功能磁共振成像对幕上胶质瘤术前分级临床应用价值初探及优化指标选择
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分3.0T高分辨率磁敏感加权成像评估幕上脑胶质瘤磁敏感效应:与磁共振灌注成像(PWI)对比研究
     目的:探讨3.0T高分辨率SWI磁敏感效应程度和PWI-rCBV对幕上脑胶质瘤分级的准确性及二者的相关性。
     材料与方法:经病理证实的44例幕上脑胶质瘤患者(29例低级别,15例高级别)行常规MR平扫和增强检查、非对比增强磁敏感加权成像(Susceptibility weighted imaging,SWI)和首过动态磁敏感对比增强磁共振灌注成像(Dynamic susceptibility contrast perfusion weighted imaging,DSC-PWI)。在肿瘤实质灌注最明显的区域及对侧正常脑组织区域测量局部组织的的脑血容量(CBV);根据幕上脑胶质瘤的磁敏感效应程度将其分为不同的级别。评估胶质瘤的磁敏感效应程度与肿瘤分级的相关性及准确性;评估rCBV与脑胶质瘤分级的关系;根据ROC曲线选取合适临界值,评估rCBV对脑胶质瘤分级的准确性;评估脑胶质瘤磁敏感效应程度与rCBV的相关性。所有数据采用SPSS13.0软件包处理,统计前对样本数据进行正态分布及方差齐性检验。两样本均数比较采用独立样本t检验,相关性分析采用Pearson积差相关分析和Spearman等级相关分析,配对资料采用精确概率法检验(Fishers exact test), P<0.05认为差异具有统计学意义。
     结果:1.低、高级别脑胶质瘤肿瘤实质的磁敏感效应程度存在明显统计学差异(P<0.01);高级别胶质瘤肿瘤实质rCBV为(4.15+1.21),明显高于低级别胶质瘤(2.62+1.59)(P<0.01);低、高级别少突胶质细胞瘤肿瘤实质的磁敏感效应程度存在统计学差异(<0.05)而rCBV在二者之间无明显统计学差异(>0.05)。
     2.低、高级别星形细胞瘤肿瘤实质的磁敏感效应程度、rCBV均存在明显统计学差异(P<0.01);二者与组织病理学的相关性分别为:r=0.723, P<0.01; r=0.645, P<0.01.
     3.星形细胞瘤肿瘤实质磁敏感效应程度与rCBV的相关性为:r=0.594,P<0.01。
     4.根据磁敏感效应进行星形细胞瘤分级,其灵敏度为90.9%,特异度为90.5%,PPV为83.3%,NPV为95%,错分类百分比为9.4%,(假阳性率+假阴性率)为18.6%;ROC曲线分析,其曲线下面积为0.916,P<0.01。当rCBV取2.38时,其分级灵敏度为100%,特异度为71.4%,PPV为64.7%,NPV为100%,错分类百分比为18.8%,(假阳性率+假阴性率)为28.6%;ROC曲线分析,其曲线下面积为0.892,P<0.01。
     5.分别用SWI方法和PWI方法进行星形细胞瘤分级的结果与常规MR方法分级结果比较,两种方法均存在明显统计学差异(P<0.01);用SWI方法的分级结果与PWI分级结果比较,两种方法间亦存在明显统计学差异(P<0.01)。
     结论:星形细胞瘤肿瘤实质的磁敏感效应程度与rCBV有明显的相关性;运用SWI方法和PWI-rCBV方法均可以提高星形细胞瘤分级的准确性,而磁敏感效应程度分级诊断效能更高。对少突胶质细胞瘤,SWI或许可以用于其分级。
     第二部分3.0T高场多种常用磁共振功能成像方法对胶质瘤分级的临床应用价值初探
     第一节首过动态磁敏感对比增强磁共振灌注成像对幕上脑胶质瘤分级的临床应用价值初探
     目的:探讨3.0T动态磁敏感对比增强磁共振灌注成像(DSC-PWI)对幕上脑胶质瘤分级的临床应用价值。
     材料与方法:经病理证实的41例幕上脑胶质瘤(低级别28例,高级别13例)行常规MR平扫+增强检查,DSC-PWI检查。分别测量肿瘤实质及对侧正常脑实质的CBV,CBF,计算出肿瘤实质的rCBV (rCBV=肿瘤实质CBV/对侧正常脑组织CBV)、rCBF (rCBF=肿瘤实质CBF/对侧正常脑组织CBF);根据肿瘤实质灌注曲线计算信号强度恢复百分比。根据ROC曲线选取rCBV、rCBF、信号强度恢复百分比最合适分级临界值,分别评估肿瘤实质rCBV、rCBF、信号强度恢复百分比与胶质瘤病理分级的相关性和对胶质瘤分级的准确性。所有数据采用SPSS13.0软件包处理,统计前对样本数据进行正态分布及方差齐性检验。两样本均数比较采用独立样本t检验,相关性分析采用Spearman等级相关分析,配对资料采用精确概率法检验(Fisher's exact test),P<0.05认为差异具有统计学意义。
     结果:1.高级别胶质瘤肿瘤实质的rCBV (4.29±1.23)明显高于低级别胶质瘤(2.71±1.58)(P<0.01);高级别胶质瘤肿瘤实质信号强度恢复百分比(0.56±0.17)明显低于低级别胶质瘤(0.78±0.12)(P<0.01)。低、高级别少突胶质细胞瘤肿瘤实质的rCBV、rCBF、信号强度恢复百分比均无明显统计学差异(P>0.05)。低、高级别星形细胞瘤肿瘤实质的rCBV (2.22±0.92和4.01±1.13)、信号强度恢复百分比(0.80±0.05和0.54±0.19)均存在明显统计学差异,rCBF在两者之间无统计学差异。
     2.星形细胞瘤肿瘤实质rCBV和信号强度恢复百分比与组织病理学的相关性分别为:r=0.633, P<0.01;r=0.686, P<0.01。ROC曲线下面积分别为:0.894,P<0.01;0.928,P<0.01。
     3.星形细胞瘤肿瘤实质rCBV临界值取2.35、信号强度恢复百分比取0.689时,其分级结果与常规方法均存在明显差异(P<0.05)。信号强度恢复百分比分级结果明显优于常规MRI方法。
     结论:星形细胞瘤肿瘤实质rCBV、信号强度恢复百分比可以用于肿瘤分级,可以提高常规MRI分级的准确性,信号强度恢复百分比这一指标对肿瘤分级效能更高。
     第二节1H MRS对幕上脑胶质瘤分级的临床应用价值初探
     目的:探讨3.0T氢质子磁共振波谱成像(1HMRS)对幕上脑胶质瘤分级的临床应用价值。
     材料与方法:经病理证实的43例幕上脑胶质瘤(低级别30例,高级别13例)行常规MR平扫+增强检查和1H MRS检查。分别测量肿瘤实质及对侧正常脑实质的NAA/Cr,、Cho/Cr、Cho/NAA。根据ROC曲线选取NAA/Cr,、Cho/Cr、Cho/NAA最合适分级临界值,分别评估肿瘤实质NAA/Cr,、Cho/Cr、Cho/NAA与胶质瘤病理分级的相关性和对胶质瘤分级的准确性。所有数据采用SPSS13.0软件包处理,统计前对样本数据进行正态分布及方差齐性检验。两样本均数比较采用独立样本t检验,相关性分析采用Spearman等级相关分析,配对资料采用精确概率法检验(Fishers exact test), P<0.05认为差异具有统计学意义。
     结果:1.高级别胶质瘤肿瘤实质的NAA/Cr (0.52±0.27)、Cho/NAA (5.47±3.35)与低级别胶质瘤肿瘤实质NAA/Cr (1.05±0.59)、Cho/NAA (2.63±1.61)存在明显统计学差异(P<0.05)。NAA/Cr,、Cho/Cr、Cho/NAA在低、高级别少突胶质细胞瘤肿瘤实质间均不存在统计学差异(P>0.05)。低、高级别星形细胞瘤肿瘤实质的NAA/Cr (1.14±0.63、0.58±0.28)、Cho/NAA(2.02±1.06、4.95±3.31)均存在明显统计学差异(P<0.01)
     2. NAA/Cr,、Cho/NAA与星形细胞瘤组织病理学的相关性分别为:r=0.563,P<0.01;r=0.635,P<0.01。其分级ROC曲线下面积分别为:0.85,P<0.01;0.895,P<0.01。
     3.当星形细胞瘤肿瘤实质NAA/Cr取值0.51,Cho/NAA取值2.76时,其分级结果与常规方法分级结果比较,均无明显差异;但Cho/NAA分级的灵敏度、特异度、阳性预测值、阴性预测值明显高于常规方法和NAA/Cr方法,错分类百分比及(假阳性率+假阴性率)明显低于常规方法和NAA/Cr方法。Cho/NAA和NAA/Cr两种方法分级结果比较存在明显统计学差异。
     结论:NAA/Cr,、Cho/NAA均可用于幕上星形细胞瘤分级,其NAA/Cr分级准确性同常规方法相当,Cho/NAA可以进一步提高分级准确性。
     第三节ADC值对幕上脑胶质瘤分级的临床应用价值初探
     目的:探讨3.0T磁共振弥散加权成像的ADC值对幕上脑胶质瘤分级的临床应用价值。
     材料与方法:经病理证实的35例幕上脑胶质瘤(低级别23例,高级别12例)行常规MR平扫+增强检查和DWI检查。在ADC图上分别测量肿瘤实质及对侧正常脑实质的ADC值。根据ROC曲线选取ADC值最合适分级临界值,分别评估肿瘤实质ADC值与胶质瘤病理分级的相关性和对胶质瘤分级的准确性。所有数据采用SPSS13.0软件包处理,统计前对样本数据进行正态分布及方差齐性检验。两样本均数比较采用独立样本t检验,相关性分析采用Spearman等级相关分析,配对资料采用精确概率法检验(Fisher s exact test), P<0.05认为差异具有统计学意义。
     结果:1.低、高级别胶质瘤肿瘤实质的ADC值明显高于对侧正常脑实质;高级别胶质瘤肿瘤实质ADC值((1134.05+135.59)×10-6mm2/s)明显低于低级别胶质瘤肿瘤实质((1472.93±326.52)×10-6mm2/s) (P<0.01)。低、高级别少突胶质细胞瘤肿瘤实质ADC值无统计学差异(P>0.05)。低、高级别星形细胞瘤肿瘤实质ADC值((1580.56±308.77)×10-6mm2/s)和(1130.73±10.20)×10-6mm2/s) )存在明显统计学差异(P<0.01)
     2.星形细胞瘤肿瘤实质ADC值与组织病理学分级的相关性为:r=0.695,P<0.01。其分级ROC曲线下面积为0.922,P<0.01。
     3.当星形细胞瘤肿瘤实质ADC取值(1241.05)×10-6mm2/s时,其分级结果与常规方法分级结果比较,存在明显统计学差异;其分级的灵敏度、特异度、阳性预测值、阴性预测值明显高于常规方法,而错分类百分比及(假阳性率+假阴性率)明显低于常规方法。
     结论:ADC值可用于幕上星形细胞瘤分级,其分级准确性高于常规MR方法。
     第三部分3.0T MRI幕上脑胶质瘤分级优化指标的选择
     目的:探讨3.0T磁共振灌注成像(PWI)、磁敏感加权成像(SWI)、氢质子波谱成像(1H MRS)、弥散加权成像对幕上脑胶质瘤分级的最优化指标的选择。
     材料与方法:经病理证实的32例幕上脑胶质瘤(低级别21例,高级别11例)行常规MR平扫+增强检查、PWI、SWI、MRS和DWI检查。根据幕上脑胶质瘤的磁敏感效应程度(SED)将其分为不同的级别。分别测量肿瘤实质及对侧正常脑实质的Cho/NAA、ADC值,根据肿瘤实质灌注曲线计算出信号强度恢复百分比。根据ROC曲线选取Cho/NAA、ADC值及信号强度恢复百分比最合适分级临界值,分别评估肿瘤实质SED、Cho/NAA、ADC值及信号强度恢复百分比与胶质瘤病理分级的相关性和对胶质瘤分级的准确性。所有数据采用SPSS13.0软件包处理,统计前对样本数据进行正态分布及方差齐性检验。两样本均数比较采用独立样本t检验,相关性分析采用Pearson积差相关分析和Spearman等级相关分析,配对资料采用精确概率法检验(Fishers exact test), P<0.05认为差异具有统计学意义。
     结果:1.低、高级别胶质瘤肿瘤实质的Cho/NAA、ADC值、信号强度恢复百分比及SED均存在明显统计学差异(P<0.05)。
     2.低、高级别少突胶质细胞瘤肿瘤实质SED存在明显差异(P<0.05),余三个指标均无明显统计学差异。
     3.低、高级别星形细胞瘤肿瘤实质上述四个指标均存在明显统计学差异(P<0.01)。星形细胞瘤肿瘤实质Cho/NAA、ADC值、信号强度恢复百分比及SED与组织病理学分级的相关性为:r=0.695, P<0.01; r=0.757, P<0.01; r=0.757, P<0.01;r=0.815, P<0.01。
     4.应用星形细胞瘤肿瘤实质Cho/NAA、ADC值、信号强度恢复百分比、磁敏感效应程度进行胶质瘤分级,其中ADC值、信号强度恢复百分比及SED三个指标其分级的灵敏度、特异度、阳性预测值、阴性预测值均高于常规方法、错分类百分比及(假阳性率+假阴性率)均低于常规方法。SED和信号恢复百分比两个指标的分级结果亦存在明显统计学差异(P<0.01)。
     结论:星形细胞瘤肿瘤实质SED、Cho/NAA、ADC值及信号强度恢复百分比均可以提高胶质瘤分级的准确性;SED和信号强度恢复百分比对星形细胞瘤分级具有最高的诊断效能,而SED具有最高的临床应用价值。
Parti
     Assessment of susceptibility effect using 3.0T High Field High Resolution Susceptibility Weighted Imaging in Patients with supratentorial Gliomas:Comparison with MR Perfusion Imaging
     Objective:Our aim was to determine whether the degree of susceptibility effect (SED) on high-resolution susceptibility-weighted imaging (HR-SWI) could be used for suparatentorial glioma grading, assess the correlates with maximum relative cerebral blood volume (rCBVmax) and to compare its diagnostic accuracy for glioma grading with that of dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC).
     Methods and materials:44 suparatentorial gliomas (29 for low-grade,15 for high-grade) confirmed by craniotomy surgery and histopathology underwent conventional MRI plus enhancement, non contrast enhanced HR-SWI and DSC-PWI. Measured the maximum relative cerebral blood volume (rCBV) in tumor parenchyma with the most high perfusion region. According to the SED classified the suparatentorial glioma in four grades. Assessed the correlation of SED, rCBV with pathologic grade of suparatentorial glioma respectively and compared their diagnostic accuracy for glioma grading. Assessed the correlation of SED and maximum rCBV in parenchyma of tumor. All the data were used SPSS 13.0 for statistics, tested the Homogeneity of variance and Normal distribution before statistcs. We used Independent samples t test, Pearson and Spearman correlation analysis and Fishers exact test, and P<0.05 was considered Statistically significant.
     Results:1. SED of tumor parenchyma between low-grade and high-grade gliomas had significant difference(P<0.01); rCBV in parenchyma of high-grade glioma was 4.15±1.21,which was obvious higher than that of low-grade glioma (2.62±1.59) (P<0.01). SED of tumor parenchyma between low-grade and high-grade Oligodendroglial tumours had significant difference(P<0.05) but rCBV had no significant difference(P>0.05).
     2. SED and rCBV of tumor parenchyma between low-grade and high-grade astrocytoma had significant difference respectively (P<0.01); both of them had significant correlation with pathology grade (P<0.01, respectively).
     3. The SED and rCBV had significant correlation in parenchyma of astrocytoma (P<0.01).
     4. Using SED for astrocytoma grade, the sensitivity was 90.0%, specificity was 90.5%, positive predictive value (PPV) was 83.8%, negative predictive value (NPV) was 95%, fraction of misclassified (FM) was 9.4%,and (false positive ratio plus false negative ratio) was 18.6%,the area of Roc Curve was 0.916;when rCBV was 2.38, the grading sensitivity was 100%, specificity was 71.4%, PPV was 64.7%, NPV was 100%, fraction of misclassified (FM) was 18.8%,and (false positive ratio plus false negative ratio) was 28.6%, the area of Roc Curve was 0.892.
     5. There were significant difference among SWI method, PWI-rCBV method and conventional MRI method for grade astrocytoma and SWI method was the best one.
     Conclusion:The SED and rCBV had significant correlation in parenchyma of astrocytoma; both SWI method and PWI-rCBV method could improve diagnostic accuracy for grading and SED was better than PWI-rCBV. For Oligodendroglial tumours, SED may used for grading.
     Part 2 In the assessment of supratentorial glioma grade by using 3.0T high-field multiplex function MRI methods
     The first segment In the assessment of supratentorial glioma grade by using 3.0T high field dynamic susceptibility weighted contrast-enhanced perfusion MR imaging
     Objective:Our aim was to determine whether the dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC) could be used for suparatentorial glioma grading and assess its diagnostic accuracy.
     Methods and materials:41 suparatentorial glioma (28 for low-grade,13 for high-grade) confirmed by craniotomy surgery and histopathology underwent conventional MRI plus enhancement and DSC-PWI. Measured the maximum relative cerebral blood volume (rCBV), maximim relative cerebral blood flow (rCBF) in tumor parenchyma with the most high perfusion region. Calculated the percentage of signal intensity recovery derived from perfusion curve. Selected the most appropriate threshold values according to ROC curves. Assessed the correlation of rCB V, rCBF and the percentage of signal intensity recovery with pathologic grade of suparatentorial glioma respectively and compared their diagnostic accuracy for glioma grading. All the data were used SPSS 13.0 for statistics, tested the Homogeneity of variance and Normal distribution before statistics. We used Independent samples t test, Spearman correlation analysis and Fisher's exact test, and P<0.05 was considered Statistically significant.
     Results:1. rCBV in tumor parenchyma of high-grade glioma(4.29±1.23) was obvious higher than that of low-grade glioma (2.71±1.58) (P<0.01), and the percentage of signal intensity recovery in high-grade glioma (0.56±0.17) was significant lower than that of low-grade (0.78±0.12) (P<0.01). rCBV, rCBF and the percentage of signal intensity recovery in tumor parenchyma of high-grade Oligodendroglial tumours had no difference compared with low-grade. rCBV and the percentage of signal intensity recovery in tumor parenchyma of high-grade astrocytoma had significant difference with that of in low-grade.
     2. rCBV and the percentage of signal intensity recovery in tumor parenchyma of astrocytoma had significant correlation with pathology grade (P<0.01,respectively).
     3. when rCBV was 2.35 and the percentage of signal intensity recovery was 0.689, both of their grading results had significant difference compared with conventional MRI method, and the grading result according to the percentage of signal intensity recovery was obvious better than conventional MRI method.
     Conclusion:rCBV and the percentage of signal intensity recovery in tumor parenchyma of astrocytoma could be used for grading, which could improve the diagnostic accuracy for grading than conventional MRI, and the percentage of signal intensity recovery has the higher efficacy.
     The second segment In the assessment of supratentorial glioma grade by using 3.0T high-field Multi-voxel proton MR spectroscopy
     Objective:Our aim was to determine whether the Multi-voxel proton MR spectroscopy (1H MRS) could be used for suparatentorial glioma grading and assess its diagnostic accuracy.
     Methods and materials:43 suparatentorial gliomas (30 for low-grade,13 for high-grade) confirmed by craniotomy surgery and histopathology underwent conventional MRI plus enhancement and 1H MRS. Measured the NAA/Cr, Cho/Cr, Cho/NAA in tumor parenchyma and their Contralateral normal brain tissue. Selected the most appropriate threshold values according to ROC curves. Assessed the correlation of NAA/Cr,、Cho/Cr、Cho/NAA with pathologic grade of suparatentorial glioma respectively and compared their diagnostic accuracy for glioma grading. All the data were used SPSS 13.0 for statistics, tested the Homogeneity of variance and Normal distribution before statistics. We used Independent samples t test, Spearman correlation analysis and Fisher's exact test, and P<0.05 was considered Statistically significant.
     Results:1. There were significant difference of NAA/Cr and Cho/NAA in tumor parenchyma between high-grade and low-grade glioma(P<0.05). NAA/Cr, Cho/Cr and Cho/NAA in tumor parenchyma of high-grade Oligodendroglial tumours had no difference compared with that of in low-grade (P>0.05). NAA/Cr and Cho/NAA in tumor parenchyma of high-grade astrocytoma had significant difference compared with that of in low-grade (P<0.01)
     2. NAA/Cr and Cho/NAA in tumor parenchyma of astrocytoma had significant correlation with pathology grade (P<0.01, respectively).
     3. When NAA/Cr was 0.51 and Cho/NAA was 2.76, both of their grading results had no significant difference compared with conventional MRI method, but the sensitivity, specificity, PPV,NPV resulted from Cho/NAA were larger and FM, (false positive ratio plus false negative ratio) were lower than conventional MRI method. The grading result of Cho/NAA had significant difference compared with result of NAA/Cr.
     Conclusions:Both NAA/Cr and Cho/NAA in tumor parenchyma of astrocytoma could be used for grading, while the diagnostic accuracy of NAA/Cr was equal to conventional MRI method and Cho/NAA could improve the diagnostic accuracy for grading.
     Objective:Our aim was to determine whether the ADC value derived from diffusion weighted imaging (DWI) could be used for suparatentorial glioma grading and assess its diagnostic accuracy.
     Methods and materials:35 suparatentorial glioma (23 for low-grade,12 for high-grade) confirmed by craniotomy surgery and histopathology underwent conventional MRI plus enhancement and DWI. Measured the minimume ADC value in tumor parenchyma and their contralateral normal brain tissue. Selected the most appropriate cut-off values according to ROC curves. Assessed the correlation of minimum ADC value with pathologic grade of suparatentorial glioma and its diagnostic accuracy for glioma grading. All the data were used SPSS 13.0 for statistics, tested the Homogeneity of variance and Normal distribution before statistics. We used Independent samples t test, Spearman correlation analysis and Fisher's exact test, and P<0.05 was considered Statistically.
     Results:1. The ADC value in parenchyma of glioma was significant higher than that in Contralateral normal brain tissue. The ADC value ((1134.05±135.59)×10-6mm2/s) in parenchyma of high-grade glioma was significant lower than that in low-grade glioma ((1472.93±326.52)×10-6mm2/s) (P<0.01).The ADC value in parenchyma of high-grade Oligodendroglial tumors had no difference compared with that in low-grade (P>0.05) but there was significant difference between high-grade astrocytoma and low-grade astrocytoma (P<0.01)
     2. The ADC value in tumor parenchyma of astrocytoma had significant correlation with pathology grade (P<0.01). The area of ROC curve was 0.922, P<0.01.
     3. When the ADC value was (1241.05)×10-6mm2/s, its grading results had significant difference compared with conventional MRI method, and the sensitivity, specificity, PPV, NPV resulted from ADC value were larger and FM, (false positive ratio plus false negative ratio) were lower than conventional MRI method.
     Conclusion:The ADC value in tumor parenchyma of astrocytoma could be used for grading, and its diagnostic accuracy was higher than conventional MRI method which could improve the diagnostic accuracy for grading. Part 3 Superior parameter of multiple MRI method for the assessment of supratentorial glioma grade
     Objective:Our aim was to determine which parameter was the best one derived from PWI, SWI, DWI, and 1H MRS that used for the assessment of suparatentorial glioma grading.
     Methods and materials:32 suparatentorial glioma (21 for low-grade,11 for high-grade) confirmed by craniotomy surgery and histopathology underwent conventional MRI plus enhancement, SWI, PWI, DWI and 1H MRS. According to the degree susceptibility effect (SED) classified the suparatentorial glioma in high-grade and low-grade. Measured the Cho/NAA and mimnmum ADC value in parenchyma of tumor. Calculated the percentage of signal intensity recovery derived from peufusion curve. Selected the most appropriate threshold values of Cho/NAA, ADC value and the percentage of signal intensity recovery according to ROC curves. Assessed the correlation of SED, Cho/NAA, ADC value and the percentage of signal intensity recovery with pathologic grade of suparatentorial glioma respectively and compared their diagnostic accuracy for glioma grading. All the data were used SPSS 13.0 for statistcs, tested the Homogeneity of variance and Normal distribution before statistcs. We used Independent samples t test, Pearson and Spearman correlation analysis and Fisher's exact test, and P<0.05 was considered Statistically significant.
     Results:1. SED, Cho/NAA, ADC value and the percentage of signal intensity recovery of tumor parenchyma between low-grade and high-grade gliomas had significant difference (P<0.01).
     2. SED of tumor parenchyma between low-grade and high-grade Oligodendroglial tumors had significant difference (P<0.05) but other three parameters had no significant difference between low-grade and high-grade Oligodendroglial tumours(P>0.05).
     3. SED, Cho/NAA, ADC value and the percentage of signal intensity recovery of tumor parenchyma between low-grade and high-grade astrocytoma had significant difference respectively (P<0.01); all of the upper four parameters had significant correlation with pathology grade (P<0.01, respectively).
     4. Using SED, Cho/NAA, ADC value and the percentage of signal intensity recovery of tumor parenchyma for astrocytoma grading, the sensitivity, specificity, PPV, NPV resulted from ADC value, SED and the percentage of signal intensity recovery were larger and FM, (false positive ratio plus false negative ratio) were lower than conventional MRI method. The grading result between SED and the percentage of signal intensity recovery also had significant difference (P<0.01).
     Conclusion:Using SED, Cho/NAA, ADC value and the percentage of signal intensity recovery of tumor parenchyma could improve the diagnostic accuracy for grading; the parameters of SED and the percentage of signal intensity recovery had the higher grading efficiency, but the SED had the hightest value for clinical application.
引文
[1]Laws ER Jr, Shaffrey ME. The inherent inwasiveness of cerebral gliomas: implications for clinical management. int J Devl Neuroscience 1999,17(5-6): 413-420.
    [2]Louis DN. molecular pathology of malignant gliomas. Annu Rev Patho Mech Dis 2006,1:97-117.
    [3]Chiang C, Kuo YT, Lu CY, et al. Distinction between high-grade gliomas and solitary metastases using peritumoral 3T magnetic resonance spectroscopy, diffusion and perfusion imaging. Neuroradiology,2004,46(8):619-627.
    [4]S. Cha. Update on Brain Tumor Imaging:From Anatomy to Physiology. AJNR Am J Neuroradiol 2006,27(3):475-487
    [5]Lev MH, Ozsunar Y, Henson JW, et al. Glial tumor grading and outcome pre-diction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR:confounding effect of elevated rCBV of oligodendrogliomas. AJNR Am J Neuroradiol 2004,25(2):214-221.
    [6]Law M, Yang S, Wang H, et al. Glioma grading:sensitivity, specificity, and predictive values of perfusionMRimaging and protonMRspectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 2003, 24(10):1989-1998.
    [7]Law M, Yang S, Babb JS, et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 2004,25(5):746-755.
    [8]Haddar D, Haacke E, Sehgal V, et al. Susceptibility weighted imaging. Theory and applications. J Radiol 2004,85(11):1901-1908.
    [9]Christoforidis GA, Bourekas EC, Baujan M, et al. High resolution MRI of thedeep brain vessels anatomy at 8 Tesla:susceptibility-based enhancement of the venous structures. J Comput Assist Tomogr 1999,23(6):857-866.
    [10]Li C, Ai B, Li Y, et al. Susceptibility-weighted imaging in grading brain astrocytomas. European Journal of Radiology 2010,75(1):e81-85.
    [11]Folkman J. Tumor angiogenesis:therapeutic implications. N Engl J Med 1971, 285(21):1182-1186.
    [12]Tynninen O, Aronen HJ, Ruhala M, et al. MRI enhancement and microvascular density in gliomas. Correlation with tumor cell proliferation. Invest Radiol 1999, 34(6):427-434.
    [13]Robinson SP, Howe FA, Rodrigues LM, et al. Magnetic resonance imaging techniques for monitoring changes in tumor oxygenation and blood flow. Semin Radiat Oncol 1998,8(3):197-207.
    [14]Bagley LJ, Grossman RI, Judy KD, et al. Gliomas:correlation of magnetic susceptibility artifact with histologic grade. Radiology 1997,202(2):511-516.
    [15]Gupta R K, NathK, Prasad A, et al. In vivo demonstration of neuroinflammatory molecule expression in brain abscess with diffusion tensor imaging. AJNR Am JN euroradiol 2008,29 (2):326-332.
    [16]Seghal V, Delproposto Z, Haacke EM, et al. Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imag 2005,22(4):439-450.
    [17]Rauscher A, Sedlacik J, Barth M, et al. Noninvasive assessment of vascular architecture and function during modulated blood oxygenation using susceptibility weighted magnetic resonance imaging. Magn Reson Med 2005,54(1):87-95.
    [18]Liang L, Korogi Y, Sugahara T, et al. Detection of intracranial hemorrhage with susceptibility-weighted MR sequences. AJNR Am J Neuroradiol.1999,20(8): 1527-1534.
    [19]Zhu WZ, Qi JP, Zhan CJ, et al. Magnetic resonance susceptibility weighted imaging in detecting intracranial calcification and hemorrhage. Chin Med 2008, 121(20):2021-2025.
    [20]Ginsberg LE, Fuller GN, Hashmi M, et al. The significance of lack of MR contrast enhancement of supratentorial brain tumors in adults:histopathological evaluation of a series. Surg Neurol 1998,49(4):436-440.
    [21]Pinker K, Noebauer-Huhmann IM, Stavrou I et al. High-Resolution Contrast-Enhanced, Susceptibility-Weighted MR Imaging at 3T in Patients with Brain Tumors:Correlation with Positron-Emission Tomography and Histopathologic Findings. AJNR Am J Neuroradiol.2007,28(7):1280-1286.
    [22]Sehgal V, Delproposto Z, Haddar D, et al. Susceptibility weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. Journal of Magnetic Resonance Imaging 2006,24(1):41-51.
    [23]Brant-Zawadzki M. Pitfalls of contrast enhanced imaging in the nervous system. Magn Reson Med 1991,22(2):243-248.
    [24]Christoforidis GA, Grecula JC, Newton HB, et al. Visualization of microvascularity in glioblastoma multiforme with 8-T high-spatial-resolution MR imaging. AJNR Am J Neuroradiol 2002,23(9):1553-1556.
    [25]Christoforidis GA, Kangarlu A, Abduljalil AM, et al. Susceptibility-based imaging of glioblastoma microvascularity at 8 T:correlation of MR imaging and postmortem pathology. AJNR Am J Neuroradiol 2004,25(5):756-760.
    [26]Lev MH, Ozsunar Y, Henson JW, et al. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR:confounding effect of elevated rCBV of oligodendrogliomas. AJNR Am J Neuroradiol 2004,25(2):214-221.
    [27]Henry RG, Vigneron DB, Fischbein NJ, et al. Comparison of relative cerebral blood volume and proton spectroscopy in patients with treated gliomas. AJNR Am J Neuroradiol 2000,21(2):357-366.
    [28]Mittal S, Wu Z, Neelavalli J, et al. Susceptibility-weighted imaging:technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 2009,30(2):232-52.
    [29]Park MJ, Kim HS, Jahng GH, et al. Semiquantitative Assessment of Intratumoral Susceptibility Signals Using Non-Contrast-Enhanced High-Field High-Resolution Susceptibility-Weighted Imaging in Patients with Gliomas:Comparison with MR Perfusion Imaging. AJNR Am J Neuroradiol 2009,30(7):1402-1408.
    [30]Dean BL, Drayer BP, Bird CR, et al. Gliomas:classification with MR imaging Radiology 1990,174(2):411-415.
    [31]Aronen HJ, Gazit IE, Louis DN, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994,191(1):41-51
    [32]Sabatier J, Ibarrola D, Malet-Martino M, et al. Brain tumors:interest of magnetic resonance spectroscopy for the diagnosis and the prognosis. Rev Neurol (Paris) 2001, 157(8-9):858-862.
    [33]Negendank WG, Sauter R, Brown TR, et al. Proton magnetic resonance spectroscopy in patients with glial tumors:amulticenter study. J Neurosurg 1996,84(3):449-458.
    [34]Cheng LL, Chang IW, Louis DN, et al. Correlation of high-resolution magic angle spinning proton magnetic resonance spectroscopy with histopathology of intact human brain tumor specimens. Cancer Res 1998,58(9):1825-1832.
    [35]McKnight TR, von dem Bussche MH, Vigneron DB, et al. Histopathological validation of a three-dimensional magnetic resonance spectroscopy index as a predictor of tumor presence. J Neurosurg 2002,97(4):794-802.
    [36]Tate AR, Majos C, Moreno A, et al. Automated classification of short echo time in in vivo 1H brain tumor spectra:a multicenter study. Magn Reson Med 2003, 49(1):29-36.
    [1]Lev MH, Ozsunar Y, Henson JW, et al. Glial tumor grading and outcome pre-diction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR:confounding effect of elevated rCBV of oligodendrogliomas. AJNR Am J Neuroradiol 2004,25(2):214-221.
    [2]Law M, Yang S, Wang H, et al. Glioma grading:sensitivity, specificity, and predictive values of perfusionMRimaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 2003, 24(10):1989-1998.
    [3]Law M, Yang S, Babb JS, et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 2004,25(5):746--755.
    [4]Spampinato MV, Smith JK, Kwock L, et al. Cerebral blood volume measurements and proton MR spectroscopy in grading of oligodendroglial tumors. AJR Am J Roentgenol 2007,188(1):204-212.
    [5]Henry RG, Vigneron DB, Fischbein NJ, et al. Comparison of relative cerebral blood volume and proton spectroscopy in patients with treated gliomas.AJNR Am J Neuroradiol 2000,21(2):357-366.
    [6]Gupta RK, Nath K, Prasad A, et al. In vivo demonstration of neuroinflammatory molecule expression in bra in abscess with diffusion tensor imaging. AJNR Am JN euroradiol 2008,29 (2):326-332.
    [7]Knopp EA, Cha S, Johnson G, et al. Glial neoplasms:dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 1999,211(3):791-798.
    [8]Runge VM, Clanton JA, Price AC, et al. The use of Gd DTPA as a perfusion agent and marker of blood-brain barrier disruption. Magn Reson Imaging 1985,3(1):43-55.
    [9]Bagley LJ, Grossman RI, Judy KD, et al. Gliomas:correlation of magnetic susceptibility artifact with histologic grade. Radiology 1997,202(2):511-516.
    [10]Siegal T, Rubinstein R, Tzuk-Shina T, et al. Utility of relative cerebral blood volume mapping derived from perfusion magnetic resonance imaging in the routine follow up of brain tumours. J Neurosurg 1997,86(1):22-27.
    [11]Miyagami M, Katayama Y. Angiogenesis of glioma:evaluation of ultrastructural characteristics of microvessels and tubular bodies (Weibel-Palade) in endothelial cells and immunohistochemical findings with VEGF and p53 protein. Med Mol Morphol 2005,38(1):36-42.
    [12]Provenzale JM, Mukundan S, Barboriak DP. Diffusion-weighted and Perfusion MR Imaging for Brain Tumor Characterization and Assessment of Treatment Responsel. Radiology 2006,239(3):632-649.
    [13]Aronen HJ, Gazit IE, Louis DN, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994,191(1):41-51.
    [14]Engelhard HH, Stelea A, Cochran EJ. Oligodendroglioma:pathology and molecular biology. Surg Neurol 2002,58(2):111-117.
    [15]Cha S, Tihan T, Crawford F, et al. Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas by using quantitative blood-volume measurements derived from dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol 2005,26(2):266-273.
    [16]Law M, Oh S, Babb JS. Low-grade gliomas:dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging--prediction of patient clinical response. Radiology.2006,238(2):658-667.
    [1]Laws ER Jr, Shaffrey ME. The inherent invasiveness of cerebral gliomas: implications for clinical management. Int. J. Devl Neuroscience 1999, 17(5-6):413-420.
    [2]Law M, Yang S, Wang H, et al. Glioma Grading:Sensitivity, Specificity, and Predictive Values of Perfusion MR Imaging and Proton MR Spectroscopic Imaging Compared with Conventional MR Imaging. AJNR Am J Neuroradiol 2003, 24(10):1989-1998.
    [3]Stadlbauer A, Gruber S, Nimsky C, et al. Preoperative Grading of Gliomas by Using Metabolite Quantification with High-Spatial-Resolution Proton MR Spectroscopic Imaging. Radiology 2006; 238(3):958-969.
    [4]Lee PL, Gonzalez RG. Magnetic resonance spectroscopy of brain tumors. Curr Opin Oncol.,2000,12(3):199-204.
    [5]Golder W. Magnetic resonance spectroscopy in clinical oncology. Onkologie 2004, 27(3):304-309.
    [6]Magalhaes A, Godfrey W, Shen Y, et al. Proton magnetic resonance spectroscopy of brain tumors correlated with pathology. Acad Radiol 2005,12(1):51-57.
    [7]Chen J, Huang SL, Li T, et al. In vivo research in astrocytoma cell proliferation with 1H-magnetic resonance spectroscopy:correlation with histopathology and immunohistochemistry. Neuroradiology 2006,48(5):312-318.
    [8]Higano S,Yun X, Kumabe T, et al. Malignant Astrocytic Tumors:Clinical Importance of Apparent Diffusion Coefficient in Prediction of Grade and Prognosis. Radiology 2006,241(3):839-846.
    [9]Goebell E, Paustenbach S, Vaeterlein O, et al. Low-Grade and Anaplastic Gliomas: Differences in Architecture Evaluated with Diffusion-Tensor MR Imaging. Radiology 2006,239(1):217-222
    [10]Majos C, Alonso J, Aguilera C, et al. Adult primitive neuroectodermal tumor:proton MR spectroscopic findings with possible application for differential diagnosis. Radiology 2002,225(2):556-566.
    [11]Moeller-Hartmann W. Practical application of proton magnetic resonance spectroscopy to the diagnostics of focal intracranial mass lesions. Clin Neuroradiol 2005,15(?):62-78
    [12]Majos C, Alonso JI, Aguilera C, et al. Proton magnetic resonance (1H MRS) of human brain tumors:assessment of differences between tumor types and its applicability in brain tumor categorization. Eur Radiol 2003,13(3):582-591.
    [13]Castillo M, Kwock L, Mukherji SK. Clinical application of proton MR spectroscopy. AJNR 1996; 17(1):1-15.
    [14]Shimizu H, Kumabe T, Shirane R, et al. Correlation between choline level measured by proton MR spectroscopy and Ki-67 labeling index in gliomas. AJNR Am J Neuroradiol 2000,21(4):659-665.
    [15]Croteau D, Scarpace L, Hearshen D, et al. Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies:semiquantitative and qualitative histopathological analyses of patients with untreated glioma. Neurosurgery 2001, 49(4):823-829.
    [16]Negendank WG, Sauter R, Brown TR, et al. Proton magnetic resonance spectroscopy in patients with glial tumors:a multicenter study. J Neurosurg 1996,84(3):449-458.
    [17]Fan G, Sun B, Wu Z, et al. In vivo single-voxel proton MR spectroscopy in the differentiation of high-grade gliomas and solitary metastases. Clin Rasiol 2004, 59(1):77-85.
    [18]Aronen HJ, Gazit IE, Louis DN, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994,191(1):41-51.
    [19]Engelhard HH, Stelea A, Cochran EJ. Oligodendroglioma:pathology and molecular biology. Surg Neurol 2002,58(2):111-117.
    [20]Sabatier J, Ibarrola D, Malet-Martino M, et al. Brain tumors:interest of magnetic resonance spectroscopy for the diagnosis and the prognosis. Rev Neurol (Paris) 2001, 157(8-9):858-862.
    [21]Cheng LL, Chang IW, Louis DN, et al. Correlation of high-resolution magicangle spinning proton magnetic resonance spectroscopy with histopathology of intact human brain tumor specimens. Cancer Res 1998,58(9):1825-1832.
    [22]McKnight TR, von dem Bussche MH, Vigneron DB, et al. Histopathological validation of a three-dimensional magnetic resonance spectroscopy index as a predictor of tumor presence. J Neurosurg 2002,97(4):794-802
    [23][ate AR, Majos C, Moreno A, et al. Automated classification of short echo time in in vivo 1H brain tumor spectra:a multicenter study. Magn Reson Med 2003, 49(1):29-36.
    [24]Vuori K, Kankaanranta L, Hakkinen AM, et al. Low-grade gliomas and focal cortical developmental malformations:differentiation with proton MR spectroscopy. Radiology 2004,230(3):703-708.
    [1]Dowling C, Bollen AW, Noworolski SM, et al. Preoperative proton MR spectroscopic imaging of brain tumors:correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 2001,22(4):604-612.
    [2]Kondziolka D, Lunsford LD, Martinez AJ. Unreliability of contemporary neurodiagnostic imaging in evaluating suspected adult supratentorial (low-grade) astrocytoma. J Neurosurg 1993,79(4):533-536.
    [3]Alesch F, Pappaterra J, Trattnig S, et al. The role of stereotactic biopsy in radiosurgery. Acta Neurochir Suppl 1995,63:20-24. [4] Mihara F, Numaguchi Y, Rothman M, et al. MR imaging of adult supratentorial astrocytomas:an attempt of semiautomatic grading. Radiat Med 1995,13(1):5-9. [5] Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 1999,9(1):53-60. [6] Gupta RK, Cloughesy TF, Sinha U, et al. Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neurooncol 2000,50(3):215-226. [7] Guo AC, Cummings TJ, Dash RC, et al. Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology 2002, 224(1):177-183. [8] Kurki T, Lundbom N, Kalimo H, et al. MR classification of brain gliomas:value of magnetization transfer and conventional imaging. Magn Reson Imaging 1995, 13(4):501-511. [9] Barker FG 2nd, Chang SM, Huhn SL, et al. Age and the risk of anaplasia in magnetic resonance non-enhancening supratentorial cerebral tumors. Cancer 1997, 80(5):936-941.
    [10]Chamberlain MC, Murovic JA, Levin VA. Absent of contrast enhancement on CT brain scans of patients with supratentorial malignant gliomas. Neurology 1988, 38(9):1371-1374.
    [11]Provenzale JM, Mukundan S, Barboriak DP. Diffusion-weighted and Perfusion MR Imaging for Brain Tumor Characterization and Assessment of Treatment Response1. Radiology 2006,239(3):632-649.
    [12]Kono K, Inoue Y, Nakayama K, et al.The role of diffusion weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 2001,22(6):1081-1088.
    [13]S. Cha. Update on Brain Tumor Imaging:FromAnatomy to Physiology. AJNR Am J Neuroradiol 2006,27(3):475-487.
    [14]Bulakbasi N, Guvenc I, Onguru O, et al. The added value of the apparent diffusion coefficient calculation to magnetic resonance imaging in the differentiation and grading of malignant brain tumors. J Comput Assist Tomogr 2004,28(6):735-746.
    [15]Kitis O, Altay H, Calli C, et al. Minimum apparent diffusion coefficients in the evaluation of brain tumors. Eur J Radiol 2005,55(3):393-400.
    [16]Aronen HJ, Gazit IE, Louis DN, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994, 191(1):41-51.
    [17]Engelhard HH, Stelea A, Cochran EJ. Oligodendroglioma:pathology and molecular biology. Surg Neurol 2002,58(2):111-117.
    [1]Dowling C, Bollen AW, Noworolski SM, et al. Preoperative proton MR spectroscopic imaging of brain tumors:correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 2001,22(4):604-612.
    [2]Kondziolka D, Lunsford LD, Martinez AJ. Unreliability of contemporary neurodiagnostic imaging in evaluating suspected adult supratentorial (low-grade) astrocytoma. J Neurosurg 1993,79(4):533-536.
    [3]Alesch F, Pappaterra J, Trattnig S, et al. The role of stereotactic biopsy in radiosurgery. Acta Neurochir Suppl 1995,63:20-24.
    [4]Mihara F, Numaguchi Y, Rothman M, et al. MR imaging of adult supratentorial astrocytomas:an attempt of semiautomatic grading. Radiat Med 1995,13(1):5-9.
    [5]Lee PL, Gonzalez RG. Magnetic resonance spectroscopy of brain tumors. Current Curr Opin Oncol 2000,12(3):199-204.
    [6]Golder WA. Magnetic resonance spectroscopy in clinical oncology.Onkologie 2004,27(3):304-309.
    [7]Magalhaes A, Godfrey W, Shen Y, et al. Proton magnetic resonance spectroscopy of brain tumors correlated with pathology. Acad Radiol 2005,12(1):51-57.
    [8]Law M, Yang S, Babb JS, et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 2004,25(5):746-755.
    [9]Lev MH, Ozsunar Y, Henson JW, et al. Glial tumor grading and outcome pre-diction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR:confounding effect of elevated rCBV of oligodendrogliomas. AJNR Am J Neuroradiol 2004,25(2):214-221.
    [10]Law M, Yang S, Wang H, et al. Glioma grading:sensitivity, specificity, and predictive values of perfusionMRimaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 2003, 24(10):1989-1998.
    [11]Haddar D, Haacke E, Sehgal V, et al. Susceptibility weighted imaging. Theory and applications. J Radiol 2004,85(11):1901-1908.
    [12]Christoforidis GA, Bourekas EC, Baujan M, et al. High resolution MRI of the deep brain vessels anatomy at 8 Tesla:susceptibility-based enhancement of the venous structures. J Comput Assist Tomogr 1999,23(6):857-866.
    [13]Laws ER Jr, Shaffrey ME. The inherent invasiveness of cerebral gliomas: implications for clinical management. Int. J. Devl Neuroscience 1999, 17(5-6):413-420.
    [14]Higano S,Yun X, Kumabe T, et al. Malignant Astrocytic Tumors:Clinical Importance of Apparent Diffusion Coefficient in Prediction of Grade and Prognosis. Radiology 2006,241(3):839-846.
    [15]Kurki T, Lundbom N, Kalimo H, et al. MR classification of brain gliomas:value of magnetization transfer and conventional imaging. Magn Reson Imaging 1995, 13(4):501-511.
    [16]Goebell E, Paustenbach S, Vaeterlein O, et al. Low-Grade and Anaplastic Gliomas: Differences in Architecture Evaluated with Diffusion-Tensor MR Imaging. Radiology 2006,239(1):217-222.
    [17]Magalhaes A, Godfrey W, Shen Y, et al. Proton magnetic resonance spectroscopy of brain tumors correlated with pathology. Acad Radiol 2005,12(1):51-57.
    [18]Moeller-Hartmann W. Practical application of proton magnetic resonance spectroscopy to the diagnostics of focal intracranial mass lesions. Clin Neuroradiol 2005,15:62-78
    [19]Majos C, Alonso JI, Aguilera C, et al. Proton magnetic resonance (1H MRS) of human brain tumors:assessment of differences between tumor types and its applicability in brain tumor categorization. Eur Radiol 2003,13(3):582-591.
    [20]Castillo M, Kwock L, Mukherji SK. Clinical application of proton MR spectroscopy. AJNR 1996; 17(1):1-15.
    [21]Kono K, Inoue Y, Nakayama K, et al.The role of diffusion weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 2001;22(6):1081-1088.
    [22]S. Cha. Update on Brain Tumor Imaging:FromAnatomy to Physiology. AJNR Am J Neuroradiol 2006,27(3):475-487.
    [23]Bulakbasi N, Guvenc I, Onguru O, et al. The added value of the apparent diffusion coefficient calculation to magnetic resonance imaging in the differentiation and grading of malignant brain tumors. J Comput Assist Tomogr 2004,28(6):735-746.
    [24]Kitis O, Altay H, Calli C, et al. Minimum apparent diffusion coefficients in the evaluation of brain tumors. Eur J Radiol 2005,55(3):393-400
    [25]Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion-weighted MRIwith echo-planar technique in the evaluation of cellularity in gliomas. J MagnReson Imaging 1999,9(1):53-60.,
    [26]Gupta RK, NathK, Prasad A, et al. In vivo demonstration of neuroinflammatory molecule expression in brain abscess with diffusion tensor imaging. AJNR Am JN euroradiol 2008,29 (2):326-332.
    [27]Sehgal V, Delproposto Z, Haacke EM, et al. Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging 2005,22(4):439-450.
    [28]Thomas B, Somasundaram S, Thamburaj K, et al. Clinical applications of susceptibility weighted MR imaging of the brain:a pictorial review. Neuroradiology 2008,50(2):105-116.
    [29]Sehgal V, Delproposto Z, Haddar D, et al. Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging 2006,24(1):41-51.
    [30]Christy PS, Tervonen O, Scheithauer BW, et al. Use of a neural network and a multiple regression model to predict histologic grade of astrocytoma from MRI appearances.Neuroradiology 1995,37(2):89-93.
    [31]Law M, Yang S, Wang H, et al. Glioma Grading:Sensitivity, Specificity, and Predictive Values of Perfusion MR Imaging and Proton MR Spectroscopic Imaging Compared with Conventional MR Imaging. AJNR Am J Neuroradiol 2003, 24(10):1989-1998.
    [32]Altun E, Martin DR, Wertman R, et al. Nephrogenic Systemic Fibrosis:Change in Incidence Following a Switch in Gadolinium Agents and Adoption of a Gadolinium Policy—Report from Two U.S. Universities. Radiology 2009,253(3):689-696.
    [33]Agarwal R, Brunelli SM, Williams K, et al. Gadolinium-based contrast agents and nephrogenic systemic fibrosis:a systematic review and meta-analysis. Nephrol. Dial. Transplant 2009,24(3):856-863.
    [34]Wiginton CD, Kelly B, Oto A, et al. Gadolinium-Based Contrast Exposure, Nephrogenic Systemic Fibrosis, and Gadolinium Detection in Tissue. Am. J. Roentgenol 2008,190(4):1060-1068.
    [35]Aronen HJ, Gazit IE, Louis DN, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994,191(1):41-51.
    [36]Engelhard HH, Stelea A, Cochran EJ. Oligodendroglioma:pathology and molecular biology. Surg Neurol 2002,58(2):111-117
    [1]Akber SF. Water proton relaxation times of pathological tissues. Physiol Chem Phys Med NMR.2008;40:1-42.
    [2]Nitz WR, Reimer P. Contrast mechanisms in MR imaging. Eur Radiol 1999;9(6):1032-1046.
    [3]Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging. 2008;27(2):376-90.
    [4]Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11(11):2319-31.
    [5]Balasubramanian S, Morley-Forster P, Bureau Y. Opioids and brain imaging. J Opioid Manag.2006;2(3):147-53.
    [6]Carl M, Bydder M, Du J, et al. Optimization of RF excitation to maximize signal and T2 contrast of tissues with rapid transverse relaxation. Magn Reson Med. 2010;64(2):481-90.
    [7]Nehrke K. On the steady-state properties of actual flip angle imaging (AFI). Magn Reson Med.2009;61(1):84-92.
    [8]Tsushima Y, Endo K. Hypointensities in the brain on T2*-weighted gradient-echo magnetic resonance imaging. Curr Probl Diagn Radiol 2006;35(4):140-150.
    [9]Denk C, Torres EH, Mackay A, et al. The influence of white matter fibre orientation on MR signal phase and decay. NMR Biomed.2010 Dec 28. [Epub ahead of print]
    [10]Thamburaj K, Radhakrishnan W, Thomas B, et al. Intratumoral microhemorrhages on T2*-weighted gradient-echo imaging helps differentiate vestibular schwannoma from meningioma. AJNR Am J Neuroradiol 2008; 29(3):552-557.
    [11]Boxerman JL, Rogg JM, Donahue JE, et al. Preoperative MRI evaluation of pituitary macroadenoma:imaging features predictive of successful transsphenoidal surgery. AJR Am J Roentgenol.2010;195(3):720-8.
    [12]Linfante I, Llinas RH, Selim M, et al. Clinical and vascular outcome in internal carotid artery versus middle cerebral artery occlusions after intravenous tissue plasminogen activator. Stroke.2002;33(8):2066-71.
    [13]Tonan T, Fujimoto K, Azuma S, et al. Evaluation of small dysplastic nodules and well-differentiated hepatocellular carcinomas with ferucarbotranenhanced MRI in a 1.0-T MRI unit:utility of T2*-weighted gradient echo sequences with an intermediate-echo time. Eur J Radiol 2007;64(1):133-139.
    [14]Ishiyama K, Hashimoto M, Izumi J, et al. Tumor-liver contrast and subjective tumor conspicuity of respiratory-triggered T2-weighted fast spin-echo sequence compared with T2*-weighted gradient recalled-echo sequence for ferucarbotran- enhanced magnetic resonance imaging of hepatic malignant tumors. J Magn Reson Imaging 2008;27(6):1322-1326.
    [15]Haacke EM, Xu Y, Cheng YC, et al. Susceptibility weighted imaging (SWI). Magn Reson Med 2004;52(3):612-618.
    [16]Ong BC, Stuckey SL. Susceptibility weighted imaging:a pictorial review. J Med Imaging Radiat Oncol.2010;54(5):435-49.
    [17]Haacke EM, Mittal S, Wu Z, et al. Susceptibility-weighted imaging:technical aspects and clinical applications, part 1 AJNR Am J Neuroradiol.2009;30(1):19-30.
    [18]Tong KA, Ashwal S, Obenaus A, et al. Susceptibility-weighted MR imaging:a review of clinical applications in children. AJNR Am J Neuroradiol. 2008;29(1):9-17
    [19]Sehgal V, Delproposto Z, Haacke EM, et al. Clinical applications of neuroimaging with susceptibilityweighted imaging. J Magn Reson Imaging 2005;22(4):439-450.
    [20]Tong KA, Ashwal S, Holshouser BA, et al. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury:improved detection and initial results. Radiology 2003;227(2):332-339.
    [21]Rauscher A, Sedlacik J, Barth M, et al. Magnetic susceptibility-weighted MR phase imaging of the human brain. AJNR Am J Neuroradiol 2005;26(4):736-742.
    [22]Li D, Waight DJ, Wang Y. In vivo correlation between blood T2* and oxygen saturation. J Magn Reson Imaging 1998;8(6):1236-1239.
    [23]Thomas B, Somasundaram S, Thamburaj K, et al. Clinical applications of susceptibility weighted MR imaging of the brain:a pictorial review. Neuroradiology 2008;50(2):105-116.
    [24]Zhu WZ, Qi JP, Zhan CJ, et al. Magnetic resonance susceptibility weighted imaging in detecting intracranial calcification and hemorrhage. Chin Med J (Engl). 2008;121(20):2021-5.
    [25]Haacke EM, Cheng NY, House MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005;23(1):1-25.
    [26]Haacke EM, Ayaz M, Khan A, et al. Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs abnormal iron content in the brain. J Magn Reson Imaging 2007;26(2):256-264.
    [27]Niwa T, Aida N, Shishikura A, et al. Susceptibility-weighted imaging findings of cortical laminar necrosis in pediatric patients. AJNR Am J Neuroradiol.;29(9):1795-8.
    [28]Cha S. Dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in pediatric patients. Neuroimaging Clin N Am.2006;16(1):137-47
    [29]Cha S, Knopp EA, Johnson G, et al. Intracranial mass lesions:dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 2002;223(1):11-29.
    [30]Provenzale JM, Mukundan S, Barboriak DP. Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 2006;239(3):632-649.
    [31]Lemort M, Canizares-Perez AC, Van der Stappen A, et al. Progress in magnetic resonance imaging of brain tumors. Curr Opin Oncol 2007; 19(6):616-622.
    [32]Cha S. Update on brain tumor imaging:from anatomy to physiology. AJNR Am J Neuroradiol 2006;27(3):475-487.
    [33]Emblem KE, Scheie D, Due-Tonnessen P, et al. Histogram analysis of MR imaging-derived cerebral blood volume maps:combined glioma grading and identification of low-grade oligodendroglial subtypes. AJNR Am J Neuroradiol 2008;29(9):1664-1670.
    [34]Law M, Young RJ, Babb JS, et al. Gliomas:predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2008;247(2):490-499.
    [35]Heiss WD, Sobesky J, Hesselmann V. Identifying thresholds for penumbra and irreversible tissue damage. Stroke.2004;35(11 Suppl 1):2671-4.
    [36]Rowley HA, Roberts TP. Clinical perspectives in perfusion:neuroradiologic applications. Top Magn Reson Imaging 2004;15(1):28-40.
    [37]Brown GG, Perthen JE, Liu TT, et al. A primer on functional magnetic resonance imaging. Neuropsychol Rev.2007 Jun; 17(2):107-25.
    [38]Haller S, Pereira VM, Lazeyras F, et al. Magnetic resonance imaging techniques in white matter disease:potentials and limitations. Top Magn Reson Imaging. 2009;20(6):301-12.
    [39]Duffau H, Moritz-Gasser S, Gatignol P. Functional outcome after language mapping for insular World Health Organization Grade II gliomas in the dominant hemisphere: experience with 24 patients. Neurosurg Focus.2009;27(2):E7.
    [40]Fischer R, Harmatz PR. Non-invasive assessment of tissue iron overload. Hematology Am Soc Hematol Educ Program.2009:215-21
    [41]Argyropoulou MI, Astrakas L. MRI evaluation of tissue iron burden in patients with beta-thalassemia major. Pediatr Radiol 2007; 37(12):1191-1200.
    [42]Boll DT, Marin D, Redmon GM, et al. Pilot study assessing differentiation of steatosis hepatis, hepatic iron overload, and combined disease using two-point dixon MRI at 3 T:in vitro and in vivo results of a 2D decomposition technique. AJR Am J Roentgenol.2010;194(4):964-71.
    [43]Wood JC, Ghugre N. MRI assessment of excess iron in thalassemia, sickle cell disease and other iron overload diseases. Hemoglobin 2008;32(1-2):85-96.
    [44]Olthof AW, Sijens PE, Kreeftenberg HG, et al. Non-invasive liver iron concentration measurement by MRI:comparison of two validated protocols. Eur J Radiol. 2009;71(1):116-21.
    [45]Jara H, Sakai O, Mankal P, et al. Multispectral quantitative magnetic resonance imaging of brain iron stores:a theoretical perspective. Top Magn Reson Imaging. 2006;17(1):19-30.
    [46]Gandon Y, Olivie D, Guyader D, et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet 2004;363(9406):357-362.
    [47]Ooi GC, Chen FE, Chan KN, et al. Qualitative and quantitative magnetic resonance imaging in haemoglobin H disease:screening for iron overload. Clin Radiol. 1999;54(2):98-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700