细胞电旋转芯片的介电力场计算模型及系统构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物芯片技术是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。介电电泳芯片(Dielectrophoresis Chip, DEP Chip)技术作为一种重要的生物芯片技术,具有对生物体无损伤性以及快速、易与微系统合成等优点,迅速成为生命科学、分析化学等诸多领域中操控微系统内生物液体的主要手段。随着人们对该技术认识的不断深入,各种不同用途的采用了该技术的微系统器件被制作出来。其中,利用生物颗粒在旋转交流电场中电旋转频谱特性检测其电学参数的电旋转芯片己大量使用在生物细胞活性检测、细胞电导数及细胞膜电容的测量等筛选、监测和测量的研究领域。
     本论文的研究工作主要包括:利用SCM方法对电旋转芯片的电场分布进行精确的解析解求解;对获得的介电力场分布进行误差分析,得到各区域的测量误差范围;对电旋转芯片实验中的测量误差进行相关分析并给出校正方案;对电旋转芯片中生物颗粒运动的成因及影响进行了研究;进而推导出了适用于介电电泳芯片设计的普适方程。在理论研究上,本文首次采用SCM方法和电场叠加的方法对电旋转芯片中处于不同电信号相位的电场分布作了解析求解,并通过解得的介电力场分析了生物颗粒在电旋转芯片中的运动成因,发现介电力场中两个介电力阱会随着电信号相位而周期改变位置是电旋转芯片中生物颗粒运动的主因。
     本文进一步通过介电力场分布和电旋转转矩分布进行了电旋转芯片实验中测量误差的区域分析。通过测量误差的分析定义了一个适合电旋转测量的置信空间,该区域可定义为圆心在原点处、半径为环形电极的36%的一个圆形区域,区域内的电旋转转矩最大误差在5%以内。综合考虑介电力场对微粒摆动的影响后,该区域则可以定义为圆心在原点处、半径为环形电极的30%的圆形区域,在该区域内介电力场随着电信号相位的改变的波动幅度小于25%。该结果在本文中通过搭建的电旋转芯片实验平台进行了相关的实验验证。
     由于本文中提出的基于SCM的电旋转芯片电场计算方法具有快速、精确和计算量小的特点,辅以图像处理技术,非常适合于电旋转芯片实验中的实时计算和校正。本文中根据研究结果给出了相关的可用于电旋转实验的实时计算校正方案。
     本文中基于无源场拉普拉斯方程首次推导出了介电力普适方程,该普适方程的提出提高了对介电电泳中介电力场的认识,改变了以往介电电泳电极设计主要依靠经验的落后方法。针对该普适方程的求解,本文中提出了函数解析法和差分计算法两种方法。基于这两种方法,本文中提出了一种新型的介电电泳电极的设计方法。
Since the mid-90s, biochip technology is one of the most far-reaching strides in science and technology. Biochip is an interdisciplinary which integrated the financial microelectronics, biology, physics, chemistry, and computer science. Biochip has great value in basic research and significant industrial prospects. The dielectrophoresis chip (Dielectrophoresis Chip, DEP Chip) technology is one of the important bio-chip technologies. This technology has many advantages, such as without injury, fastly, and easily be integrated in micro-system. It becomes the mainly method to operate the bio-fluid in the micro-system within the life sciences, analysis chemistry and many other areas. With a deep understanding of this technology, many type micro-system components were studied. Among them, the electroration chip has been already widely applied on many areas including the measurement of the cell activity, the cell conductance and cell membrane capacitance. This chip measured these parameters using the spectrum of the biological particles in the chip.
     The work in this paper mainly including solving analytical solution of the electric field distribution in the electroration chip using SCM method; analsising the measurement error of each area by the distribution of the dielectrophoretic force field in electroration chip; studying the reason and the effects of the biological particles'moving during the measurement; design the dielectrophoresis chip with the new universal equation which derived in this paper. In theory, the paper first solved analytical solution of the electric field distribution with different phase of the potential using the SCM method and the electric field superposition theorem. And the reason of the biological particles'moving were analyzed by the distribution of the dielectrophoretic force field solved. Based on the above, the main reason we found was that two dielectrophoretic force traps change their position with the potential phase changing.
     The measurement errors within different areas were analysed by the distribution of the dielectrophoretic force field and the electic field in this paper. An area was defined base on the analysis of the measurement errors in wich the measurement on the biological particles has negligible error. This area can be defined as a circle area which the center is the origin point and the radius is 36% of the radius of the electrode. The maxium error in this area is less than 5%. Considering the biological particles' moving, this area is redefined as a circle area which radius is just 30% of the radius of the electrode. The fluctuations of the dielectrophoretic force at any position in this area are less than 25%. Related experiments described in this paper validated the theory above.
     The SCM method given in this paper has many advantages, such as calculation rapidly, accurate result and using less computation resource. Combined with image processing technology, the SCM method is a best method to real-time compute and correct the measurement result. The detail of relevant method and algorithm is described below in this paper.
     A new method to design the dielectrophoretic electrode was described in this paper. This method is based on the universal equation which is derived from Laplace equation. This universal equation raised the awareness of dielectrophoresis, changed the common design methods which mainly based on experience. For the universal equation, In this paper, two methods were metioned to solve the universal equation. The one is analytical method, and the other is the difference method.
引文
[1]Fu Y Q, Luo J K, Du X Y, et al. Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications:a review. Sensors and Actuators B:Chemical,2010,143(2):606-619
    [2]Du X Y, Fu Y Q, Luo J K, et al. Microfluidic pumps employing surface acoustic waves generated in ZnO thin films. Journal of applied physics,2009,105:024508. 1-7
    [3]Kenanakis G, Stratakis E, Vlachou K, et al. ZnO film thickness effect on surface acoustic wave modes and acoustic streaming. Appl. Surf. Sci.,2008,93:094105. 1-3
    [4]Nilsson S, Santesson S, Degerman E, et al. Airbone chemistry for biological micro analysis. In Micro Total Analysis Systems 2000,2000,1:19-24
    [5]Jones P H, Stride E, Saffari N. Trapping and manipulation of microscopic bubbles with a scanning optical tweezer. Appl. Phys. Lett.,2006,89:081113.1-3
    [6]Ashkin A. Optical trapping and manipultion of neutral particles using lasers. Proc. Natl. Acad Sci USA,1997,94:4853-4860
    [7]Liesener J, Reicherter M, Haist T, et al. Multi funtional optical tweezers using computer generated holograms. Optics Communications,2000,185:77-82
    [8]Dufresne E R, Grier D G. Optical tweezer arrays and optical substrates created with diffravtive optics. Review of Scientific Instruments,1998,69:1974-1977
    [9]Poinsot V, Lacroix M, Maury D, et al. Recent advances in amino acid analysis by capillary electrophoresis. Electrophoresis,2006,27(1):176-194
    [10]Voldman J. Electrical forces for microscale cell manipulation. Annual Reviews, 2006,8:425-454
    [11]Xie J C, Lin H, Han J H. Experimental investigation of thermocapillary migration of isolated drops. Advances in Space Research,1999,24(10):1409-1415
    [12]Kim H S, Subramanian R S. Thermocapillary migration of a droplet with insoluble surfactant:Ⅰ. Surfactant cap. Journal of Colloid and Interface Science,1989,127(2): 417-428
    [13]Chen J K, Yang R J. Electroosmotic flow mixing in zigzag microchannels. Electrophoresis,2007,28(6):975-983
    [14]Arnold A K, Nithiarasu P, Eng P F. Electro-osmotic flow in microchannels. Journal of Mechanical Engineering Science,2008,222(5):753-759
    [15]Lapizco B H, Rito P M. Dielectrophoresis for the manipulation of nanobioparticles. Electrophoresis,2007,28(24):4521-4538
    [16]Jan R, Thanh T D, Ralf E. Dielectrophoretic Manipulation of DNA:Separation and Polarizability. Analytical chemistry,2007,79(10):3925-3932
    [17]Lindquist S. The heat-shock response. Annu. Rev. Biochem.,1986,55:1151-1191
    [18]Craig E A. The heat shock response. CRC Crit. Rev. Biochem.,1985,18:239-280
    [19]Burdon R H. Heat-shock and the heat-shock proteins. Biochemical Journal.,1986, 240:313-324
    [20]Subjeck J R, Shyy T T. Stress protein systems of mammalian cells. American Journal of Physiology,1986,250:1-17
    [21]Weaver J C, Vaughan T E, Martin G T. Biological effects due to weak electric and magnetic fields:the temperature variation threshold. Biophys. J.,1999,76: 3026-3030
    [22]Carper S W, Duffy J J, Gerner E W. Heat shock proteins in thermotolerance and other cellular processes. Cancer Research,1987,47:5249-5255
    [23]Yang F, Yang X M, Jiang H, et al. Dielectrophoretic separation of colorectal cancer cells. Biomicrofluidics,2010,4:013204
    [24]Kim Y H, Lee J W, An J, et al. Effect of a blind spot in a dielectrophoretic field on the separation of human breast cancer cells. Journal of Mechanical Science and Technology,2009,23(11):3132-3139
    [25]Gascoyne P R C, Wang X B, Huang Y, et al. Dielectrophoretic separation of cancer cells from blood. IEEE Trans Ind Appl.,1997,33:670-678
    [26]Cheng J, Kricka L J, Sheldon E L. Sample preparation in microstructured devices, microstructure and microsystems. Beilin:Springer-Verlag,1998
    [27]Hawkes J J, Archer G P, Betts W B. A dielectrophoretic spectrometer for characterizing microorganisms and other particles. Micobios,1993,73:81-86
    [28]Hector M H, Blanca H L E. Simultaneous concentration and separation of micro-organisms:insulator-based dielectrophoretic approach. Analytical and Bioanalytical Chemistry,2010,396(5):1805-1816
    [29]Hughes M P, Morgan H. Measurement of Bacterial Flagellar Thrust by Negative Dielectrophoresis. Biotechnology Progress,2008,15(2):245-249
    [30]Sanchis A, Brown A P, Sancho M, et al. Dielectric characterization of bacterial cells using dielectrophoresis. Bioelectromagnetics,2007,28(5):393-401
    [31]Burt J P H, Chan K L, Dawson D, et al. Assays for microbial contamination and DNA analysis based on electrorotation. Ann. Biol. Clin,1996,54:253-257
    [32]Suehiro J, Noutomi D, Hamada R, et al. Selective detection of bacteria using dielectrophoretic impedence measurement method combined with antigen-antibody reaction. IEEE 2001,2001
    [33]Brown A P, Betts W B, Harrison A B, et al. Evaluation of a dielectrophoretic bacteria counting technique. Biosensors & Bioelectronics,1999,14:341-351
    [34]Muller T, Gradl G, Howitz S, et al.3-D microelelctrode system for handling and caging single cells and particles. Biosensors & Bioelectronics,1999,14:247-256
    [35]Arai F, Ogawa M, Fukuda T. High speed random separation of microobject in microchip by laser manipulator and dielectrophoresis. IEEE 2000,2000
    [36]Huang Y, Wang X B, Gascoyne P R C. Membrane dielectric responses of human T lymphocytes following mitogenic stimulation. Biochim. Biophys. Acta,1999,1417: 51-62
    [37]Huang Y, Joo S, Duhon M, et al. Dielectrophoretic Cell Separation and Gene Expression Profiling on Microelectronic Chip Arrays. Anal. Chem.,2002,74(14): 3362-3371
    [38]Rajaraman S, Noh H S, Hesketh P J, et al. Rapid, low cost microfabrication technologies toward realization of devices for dielectrophoretic manipulation of particles and nanowires. Sens. Actuators, B,2006,114(1):392-401
    [39]Mihai L. Separation of small metallic nonferrous particles in low concentration from mineral wastes using dielectrophoresis. Int. J. Miner. Process,2006,78: 215-219
    [40]Park B Y, Madou M J.3-D electrode designs for flow-through dielectrophoretic systems. Electrophoresis,2005,26:3745-3757
    [41]Cui L, Holmes D, Morgan H. The dielectrophoretic levitation and separation of latex beads in microchips. Electrophoresis,2001,22:3893-3901
    [42]Arai F, Ichikawa A, Ogawa M, et al. High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis. Electrophoresis, 2001,22:283-288
    [43]Jones T B. Electromechanics of particles. Cambridge:Cambridge University Press, 1995
    [44]Schwan H P. Dielectrophoresis and rotation of cells. New York:Plenum Press,1989
    [45]Gimsa J, Wachner D A. polarization model overcoming the geometric restrictions of the laplace solution for spheroidal cells:Obtaining new equations for field induced forces and trasmenbrane potential. Biophys. J.,1999,77:1316-1326
    [46]Gimsa J, Wachner D A. Unified resistor-capacitor model for impedance, dielectrophoresis, electrototation, and induced transmembrane potenital. Biophys. J., 1998,75:1107-1116
    [47]Irimajiri A, HanaiInouye T A. A dielectric theory of multi-stratified shell model with its application to a lymphoma cell. Journal of Theoretical Biology,1979,78: 251-269
    [48]Grosse C, Schwan H A. Cellular membrane potentials induced by alternating fields. Biophys. J.,1992,63:1632-1642
    [49]Zimmermann U. Electrical breakdown, electropermeabilization and electrofusion. Review of Physiology Biochemistry and Pharmacology,1986,105:175-256
    [50]Archer S, Li T T, Evans A T, et al. Cell reactions to dielectrophoretic manipulation. Biochemical and Biophysical Research Communications,1999,257:687-698
    [51]Glasser H, Fuhr G. Cultivation of cells under strong AC electric field-differentiation between heating and transmembrane potential effects. Bioelectrochemistry and Bioenergetics,1998,47:301-310
    [52]Wang X J, Yang J, Gascoyne P R C. Role of peroxide in AC electrical field exposure effects on friend murine erythroleukemia cells during dielectrophoretic manipulations. Biochimica et Biophysica Acta.1999,1426:53-68
    [53]Joho K, Nadine A. Dielectrophoresis induced clustering regimes of viable yeast cells. Electrophoresis,2005,26(19):3738-3744
    [54]Yang M, Zhang X. Electrical assisted patterning of cardiac myocytes with controlled macroscopic anisotropy using a microfluidic dielectrophoresis chip. Sensors and Actuators:A,2006,135(1):73-78
    [55]Gascoyne P R, Vykoukal J. Particle separation by dielectrophoresis. Electrophoresis, 2002,23(13):1973-1983
    [56]Sreej A B, Asokan L, Jawerth R, et al. Two-Dimensional Manipulation and Orientation of Actin-Myosin Systems with Dielectrophoresis Superfine. Nano leters, 2003,3(4):431-437
    [57]Nilsson S, Santesson S, Degerman E, et al. Airbone chemistry for biological micro analysis. In Micro Total Analysis Systems 2000,2000,1:19-24
    [58]Huang Y, Pethig R. Electrode design for negative dielectrophoresis. Measurement Science and Technology,1991,2:1142-1146
    [59]Washizu M, Suzuki S, Kurosawa O, et al. Molecular dielectrophoresis of biopolymers. IEEE Trans. Ind. Appl.1994,30:835-843
    [60]Pethig R, Huang Y, Wang X B, et al. Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes. J. Phys. D:Appl. Phys.,1992,25:869-871
    [61]Cheng J, Sheldon E L, Wu L, et al. Preparation and hydridization analysis of DNA/RNA from E-coli on microfabricated bioelectronic chips. Nature Biotechnology,1998,16:541-546
    [62]Hagedorn R, Fuhr G, Muller T, et al. Travelling-wave dielectrophoresis of microparticles. Electrophoresis,1992,13:49-54
    [63]Masuda S, Washizu M, Iwadare M. Separation of small particles suspended in liquid by nonuniform traveling field. IEEE Trans. Ind. Appl.,1988,23:474-480
    [64]Fuhr G, Hagedorn T, Muller T, et al. Asynchronous traveling-wave induced linear motion of living cells. Studia. Biophyscia,1991,140:79-102
    [65]Morgan H, Green N G, Hughes M P, et al. Large-area traveling-wave dielectrophoresis particle separator. J. Micromech. Microeng,1997,7:65-70
    [66]Fuhr G, Fiedler S, Muller T, et al. Particle micronanipulator consisting of two orthogonal channels with traveling-wave electrode structures. Sens. Actuators A., 1994,41:230-239
    [67]Wang X B, Huang Y, Becker F F, et al. Dielectrophoretic manipulation of particles. IEEE/IAS Trans.,1997,33:660-669
    [68]Markx G H, Dyda P A, Pethig R. Dielectrophoretic separation of bacteri using a conductivity gradient. J. Biotechnol.,1996,51:175-180
    [69]Blanca H, Lapizco E, Rafael V D, et al. An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water. Journal of Microbiological Methods,2005,62(3):317-326
    [70]Blanca H. Lapizco E, Yolanda F, et al. Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Analytical chemistry, 2004,6:1571-1580
    [71]Goater A D, Burt J P H, Pethig R. A combined travelling wave dielectrophoresis and electrorotation device:applied to the concentration and viability determination of Cryptosporidium. J. Phys. D:Appl. Phys.,1997,30(18):L65-L69
    [72]郝敦玲,徐溢,曾雪.阵列又指式芯片研究细胞介电电泳富集过程.分析化学,2009,9(9):1253-1257
    [73]曹军,洪芳军,陈翔.芯片上叉指电极介电电泳的模拟与实验研究.微纳电子技术,2008,45(7):397-402
    [74]朱晓璐,易红.倪中华.基于介电泳的细胞介电参数测试芯片机理的数值分析.机械工程学报.2009,11.197-204
    [75]Washizu M. Equivalent multipole-moment theory for dielectrophoresis and electrorotation in electromagnetic field. J. Electrostatics,2004,62:15-33
    [76]Jones T B. Electromechanics of particles. Cambriage University Press,1999
    [77]Arnold W M, Zimmerman U. Electroroation:development of a technique of dielectric measurements of individual cells and particles. J. electrostat.1988,21: 151-191
    [78]Wang X J, Wang X B, Becker F F, et al. A theoretical method of electrical field analysis for dielectrophoretic electrode arrays using Green's theorem. J. Phys. D: Appl. Phys.,1996,29:1649-1660
    [79]Morgan H, Izquierdo A G, Bakewell D, et al. The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays:analytical solution using Fourier series. J. Phys. D. Appl. Phys.,2001,34:1553-1561
    [80]Wang X J, Wang X B, Gascoyne P R C. General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method. Journal of Electrostatics,1997,39(4):277-295
    [81]Green N G, Ramos A, Morgan H. Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method. Journal of Electrostatics,2002,56:235-254
    [82]Chang D E, Loire S, Mezic I. Closed-form solutions in the electrical field analysis for dielectrophoretic and travelling wave inter-digitated electrode arrays. J. Phys. D: Appl. Phys.,2003,36:3073-3078
    [83]Huang Y, Pethig R. Electrode design for negative dielectrophoresis. Measurement Science and Technology,1991,12(2):1142-1146
    [84]Sreeja B, Asokan L, Jawerth R, et al. Two-dimensional manipulation and orientation of actin-myosin systems with dielectrophoresis superfine. Nano leters, 2003,3(4):431-437
    [85]Yang M, Zhang X. Electrical assisted patterning of cardiac myocytes with controlled macroscopic anisotropy using a microfluidic dielectrophoresis chip. Sensor and Actuators:A,2006,135(1):73-78
    [86]Benjamin Y, Park M J, Ma D.3D electrode designs for flow through dieclectrophoretic systems. Electrophoresis,2005,26(19):3745-3757
    [87]Dalton C, Goater A D, Drysdale J, et al. Parasite viability by electrorotation. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,195(1-3): 263-268
    [88]Pohl H A. Dielectrophoresis. New York:Cambridge University Press,1978
    [89]Huang Y, Holzel R, Pethig R, et al. Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol,1992,37:1499-1517
    [90]Damien V, Marie F R, Franois B, et al. Improvements in the extraction of cell electric properties from their electrorotation spectrum. Bioelectrochemistry.2010, 79(1):25-30
    [91]Yang Q H, Li H, Li G H, et al. Cell Electrorotation Motion Parameters Detection Based on Image Processing. Proceedings of the 2009 WRI World Congress on Computer Science and Information Engineering,2009,06:549-553
    [92]W M Arnold, U Zimmermann. Electro-rotation-development of a technique for dielectric measurements on individual cells and particles. J. Electrost,1988,21: 151-191
    [93]Y Huang, R Holzel, R Pethig, et al. Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol,1992,37:1499-1517
    [94]R Holzel, I Lamprecht. Dielectric properties of yeast cells as determined by electrorotation. Biochim Biophys Acta,1992,1104:195-200
    [95]X Hu, W M Arnold, U Zimmermann. Alteration in the electrical properties of T and B lymphocyte membranes induced by mitogenic stimulation:activation monitored by electro-rotation of single cells. Biochim Biophys Acta,1990,1021:191-200
    [96]J Yang, Y Huang, X Wang, et al. Dielectric Properties of Human Leukocyte Subpopulations Determined by Electrorotation as a Cell Separation Criterion. Biophysical Journal,1999,76:3307-3314
    [97]J Gimsa, T Muller, T Schnelle, et al. Dielectric spectroscopy of single human erythrocytes at physiological ionic strength dispersion of the cytoplasm. Biophys J, 1996,71:495-506
    [98]V L Sukhorukov, U Zimmermann. Electrorotation of erythrocytes treated with dipicrylamine:mobile charges within the membrane show their "signature" in rotational spectra. Journal of Membrane Biology,1996,153:161-169
    [99]Y Huang, X B Wang, F F Becker, et al. Membrane changes associated with the temperature-sensitive P85 gag-mos-dependent transformation of rat kidney cells as determined by dielectrophoresis and electrorotation. Biochim Biophys Acta,1996, 1282:76-84
    [100]F F Becker, X B Wang, Y Huang, et al. Separation of human breast cancer cells from blood by differential dielectric affinity. Proceedings of the National Academy of Science of USA,1995,92:860-864
    [101]Edwards B, Mayer T S, Bhiadvala R B. Synchronous electrorotation of nanowires in fluid Nano Lett.,2006,6:626-632
    [102]B Edwards, Mayer T S, Bhiladvala R B. Synchronous Electrorotation of Nanowires in Fluid. Nano Lett.,2006,6(4):626-632
    [103]Wang X J, Wang X B, Gascoyne P R C. General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method. J. Electrostat.,1997,39:277-295
    [104]Dalton C, Goater A D, Drysdale J, et al. Parasite viability by electrorotation. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,195: 263-268
    [105]Wang X B, Huang Y, Gascoyne P R C, et al. Changes in friend murine erthroleukaemia cell membranes during induced differentiation determined by electrorotation. Biochim. Biophys. Acta.,1994,1193:330-344
    [106]Lampa A, Ueber. Rotationen elektrostatischen Drehfelde. Wien. Ber.,1906,2: 1659-1690
    [107]Huang C J, Chen A 1, Wang L, et al. Membrane dielectric responses of bufalin-induced apoptosis in HL-60 cells detected by an electrorotation chip. Biotechnology Letters,2007,29:1307-1313
    [108]Holzel R. Electric field calculation for electrorotation electrodes. J. Phys. D:Appl. Phys.,1993,26:2112-2116
    [109]Yu Z, Xiang G X, Pan L B, et al. Negative dielectrophoretic force assisted construction of ordered neuronal networks on cell positioning bioelectronic chips. Biomedical Microdevice,2004,6:311-324
    [110]Reginald P, Karan V I S K. Theory of Electrode Polarization in Dielectrophoresis and Electrorotation. Journal of Colloid and Interface Science,1997,194:239-248
    [111]Hughes M P, Wang X B, Becker F F, et al. Computer-aided analyses of electric fields used in electrorotation studies. J. Phys. D:Appl. Phys.,1994,27:1564-1570
    [112]R Schinzinger, P A A Laurra. Conformal Mapping:Methods and Applications. Dover Publications, Inc., Mineola, NY,2003
    [113]C K Ikoc, P F Ordung. Schwarz-Christoffel transformation for the simulation of two-dimensional capacitance. IEEE Trans. Comput.-Aided Des.,1989,8; 1025-1027
    [114]J M Chuang. Numerical studies on non-linear free surface flow using generalized Schwarz-Christoffel transformation. Int. J. Numer. Methods Fluids,2000,32: 745-772
    [115]A Balakrishnan, W T Joines, T G Wilson. Air-gap reluctance and inductance calculations for magneticcircuits using a Schwarz-Christoffel transformation. IEEE Trans. Power Electron.,1997,12:654-663
    [116]G Ghione, M Goano, M Pirola. Microwave modeling and characterization of thick coplanarwaveguides on oxide-coated lithium niobate substrates for electrooptical applications. IEEE MTT-S Int. Microwave Symp.,1999,3:1311-1314
    [117]E Costamagna, A Fanni. Inhomogeneous dielectric transmission line geometries analysed bycombining conformal mapping-finite difference procedures.8th Electrotechnical Conf.,1996,3:1393-1396
    [118]M Goano, F Bertazzi, P Caravelli, et al. A general conformal-mapping approach to the optimum electrode design of coplanar waveguides with arbitrary cross section. IEEE Trans. Microwave Theory Tech.,2001,49:1573-1580
    [119]V Teppati, M Goano, A Ferrero. Conformal-mapping design tools for coaxial couplers with complex cross section. IEEE Trans. Microwave Theory Tech.,2002, 50:2339-2345
    [120]A A Bilotti. Static temperature distribution in IC chips with isothermal heat sources. IEEE Trans. Electron Devices,1974,21:217-226
    [121]M Chung, P S Jung, R H Rangel. Semi-analytical solution for heat transfer from a buried pipe with convection on the exposed surface. Int. J. Heat Mass Transfer, 1999,43:3771-3786
    [122]P Bruschi, A Nannini, F Pieri, et al. Electrostatic analysis of a comb-finger actuator with Schwarz-Christoffel conformal mapping. Sens. Actuators, A,2004,113: 106-117
    [123]M Markovic, M Jufer, Y Perriard. Analyzing an electromechanical actuator by Schwarz-Christoffel mapping. IEEE Trans. Magn.,2004,40:1858-1863
    [124]Chan K L, Gascoyne P R C, Becker F F, et al. Electrorotation of liposomes: verification of dielectric multi-shell model for cells Biochim. Biophys. Acta 1997, 1349:182-196
    [125]Hughes M P, Archer S, Morgan H. Mapping the electrorotational torque in planar microelectrodes. J. Phys. D:Appl. Phys.,1999,32:1548-1552
    [126]Huang C J, Chen A 1, Wang L, et al. Membrane dielectric responses of bufalin-induced apoptosis in HL-60 cells detected by an electrorotation chip. Biotechnology Letters,2007,29:1307-1313
    [127]Maswiwat K, Holtappels M, Gimsa J. On the field distribution in electrorotation chambers—Influence of electrode shape. Electrochimica Acta,2006,24:5215-5220
    [128]Sun T, Morgan H, Green N G. Analytical solutions of ac electrokinetics in interdigitated electrode arrays:Electric field, dielectrophoretic and traveling-wave dielectrophoretic forces. Phys. Rev. E,2007,76,046610
    [129]Wang J, Liao H H, Chen J J. The Search of Cell Positioning in Electrorotation measurements. In 3rd International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2009, United States:IEEE Computer Society,2009,5163664
    [130]Gascoyne P R C, Becker F F, Wang X B. Numerical analysis of the influence of experimental conditions on the accuracy of dielectric parameters derived from electrorotation measurements. Bioelectrochemistry and Bioenergetics,1995,36(2): 115-125
    [131]Hughes M P. Computer-aided analysis of conditions for optimizing practical electrorotation. Physics in Medicine and Biology,1998,43(12):36-39.
    [132]Li H M, Chen D H, Yang Q H. Image Processing Technique for Characteristic Test of Cell Based on Electrorotation Chip. The 2nd International Conference on Bioinformatics and Biomedical Engineering,2008. Shanghai.16-18 May 2008: 2526-2529
    [133]Yang Yang, Huang Chengjun, Zhu Jiang, et al. Computer-aided measurements of cell electrorotation by image analysis techniques. Fifth International Conference on Photonics and Imaging in Biology and Medicine. Edited by Luo, Qingming; Wang, Lihong V, Tuchin Valery V, Gu Min. Proceedings of the SPIE,2007,6534:653420
    [134]C J Huang, A L Chen, L Wang, et al. Electrokinetic measurements of dielectric properties of membrane for apoptotic HL-60 cells on chip-based device. Biomedical Microdevices,2007,9:335-343

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700