自由面附近运动物体流场的数值与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自由面流动是水动力学研究领域中的一个热点和难点问题,发展和完善研究自由面流
    动的方法和手段是当今揭示自由面流动特性的关键部分,本文围绕船舶水动力学的主题,
    紧跟国际发展热点,立足于自由面附近运动物体流场研究的选题,介绍了笔者对现有研究
    自由面问题的数值和试验方法的把握和发展。文中首先对研究自由面流动的各种方法,特
    别是数值方法做了较全面的概括,并分析了它们各自的优缺点。接着对VOF方法做了较详
    细的分析和介绍。
     在学习和继承已有的VOF方法基础上,为了能更精确跟踪自由面的运动和模拟更复
    杂的自由面变形,本文中对VOF方法进行了改进。笔者发展了一种基于几何分析的二维自
    由面重构算法,这种算法逻辑简单,算法精细,可以达到空间二阶精度;同时提出了新的
    压力插值单元的迭代因于,改善了迭代过程的收敛性能,且增强了VOF方法处理复杂自由
    面变形的能力;另外在处理流体占体函数F的过程中使用了一种混合式方法,这种方法把
    Hirt & Nichols的施主-受主法和拉格朗日斜线段法有机地结合起来,综合了它们的优点,克
    服了它们的缺点,能更加精确地捕捉到自由面的运动。
     PIV是一种具有全场、瞬时捕捉流场的现代流场测试技术,但它也包含有不可避免的
    测量误差和对某一些区域测量的失效,为此本文发展了两种PIV后处理方法:一是PIV和
    BEM相结合的算法,它是一种基于边界元方法的CFD—PIV结合的途径,可以很好地修正
    PIV的测量结果,减小它们的误差,同时还可以对测量失效区域的流场进行估计,增加流
    场信息,在文中它被应用到楔形体入水的PIV测量后处理中,取得了很好的效果;二是基
    于流体连续方程的PIV后处理方法,可以成功地解决胶片式PIV测速方向二义性问题,同
    时可以微调测量结果,以使他们更接近于连续性约束,这种基于软件方式解决胶片式PIV
    测速方向二义性的手段在经济和人力上有很大的节省。
     作为VOF方法的应用实例,本文对2D、3D方柱在自由面附近运动的流场做了系统的
    数值计算,并给出了计算结果的详细分析评估;同时为对方柱在自由面附近运动流场有更
    深的认识和对数值模拟的结果作出评估,还应用PIV测试手段针对带自由面流动模型进行
    了试验研究。本文中的计算和试验表明:笔者对VOF方法的改进是有效的,提高了VOF
    方法跟踪自由面的精度和模拟复杂自由面的能力;提出的PIV数据后处理方法对于改善测
    量结果起到了很大的作用,可以提高PIV数据的精度和提供更丰富的流场信息。
The problem of the free-surface flows is being one of focus and difficulty in hydrodynamics.
     The key to discover the character of the free-surface flows depends on developing and perfecting
     methods and instruments. This paper introduced the author抯 investigation on the flow field around
     a moving body near free surface, especially the author抯 development in both numerical simulation
     and experimental measurement. In the paper, Kinds of methods to solve problem of the free-
     surface flows were reviewed firstly, their advantage and also the disadvantage were analyzed
     respectively, and then the VOF method is introduced in detail.
    
     In order to track the free surface more precisely and simulate the deformation of complex free
    
     surface, the VOF method was improved. The author developed a free surface reconstruction
     0
     method, the logic of this method was simple, the algorithm with the second order accuracy on
    
     space was proved to be fine. A new iteration factor of the pressure interpolation cell was given out
     at the same time, it was able to improve the convergence of iteration, and enhanced the ability to
     deal with complex free surface flows. Another a hybrid means of combined suitably Nirth-
     Nichols抯 donor-acceptor method and Lagrange line segment method was used to update the
     faction F, it was able embody their virtue and overcame their shortcoming, thereby it could track
     the free surface more accurately.
    
     The PIV is a technique for measurement of whole, instantaneous fields of velocity, but it
     contains experimental errors inevitably and maybe some data is false. To ease up these, two post-
     processing methods of PLV were developed in this paper. One is a method of combining Ply and
     BEM, it combine CFD and PIV through the boundary cell method, could be used to correct the
     PIV data, reduce measurement errors, and estimate velocity at invalid measurement points. A good
     result was obtained when it was applied to process the data in flow field measurement of water
     entry of wedge-body. The other is a post-processing means based on continuity equation of fluid. It
     could settle the directional ambiguity in film PIV, and could correct the measurement data to be
     more close to continuity restriction. This software-based method to solve the directional ambiguity
     problem could reduce the spending on finance and labor.
    
     The 2D and 3D flow fields around square column moving near free surface were simulated by
     the improved VOF method. The calculated results were analyzed in detailed. In order to
     understand further the flow fields and evaluate simulated result, the flow fields around square
     column move near free surface were measured by PIV. The results of calculation and experiment
     indicated that the improvement for VOF method and the means for post-processing of PIV in this
     paper were effective.
引文
1. Stokes, G. G. "On the theory of oscillatory waves ", Trans. Cambridge Philos. Soc. 8: 441-455,1847.
    2. Stokes, G. G. "Supplement to a paper on the theory of oscillatory waves", Mathematical & Physical Papers 1:314-326,1880.
    3. De, S.C. "Contributions to the theory of Stokes waves", Proceedings, Cambridge Philos. Soc. 51:4561-4572,1955.
    4. Chappelear, J. E. "Direct numerical calculation of wave properties". J. Geophys. Res. 66: 501-508, 1961.
    5. Skjelbreia, L. W., Hendrickson, J. "Fifth-order gravity wave theory", Proceeding, 7th Conf. Coastal Engrg. pp 184-196, 1961.
    6. Wilton, J.R. "On deep water waves", Philos. Mag. (6) 27:385-394
    7. Schwartz, L. W. "Analytic continuation of Stokes' expansion for gravity waves. Ph.D. thesis. Stanford Univ. 1972.
    8. Schwartz, L. W. "Computer extension and analytic continuation of Stokes' expansion for gravity waves", J. Fluid Mech. 62: 553-578, 1974.
    9. Boussinesq, J. "The'orie de 1'intumescence liquide appele'e onde solitaire ou de translation se propageant dans un canal rectangulaire", C. R. Acad. Sci. Paris 72: 755-270, 1871
    10. Rayleigh, Lord. "On waves". Philos. Mag. 1(5) :257-279,1876
    11. Korteweg, D. J., de Vries, G. "On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary wave". Philos. Mag. (5) 39: 422-443. 1895.
    12. Ursell, F. "The long-wave paradox in the theory of gravity waves". Proceeding Cambridge Philos. Soc. 49: 685-694,1953.
    13. Laitone, E. V. "The second approximation to cnoidal and solitary waves", J. Fluid Mech. 9: 430-434, 1960.
    14. Chappelear, J. E. "Shallow-water waves", J. Geophys. Res. 67: 4693-4704, 1962.
    15. Yuen, H. C., Lake, B. M. "Instabilities of waves on deep water". Ann. Rev. Fluid Mech. 12:303-334,1980
    
    
    16. Miles, J. W. 1980. "Solitary waves", Ann. Rev. Fluid Mech. 12:11-43 1980
    17. Schwartz, L. W., Fenton, J. D. "Strongly nonlinear waves", Ann. Rev. Fluid Mech. 14: 39-60, 1982
    18. Tsai, W. T., Yue, D. K. P. "Computation of nonlinear free-surface flows", Ann. Rev. Fluid Mech. 28:249-278, 1996.
    19. 吴望一,《流体力学》,北京大学出版社, 1983.
    20. Havelock, T.H. "The wave resistance of a spheroid", Proceeding, of the Royal Society of London, A131,275-285, 1931.
    21. Havelock, T.H. " The wave resistance of an ellipsoid." Proceeding of the Royal Society of London, A132, 480-486, 1931.
    22. Havelock, T.H. "The forces on a circular cylinder submerged in a uniform stream", Proceeding of the Royal Society of London, A157, 526-534,1936.
    23. Farell, C. "On the wave resistance of a submerged spheroid". Journal of ship research, 17: 1-11, 1973.
    24. Wehausen, J.V., Laitone, E.V. "Surface waves", Handbuch der Physik, Springer, Berlin, 9:446-778, 1960.
    25. Wehausen, J.V. "The wave resistance of ships", Advance in Applied Mechanics, 13: 93-245, 1973.
    26. Barr, J. J. M., Price, W. G, "Developments in the calculation of the wavemaking resistance of ships", Proceedings of the Royal Society of London, A416, 115-147, 1988.
    27. Wu, G. X., Eatock Taylor, R., "Radiation and diffraction of water waves by a submerged sphere at forward speed", Proceeding of the Royal Society of London, A417,433-461, 1988.
    28. Wu, G.X., "Radiation and diffraction of water waves by a submerged sphere advancing in water waves of finite depth", Proceeding of the Royal Society of London, 448,29-54, 1995.
    29. Wu, G.X., "Wavemaking resistance of a group of submerged sphere", Journal of ship research, Vol.401: 1-10, 1996.
    30. Bonmarin, P., Rochefort, R., Bourguel, M., "Surface of wave profile measurement by image analysis", Experiments in Fluids Vol. 7. 1989
    31. Zhang, X., Cok, C. S., "Measuring the two-dimensional structure of a wavy water surface optically: A surface gradient detector", Experiments in Fluids Vol.17, 1994
    
    
    32. Zhang, X, " An algorithm for calculating water surface elevations from surface gradient image data", Experiments in Fluids Vol.21,1996
    33. Suzuki, T., Sumino, K. "A technique to measure wave height using projected light distribution on the screen near the water surface", J. Kansai Soc. Naval Architects, Japan, No. 220,(in Japanese) 1993.
    34. Suzuki, T., He, M-Q., "Analysis method of wave pattern resistance using projected light distribution", Proceedings. Kansai Soc. Naval Architects, Japan, No. 8, 1997
    35. Suzuki, T., Sumino, K., Koumura, S., " Some examples of measured wave pattern by the projected light distribution method", Proceedings, News-Tech Conference, Shanghai Soc. Of Naval Architects & Marine Engineers, 1994
    36. Sheridan, J., Lin, J.C., Rockwell, D. "Flow past a cylinder close to a free surface", Journal of Fluid Mech. 330:1-30, 1997.
    37. Willert, C.E, Gharib, M., "The interaction of spatially modulated vortex pairs with free surfaces", Journal of Fluid Mech. 345:227-250, 1997.
    38. Hyun, B. S. and Choi, K. S. "Effect of Free-Surface on Flow Field around a Submerged Hydrofoil: Visualization Using Particle Image Velocinietry". Proceedings, 4th Japan-Korea Joint Workshop on Ship & Marine Hydrodynamics, pp:313-320, 1999.
    39. Shigeru N., "Flow measurement around ship model by PI V systems", Proceedings, 99 Korea-Japan Joint Seminar on Particle Image Velocimetry, pp. 78-83, 1999
    40. Deanl, R. G. "Stream function reoresebtation of nonlinear ocean waves", Journal of Geophys. Res. 70:4561-4572, 1965.
    41. Schwartz L., Vanden-Broeck, J.M. "Numerical solution for the exact equations for capillary-gravity waves", Journal of Fluid Mech., 95: 119-139, 1979.
    42. Vanden-Broeck, J.M., Schwartz, L "Numerical calculation of standing waves in water of arbitrary uniform depth", Phys. Fluids, 24: 812-815, 1979.
    43. Longunet-Higgins, M. S., Cokelet, E. D., "The deformation of steep surface waves on water. I. A numerical method of computation". Proceedings, R. Soc. London Ser. A350:1-26
    44. Burton, A J., Miller, GF. "The application of integral equation methods to the numerical solution of some exterior boundary-value problems", Proceeding. R. Soc. London Ser. A323: 201-210, 1971.
    
    
    45. Vinje T., Breving P. "Numerical simulation of breaking waves." Adv. Water Resources 4: 77-82, 1981.
    46. Vinje T., Breving P. "Nonlinear ship motions", Proceeding, 3rd Int. Conf. Numer. Ship Hydrodyn., Paris, France, pp. 257-266, 1981.
    47. Thompson J. F., Thames F. C., Mastin C. W. "Automatic numerical generation of body-fitted curvilinear coordinate system for field containing an number of arbitrary two-dimensional bodies", Journal of Comput. Phys. 15: 299-319, 1974.
    48. Shanks SP. Thompson JF, "numerical solution of the Navier-Stokes equations for 2D hydrofoils in or below a free surface", Proceeding, 2nd Int, Conf. Numer. Ship Hydrodyn., Berkeley, CA, pp. 202-220, 1977.
    49. Amsden A. A. And Hirt C. W. YAQUI: "An arbitrary Lagrangian-Eulerian computer program for fluid flow at all speeds", Report LA-5100, Los Alamos Scientific Laboratory, Los Alamos,NM, 1973.
    50. Pracht W. E. "Calculating three-dimensional fluid floes at all flow speeds with an Eulerian-Lagrangian computation mesh". J. Comput. Phys. 17: 132-159, 1975.
    51. Harlow, F.H., Welch, J.E., 'Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface', Phys. Fluids, 8(12) , 2182-2189, 1964.
    52. DeBar R., "Fundamentals of the KRAKEN code". Tech. Rep. UCIR-760. Lawrence Liver-more Nat. Lab., 1974.
    53. Hirt C.W., Nichols B. D. "Volume of Fluid (VOF) method for the dynamics of free boundaries", J. Comput. Phys. 39:201-225, 1981.
    54. Dommermuth D.G., Yue D.K.P. "A high order spectral method for the study of nonlinear gravity waves", J. Fluid Mech., 184:267-288, 1987.
    55. West B.J., Brueckner K.A., Janda R. S., Milder M., Milton R. L. "A new numerical method for surface hydrodynamics", J. Geophys. Res. 92: 11, 803-824, 1987.
    56. Benzi R., Succi S, Vergassola M. "The lattice Boltzmann equation: theory and applications", Phys. Rep. 222: 145-197, 1992.
    57. Monaghan J. " Smoothed particle hydrodynamics", Ann. Rev. Astron. Astrophys. 30: 543-574, 1992.
    58. Monaghan J., Bicknell P., Humble R. "Volcanoes, tsunamis and the demise of the Minoans",
    
    Physics D 77:217-228, 1994.
    59. Sussman M., Smereka P., Osher S. "A level set approach for computing solutions to incompressible two-phase flow", J. Comput. Phys. 114:146-159,1994.
    60. Sethian J. A. "Level set Methods", Cambridge Univ. Press. 1996.
    61. Sussman M., Smereka P. "Axisymmetric free boundary problems", J. Fluid Mech. 341: 269-294,1997.
    62. Mei, C.C. "Numerical methods in water-waves diffraction and radiation", Ann. Rev. Fluid Mech. 10:393-416, 1978.
    63. Yeung, R. W., "Numerical Methods in free-surface flows", Ann. Rev. Fluid Mech. 14:395-442,1982.
    64. Floryan J. M., Rasmussen H, "Numerical methods for viscous flows with moving boundaries", Appl. Mech. Rev. 42: 323-341, 1989.
    65. Tsai W.T., Yue D. K., "Computation of nonlinear free-surface flows", Ann. Rev. Fluid. Mech., 28:249-278, 1996.
    66. Scardovelli R., Zaleski S., "Direct numerical simulation of free-surface and interfacial flow", Ann. Rev. Fluid Mech. 31:567-603, 1999
    67. Shyy W. Udaykumar H., Rao M.M., Smith R. W., "Computational Fluid Dynamics with Moving Boundaries". London: Taylor & Francis, 1996.
    68. Rothman D. H., Zaleski S. "Lattice-Gas Cell Automata", Cambridge, UK.: Cambridge Univ. Press, 1997.
    69. McHyman J. "Numerical methods for tracking interfaces", Physics D 12:296-407, 1984.
    70. Boris J. P. "New directions in computational fluid dynamics", Ann. Rev. Fluid Mech. 21:345-385,1989.
    71. Noh W F. CEL: "A time-dependent two-space-dimensional coupled Eulerian-lagrangian code", in: B. Alder, S. Fernbach and M. Rotenberg, eds. Methods in Computational Physics 3,(Academic press, New York, 1964) . 1964
    72. Hughes T. J. K., Liu W. K. and Zimmerman T. K. "Lagrangian-Eulerian finite element formulation for incompressible viscous flow", Comput. Meths. Engrg., 29: 329-349, 1981.
    73. Ramaswamy B. Kawahara M. "Arbitrary Lagrangian-Eulerian finite element method for unsteady, convective, incompressible viscous free surface fluid flow", Int. J. Num. Methods
    
    Fluids.7:1053-1075,1987.
    74. Huerta A.and Liu W.K.,“Viscous flow with large free surface motion”.Comput.Meths. Appl.Mech.Engrg.,69:277~324,1988.
    75. Liu W.K.Chen J.S..et al.“Adaptive ALE finite elements with particular reference to external work rate on frictional interface”,Comput.Meths.Appl.Mech.Engrg,93:189-216, 1991.
    76. Benson D J.Adding an ALE capability to DYNA2d:Experiences and Conckusions,Post-Conference on IMPACT 9th Int.Conf.On Structural Mech.In Reactor Technology, Switzerland,1987.
    77. Nitikitpaiboon C and Bathe K J.“An arbitrary Lagrangian-Eulerian velocity potential formulation for fluid-structure interaction”.Computers and Structures,47(4/5) :871-891, 1993.
    78. Romate J.E.“The numerical simulation of nonlinear gravity waves”,Eng.Anal.Bound. Elem.7:156-166,1990.
    79. Xu H.,Yue D.K.P.“Computations of fully nonlinear three-dimensional water waves”, Proceeding,19th Symp.on Naval Hydrodyn,Seoul,Korea,PP.177-210;also:Xu H.1992. “Numerical study of fully nonlinear water waves in three dimensions”.Ph.D.thesis.MIT, Cambridge,MA,1992.
    80. Dommermuth D.G.,Yue D.K.P.,Rapp R.J.,Chan F.S.,Melville W.K.,“Deep water breaking waves;a comparison between potential theory and experiments”,J.Fluid Mech.89:432-442, 1988.
    81. Chorin A.J.,J.Comput.Phys.,2,1967.
    82. Liu H.,Ikehata M.“Computation of free surface waves around an arbitrary body by a Navier-Stokes solver using the psuedocompressibility technique”,Int.J.Num.Meth.in Fluids,19: 395-413 1994.
    83. Chorin A.J.“Numerical Solution of Incompressible Flow Problem”.In“Studies in Numerical Analysis 2”,Society for Industrial and Applied Mathematics,Philadelphia, Pennsylvamia,64-70,1968.
    84. 苏铭德、黄素逸,《计算流体力学基础》,清华大学出版社,1997。
    85. Coleman R.M.“Nonlinear calculation of breaking and non-breaking waves behind a two-
    
    dimensional hydrofoil", Proceeding, 16th Symp. on Naval Hydrodynamics, 1986.
    86. Viecelly, J. A., "A computing method for incompressible flows bounded by moving walls", J.Comput.Phys.,8,119-143 1979.
    87. Miyata, H., "Finite-Difference Simulation of Breaking Waves", J. Computational Physics 65-1, 179-214, 1986.
    88. Haussling H. J., Coleman R. M. "Nonlinear water waves generated by accelerated circular cylinder". J. Fluid Mech. 92:767-781.
    89. Brandt A., Dendy J.E., Ruppel H. "The multigrid method for semi-implicit hydrodynamics codes", J. Comput. Phys. 34:348-370, 1980.
    90. Amsden, A. A., Hirt, C.W., 'YAQUI: An arbitrary Lagrangian-Eulerian computer program for fluid at all speeds,', Los Alamos Scientific Laboratory Report LA-51000,1973
    91. Hirt C. W., Amsden A. A. and Cook J.L. "An arbitrary Lagrangian-Eulerian computing method for all flow speed", J, Comput. Phys. 14:227-253, 1974.
    92. Pracht W. E. "calculating three-dimensional fluid flows at all flow speeds with an Eulerian-Lagrangian computation mesh". J. Comput. Phys. 17: 132-159, 1975.
    93. Stein L. R., Gentry R. A. and Hirt C. W. "Computational simulation of transient blast loading on three-dimensional structures", Comput. Meths. Appl. Mech. Engrg., 11: 57-74,1977.
    94. Amsden A. A., Ruppel H.M., et al. SALE-3D: "A simplified ALE computer program for fluid flow at all flow speed". Los Almos Scientific Laboratory, Los Alamos, NM, 1980.
    95. Amsden A. A., Ruppel H.M., et al. SALE-3D: "A simplified ALE computer program for calculating three-dimensional fluid flow", Low Almos Scientific Laboratory, Los Alamos, NM. 1981.
    96. Zhu, M. Yoshida, O. Miyata, H. Aoki, K., "Verification of the Visous Flow-Field Simulation for Practical Hull Forms by a Finite-Volume Method", Proceeding, Sixth Int. Conf. On Numerical Ship Hydrodynamics 1993
    97. Miyata, H., Zhu, M. and Watanabe, O., "Numerical Study on Viscous Flow with Free-Surface Waves about a Ship in Steady Course by a Finite-Volume Method", J. Ship Research, Vol.36. , No.4,pp.332-345, 1992.
    98. Watanabe, O., Zhu, M., and Miyata, H. "Numerical Simulation of a Viscous Flow with Free-Surface Wave about a Ship by a Finite-Volume Method." J. Soc. Nav. Archit. Jpn. 171, 507-
    
    519 1992
    99. Zhu, M., Yoshida, O., Miyata, H. and Aoki, K., "Verification of the Viscous Flow-Fields Simulation for Practical Hull Forms by a Finite-Volume Methods", 6th.Internation Conference on Numerical Ship Hydrodynamics, Iwoa. 1993.
    100. Shen S.F. "Finite-element methods in fluid mechanics", Ann. Rev. Fluid Mech. 9:421-445, 1977.
    101. Norrie D. H., de Vries G. " A survey of the finite element application in fluid mechanics.", Finite Elements in Fluids vol. 3, pp. 363-396. 1978
    102. Berts P. L., Assaat M.I. "Finite element solution of large amplitude water waves", Proceeding, Int Conf. Finite Element in Flow Problems, Banff, Albera, Canada 2: 24-32, 1980.
    103. Sankaranarayanan S, Suresh Rao H. "Finite element analysis of free surface flow through gates", Int. J. Numer. Mech. Fluid 22: 375-392, 1996.
    104. Thomas J.R. Hughes, Wing Kam LIU, Thomas K. ZIMMERMANN, "Lagrangian-Eulerian Finite element formulation for incompressible viscous flows", Comput. Meth. Appl. Mech. Eng. 29: 329-349, 1981.
    105. Liu H. " Numerical simulation of high Reynolds Number Viscous Flow with free surface around an arbitrary body", Ph.D. thesis, Dept. of Naval Architecture & Ocean Engineering, Yokohama National Univ., 1991.
    106. Nakayama T, Mori M. "An eulerian finite element method for time-dependent free surface problems in hydrodynamics", Int. J. Numer. Meth. Fluids 22: 175-194, 1996
    107. Machane R., Canot E. "High-order schemes in boundary element methods for transient nonlinear free surface problems", Int. J. Numer. Meth. Fluids, 24:1049-1072, 1997.
    108. Campana E., Lalli F., Bulgarelli U. "A boundary element method for a non-linear free surface problem", Int. J. Numer. Meth. Fluids, 9: 1195-1206 1989.
    109. Hirt C.W., Nichols B.D, Romero N.C., " SOLA-A Numerical Solution Algorithm for Transient Fluid Flows", Los Alamos Scientific Laboiatory report LA-5852, 1975.
    110. Nichols B. D., Hirt C.W., J. Comput. Phys. VOL 12 234, 1973.
    111. Nichols B. D., Hirt C.W., J. Comput. Phys. VOL 8 434, 1971.
    112. B. D. Nichols and C. W. Hirt, Proceedings First Intern. Conf. Num. Ship Hydrodynamics, Gaithersburg, Md, October 1975.
    
    
    113. J.E.Welch.F.H.Harlow,J.P. Shannon and B.J.Daly“The MAC method”,Los Alamos Scientific Laboratory Rep.LA 3425,1965.
    114. Chan R.K.C,Street R.L.and Strelkoff T.,“Computer study of finite-amphtude water waves”, Tech.Rep.104,Department of Civil Engineering,Stanford University,1969.
    115. Harlow F.H.,Amsden A.A.,Nix J.R.,J.Comput,Phys.20,119,1976.
    116. Torrey M.D.,Mjolsness R.C.,Stein L.R.“NASA-VOF3D:a three-dimensional computer program for incompressible flow with free surface”,Tech.Rep.LA-11009-MS,Los Alamos Nat.Lab.1987.
    117. Norman M.L.,Winkler K.H.,“2-D Eulerian hydrodynamics with fluid interfaces,self-gravity and rotation”,In Astrophysical Radiation Hydrodynamics,ed.K-H Winkler,ML Norman,PP.187-221. New York:Reidet.1986.
    118. Miller G.H.,Puckett E.G.“A high-order Godunov method for multiple condensed phases”,J. Comput.Phys.128:134-164,1996.
    119. Puckea E.G.,Saltzman J.S.“A 3D adaptive mesh refinement algorithm for interfacial gas dynamics”,Physics D 60:84-93. 1992.
    120. Saurel R.,Abgrall R.“A simple method for compressible multifluid flows”SIAM J.Sci Comput.1998.
    121. 李谊乐,刘应中,张怀新,翁剑锋“某些不可压缩分层流的计算”,第十三届全国水 动力学研讨会文集,p287-292,1999。
    122. Nichols B.D,Hirt C.W.Hotchkiss R.S.“SOLA-VOF:A solution algorithm for transient fluid flow with multiple free boundaries”,Tech.Rep.LA-8355,Los Alamos Nat.Lab.1980
    123. Torrey M.D.,Cloutman L.D.,Mjosness R.C.,Hirt C.W.“NASA-VOF2D:a computer program for incompressible flow with free surfaces”,Tech.Rep.LA-101612-MS,Los Alamos Nat.Lab.1985.
    124. Kothe D.B.,Mjolsness R.C.“RIPPLE:A new model for mcompressible flows with free surface”,AIAA J.30:2694-2700,1992
    125. Hirt C.W.,Nichols B.D.“Flow-3D users manual”,Tech.Rep.Flow Sciences,Inc.1988.
    126. Lowry S.A.,Keenan J.A.,Bayyuk A.A.,Demirbilek Z.“ACE-WAVE:an evolving CFD code for modeling waves and wave-structure interaction”,ASME FEDSM 97,1977.
    127. Schumann C.“Computing free-surface ship flows with a Volume-of-Fluid method”,
    
    PRADS’98 Conf.,Dem Haag,1998.
    128. 邹志利,邱大洪,王永学“VOF方法模拟波浪槽中二维非线性波”,水动力学研究与 进展, All,1:93-103,1996.
    129. Wan,DC,Miao,GP and Dai,SQ,“The VOF method for study of Wave Run-up and Breaking on a Sloping Structure”,J.of Hydrodynamics,Ser.B,9(4) ,88-96,1997.
    130. Noh W, Woodward P.“SLIC(simple line interface calculation).”Proceeding,5th Int.Conf. Fluid Dyn.Vol 59,Lect.Notes Phys.Ed.A van de Vooren,P Zandbergen,PP.330-340. Berlin:Springer-Verlag,1976.
    131. Chorin A.J.“Flame Advection and Propagation Algorithms”,J.Comp.Phys.,35,1-11,1980.
    132. Liang P.Y.“Numerical method for calculation of surface tension flows in arbitrary grids”, AIAA J.,29,2:161-167,1991.
    133. Lafaurie B.,Nardone C.,Scardovelli R,Zaleski S.,Zanetti G.“Modelling,merging and fragmentation in multiphase flows with SURFER”.J.Fluid Mech.271:285-310,1994.
    134. Youngs D.L.,“Time-dependent multi-material flow with large fluid distortion”,in K.W.Morton and M.J.Baines(eds.),Numerical Methods for Fluid Dynamics,Academic,New York,PP.273-285,1982.
    135. Pucker E.G.“A volume-of-fluid interface tracking algorithm with applications to computing shock wave refraction”,Proceeding,4th Int.Symp.Comput.Fluid Dyn.Davis,CA,ed.H Dwyer,PP.933-938. 1991.
    136. Parker B.J.,Youngs D.L.“Two and three dimensional Eulerian simulation and fluid flow with material interfaces”,Tech.Rep.UK Atomic Weapons Establ.1992.
    137. Li J.“Calcul d’interface affine par morceaux(piecewise linear interface calculation)CR Acad.Sci.Paris,Ser.lib,320:391-396,1995.
    138. Pucker E.G.,Almgren A.S.Bell J.B.,Marcus D.L.Rider W.J.“A high-order projection method for tracking fluid interfaces in variable density incompressible flows”,J.Comp.Phys., 130,269-282,1997
    139. Ashgriz N.,Poo J.Y.“Flair:Flux Line-Segment Model for Advection and Interface Reconstruction”,J.Comp.Phys.,93:449-468,1991.
    140. Rider W.J..Kothe D.B.“Stretching and tearing interface tracking methods”,AIAA Pap.95-1717,1995.
    
    
    141. Rider W.J., Kothe D.B. "Reconstructing volume interface tracking", J. Comput. Phys. 141:112-152, 1998.
    142. Pilliod J.E. Jr, Puckett E.G. "Second-order accurate volume-of-fluid algorithms for tracking material interface", Tech. Rep. Lawrence Berkeley Nat. Lab., No. LBNL 40744, 1997.
    143. Rudman M. "Volume-tracking methods for interfacial flow calculations", Int. J. Numer. Meth. Fluids 24: 671-691, 1997.
    144. Rudman M. "A volume-tracking method for incompressible multifluid flows with large density variations", Int J. Numer. Mech. Fluids. 1998.
    145. Gueyffier D., Nadim A., Li J., Scardovelli R., Zaleski S. " Volume of fluid interface tracking with smoothed surface stress methods for three-dimensional flows". Submitted for publication, 1998.
    146. 李谊乐, 刘应中,缪国平,“二阶精度的VOF自由面跟踪法”,第十二届全国水动力 学研讨会文集,pp24-29,1998.
    147. Murray R. "Volume-tracking methods for interfacial flow calculations", Int. J. Numer. Meth. Fluids, 24: 671-691 1997.
    148. Adrian R.J. "Particle Image Techniques for Experimental Fluid Mechanics", Ann. Rev. Fluid Mech. 23:261-304, 1991.
    149. Prasad S.K., Adrian R.J. "Stereoscopic particle image velocimetry applied to liquid flows", Experiment in Fluids 15: 49-60 1993.
    150. Gaydon M., Raffel M., Willert C., Rosengar ten M., Kompenhans J. "Hybrid stereoscopic particle image velocimetry", Experiments in Fluids 23: 331-334 1997.
    151. Robinson O., Rockwell D. "Construction of three dimensional image of flow structure via particle tracking techniques", Experiments in Fluids 14:257-270 1993.
    152. Fabry E.P. "3D holographic PIV with a forward-scattering laser sheet and stereoscopic analysis", Experiments in Fluids 24 1998.
    153. Sinha S.K. "Improving the accuracy and resolution of particle image or laser speckle velocimetry", Experiments in Fluids 26: 1988.
    154. Wu Z.Q., Zhu J.H., Chen S., Yang L., Xu H.Q. "An image processing system for quantitatively analyzing the 2-d fluid velocity-field image", Computer Fluids 20,4:359-371, 1991.
    
    
    155. Willert C.E., Gharib M. "Digital particle image velocimetry", Experiments in Fluids 9:181-193 1991.
    156. Barker D.B., Fourney M.E. "Measuring fluid velocities with speckle patterns", opt. Lett. 1. 1977.
    157. Grousson R., Mallick S. "Study of flow patterns in a fluid by scattered laser light", Appl opt. 16 1977.
    158. Alden M., Edner H., Holmsted G. Svanberg S, Hogberg T. "Single-Pulse, Laser-induced of fluorescence in an atmospheric flame", Appl. Opt.,21,7, 1982.
    159. Liu Z..C, Landreth C.C., Adrian R J., Hanratty T.J. "High resolution measurement of turbulent structure in a channel with particle image velocimetry", Exp. In Fluid. 10, 1991.
    160. Adrian R.J. "Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: speckle velocimetry vs. Particle image velocimetry", Appl. Opt. 23: 1690-1690. 1984.
    161. 申功忻,“激光诱导荧光空间流动显示及其应用”,第二届全国实验流体力学会议, 1990。
    162. 马广云,中功忻,“PIV测速技术实验参数分析”,第四届全国实验流体力学会议, 1993。
    163. 张军,徐沽,洪方文等,“随车式PIV系统的初步建立及其首次应用”, CSSRC科技 报告, 1998年12月。
    164. 张军《PIV技术及其在船舶流场研究中的应用》Ph.D.thesis 2000.
    165. 程明道,张军,徐洁等,“随车式PIV系统及其首次应用”,《船舶力学》1999年第一 期。
    166. 徐沽,张军,洪方文等,“应用随车式PIV系统进行潜艇前置导叶周围流动结构测量”, CSSRC科技报告, 1999年6月。
    167. 洪方文,徐洁,张军,“潜艇围壳处的PIV流场测量”,CSSRC科技报告,2000年3 月。
    168. Dong, S.T., Ji Z.Y., Zhou W.X "Pressure distribution determined by using measured velocity field data and RANS equations", J. Hydrodynamics, Ser. B, No. 1 China, 1997.
    169. 赵峰,董世汤,周伟新,张军,“基于LDV测量的物面压力计算方法”,《船舶力学》, 4(4) p1-5. 2000。
    
    
    170. Yamaguchi, T., Yamaguchi, K., Kaga, A., Kondo, A., Inoue, Y., and Kamoi, S., "Combined Technique of PIV and CFD for Flow Field Understanding", (in Japanese), J. of The Visualization Society of Japan. Vol. 16, Suppl. No.2,1996.
    171. Ohwaki, T., Yamaguchi, K., Kaga, A., Inoue, Y, Kondo, A., Shiota, T., "Three Dimensional Flow Field Estimation Using PIV Data and Numerical Fluid Dynamics", J. of The Visualization Society of Japan, Vol. 18, Suppl. No. 1, (in Japanese), 1998.
    172. Sugii, Y, Okuno, T, Nishio, S., "Image Measurement using Governing Equation of Fluid Flow", J. of The Visualization Society of Japan, Vol. 16, Suppl. No.1, (in Japanese), 1996.
    173. Sugii, Y, Okuno, T., Nishio, S., "Image Measurement using Governing Equation of Fluid Flow (2nd report)", J. of The Visualization Society of Japan, Vol. 16, Suppl. No.2, (in Japanese), 1996.
    174. Sugii, Y, Okuno, T., Nishio, S., "Image Measurement using Governing Equation of Fluid Flow (3rd report)", J. of The Visualization Society of Japan, Vol. 17, Suppl. No.2, (in Japanese), 1997.
    175. Yeung, R. W., Vaidhyanathan, M., "Highly Separated Flow Near A Free Surface", Proceeding, International Conf. on Hydrodynamics, Wuxi, China, pp. 118-128,1994.
    176. Wan, D. C., Miao, G. P., Dai, S. Q., "The Study of Flows of Moving Body Near a Free Surface", private communication, 1998.
    177. Yoon, B. S., Jung, R. T. "A Wake Field Control Technique for Blunt body Drag Reduction", Proceeding, China-Korea Marine Hydrodynamics Meeting, Shanghai, China, pp 187-201, 1997.
    178. Hoemer S.F. 《Fluid-Dynamic Drag》 Published by the Author 1958
    179. Wille R. "Karman vortex streets", Adv. Appl Mech. 6:273,1960.
    180. Hyun B.S., Shin YH. "On some characteristics of breaking waves generated by a submerged circular cylinder", Proceeding, 7th Int. Symp on offshore & polar Eng. ISOPE, Honolulu, Hawwaii, USA, May 25-30,1997.
    181. Hyun B.S., Shin YH., Choi K.S. "Visualization of vortical flow around breaking waves generated by a submerged cylinder using PIV", Proceeding, 3rd ICHD, Lotte Hotel, Seoul, Oct 12-15,1998.
    182. 张志荣、洪方文、张军、徐洁等,“入水喷溅及其流场的探索性试验研究”,CSSRC科

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700