禽粪便污染及资源化利用[J].环境科学与管理,2008,33(8):172-177.
    [136]王江干.核磁共振技术的发展及其在化学中的应用[J].韶关学院学报(自然科学版),2001,22(6):64-68.
    [137]王金花.沼气发酵生态系统与残留物综合利用技术研究[D].北京:中国农业大学水利与土木工程学院,2005:11-14.
    [138]王凯军,金冬霞,赵淑霞,曹从荣.畜禽养殖污染防治技术与政策[M].北京:化学工业出版社,2004:113.
    [139]王凯军,金冬霞,赵淑霞,曹从荣.畜禽养殖污染防治技术与政策[M].北京:化学工业出版社,2004:2.
    [140]王荣昌,文湘华,钱易.激光扫描共聚焦显微镜用于生物膜研究[J].中国给水排水,2003,19:23-25.
    [141]王伟东,王小芬,朴哲,刘长莉,高秀芝,崔宗均.堆肥化过程中微生物群落的动态[J].环境科学,2007,28(11):2591-2597.
    [142]卫亚红,梁军锋,黄懿梅,曲东.家畜粪便好氧堆肥中主要微生物类群分析[J].中国农学通报,2007,23(11):242-248.
    [143]吴景贵,吕岩,王明辉,姜亦梅.有机肥腐解过程的红外光谱研究[J].植物营养与肥料学报,2004,10(3):259-266.
    [144]吴景贵,席时权,姜岩.红外光谱在土壤有机质研究中的应用[J].光谱学与光谱分析,1998,18(1):52-57.
    [145]杨极武,冯万贵,安恒军,惠效荣,安秀玲.沼气、沼液和沼渣在蔬菜生产中的应用[J]. 北方园艺,2006(3):80-81.
    [146]郁红艳,曾光明,胡天觉,陈耀宁.真菌降解木质素研究进展及在好氧堆肥中的研究进展[J].中国生物工程杂志,2003,23(10):57-61.
    [147]岳丹萍.江苏养猪业污染与对策的实证研究[D].南京:南京农业大学,2008:14-26.
    [148]曾光明,黄国和,袁兴中,杨朝晖,胡天觉.堆肥环境生物与控制[M].北京:科学山版社,2006:1-10.
    [149]张丰松,李艳霞,杨明等.畜禽粪便堆肥溶解态有机质三维荧光光谱特征及Cu络合[J].农业工程学报,2011,27(1):314-319.
    [150]张志祥,刘鹏,康华靖,廖承川,陈子林,徐根娣.基于主成分分析和聚类分析的FTIR不同地理居群香果树多样性分化研究[J].光谱学与光谱分析,2008,28(9):2081-2086.
    [151]朱彬,苏继锋,韩志伟,尹聪,王体健.秸秆焚烧导致南京及周边地区一次严重空气污染过程的分析[J].中国环境科学,2010,30(5):585-592.
    [152]朱菜红,董彩霞,沈其荣,徐阳春.配施有机肥提高化肥氮利用效率的微生物作用机制研究[J].植物营养与肥料学报,2010,16(2):282-288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700