拖曳式测量系统剖面运动控制与数据产品制作
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,具备升降运动功能,搭载多种传感器的拖曳系统成为国际先进水平的代表。国家863计划项目“拖曳式多参数剖面测量系统”针对我国海域的具体情况,提出研制具备升降功能的,携带CTD,DO,PH,叶绿素荧光计,浊度计,拖曳式营养盐分析仪等监测设备的拖曳系统。该设备的研制将填补我国在先进拖曳技术领域的空白。
     作为我国第一种具备升降功能的拖曳系统,适合近海使用,具备快速响应、可靠性良好等特点的运动控制技术和适合多参数同步测量,具备联合计算,多源处理,图形化显示等特点的数据产品制作技术是该系统技术中两个重要组成部分。
     本文在拖体动力外型设计基础上,通过对拖缆、拖体运动方程及耦合条件等经典公式分析,利用流体动力试验确定参数等步骤,建立了包含升降速度,抬首速度,拖体深度,俯仰角度等控制变量的拖曳系统运动模型。由于设计拖体适用于近海,运动速度快,系统响应速度与可靠性要求高于轨迹精度要求,因此设计了一种基于PID控制器的波浪运动控制方法,并进行了仿真试验。湖试结果证明该方法能够保证拖体按照预定的深度范围,快速上升下降,完成剖面测量,拖体运动周期稳定、轨迹对称,运动状态平稳。
     拖曳式测量不同于传统的测量方式,拖曳测量数据产品制作方法需要充分体现拖曳式测量数据大范围、准同步的特点。本文从测量数据的获取及原始数据格式的设计入手,研究、设计了拖曳式测量数据采集通讯网络和处理软件,针对采样数据的特点设计了数据产品的关键处理技术和完整制作步骤。将该处理技术的结果与相关测量数据进行了比对,并利用海试数据进行了处理演示。
At present, a towed instrument platform that could "fly" up and down in the water column is in front of the towed technology in the world. The project of towed multiple-parameter profile sampling system, which is supported by 863 high technology plan, will develop a new kind of flying towed system. This system is equipped with CTD sensors as well as a variety of other sensors, such as fluorometer, transmissometer, Do, PH, etc. This system is the first flying towed system of China.
     There are two important parts in the study of the flying towed system. one is appropriate control system, the other is data acquiring and processing system. Because the flying towed system will be used in shallow sea, the control system must be steady and responding quickly. The data acquiring and processing system must be suitable for multiple-parameter quickly sampling, combined calculating, figure displaying.
     In the paper, based on the analysis of hydrodynamic equation about towed system and the results of the hydrodynamic experiment, a motion model of the towed system was built, which includes four variables: heaven rate, pitch rate, depth, pitch angle. To satisfy the demand of stability and quick response of the controller, a PID wave motion controller is designed. The results of computer simulations and real cruising test in Fuxian Lake show that this controller achieves the expected design requirements.
     The towed surveying is different from the traditional surveying. Then, the technology of data acquiring and data processing must be suit for the characters, such as synchronous, associated and so on. To get the towed data, a lusty 485-232 mixed communication net and processing soft were designed. To deal with the data, a full set of processes to calculate and export the data was designed. The data processing system was proved to be scientific and reasonable by contrasting the data product with the seabird 917’s surveying data. At last, a part of sea test data is processed as an example.
引文
[1] http://192.171.163.165/cpr_survey.htm
    [2] J.-G. DESSUREAULT, "BATFISH"A depth controllable towed body for collection oceanographic data [J], Ocean Engng., 1976,3: 99-111
    [3] Morey K.A., and E.L. Mollo-Christensen, Design, development and field trials of a towed instrument glider,Department of Meteorology, Massachusetts Insitute of Technology, Report No.MITSG 76-20, 1976
    [4] F. Dobson, L.Hasse and R.Davis, Air-sea interaction: Instruments and Methods, Plenum Press, New York, 1980(中译本 海—气相互作用仪器与方法,林恢勇等译,海洋出版社,北京,1992,453-468)
    [5] Guildline Instruments, Inc. (1999). “MiniBat guide, MiniBat Miniaturized Towed Instrumentation Platform 8820,” Lake Mary, FL.
    [6] http://www.chelsea.co.uk/
    [7] C.M. Lee, F. Askari, J. Book, S. Carniel, et al., Northern Adriatic response to a wintertime Bora wind event, EOS, 2005,86(16):157-168
    [8] http://www.macartney.com
    [9] http://www.brooke-ocean.com/
    [10] Clifford Funnell, Jane’s underwater technology (Fourth Edition) 2001-2002[M],Coulsdon: Jane’s A Thomson Company, 2001
    [11] Frank Bahr, Paul D.Fucile, Jerome P.Dean, SeaSoar Vehicle Control and Data Acquisition.
    [12] Wataru Koterayama,Taketo Akamatsu Development of towed vehicle for physical and chemical measurement in the ocean upper mixed layer, Proc.of OCEANS’93, Vol.3, 497-502,1993
    [13] W. Koterayama, S.Yamaguchi, M.Nakamura, and a.Mmoriyama, A Numerical study for design of depth, pitch and roll control system of a towed vehicle, Proceedings of the Fourth International Offshore and Engineering Conference, 337-344, 1994
    [14] Abkowitz M A. Stability and motion control of ocean vehicles[M] . MIT Press, 1969, 32 - 50
    [15] 施生达. 潜艇操纵性[M] . 北京:国防工业出版社, 1995 , 220 - 229.
    [16] Chapman D A. The adjustment of fin size to minimise the ship induced pitching motion of a towed fish[J ] . Ocean Engineering , 1984 , 11 (1) : 23 - 64
    [17] Ohkusu M,Kashiwagi M,Koterayama W. Towed vehicle の动力学に关する基础的研究[J ] . 日本造船学会论文集, 1987 , 162 : 99 - 109
    [18] Yamaguchi S, Yokobiki T, Koterayama W. Field experiments on motion control systems of the towed vehicle‘Flying Fish’[A]. Proc. of the eighth int. offshore and polar eng. conf. , Montreal, Canada[C]. 1998, 2: 271- 276
    [19] Aage C , Smitt LW. Hydrodynamic maneuverability data of a flatfish type AUV[A]. Proceedings of OCEANS’94[C]. Brest, France, 1994, 3: 425-430
    [20] 楼连根,黄国梁,邬昌汉. 水平面大振幅平面运动机构用于水下运载体水动力系数的研究[J ]. 海洋工程, 1993, 11 (2): 8-14.
    [21] Sahin I, Crane J W, Watson K P. Application of a panel method to hydrodynamics of underwater vehicles[J] . Ocean Engineering, 1997, 24(6): 501 – 512
    [22] Hess J L, Smith AMO. Calculation of nonlifting potential flow about arbitary three2dimensional bodies[J]. Journal of Ship Research, 1964, 8(2): 22–44
    [23] Nahon M. A simplified dynamics model for autonomous underwater vehicles[A]. Proceedings of the 1996 symposium on autonomous underwater vehicle technology[C]. Monterey, CI, USA, 1996, 373–379
    [24] Hoerner S F. Fluid2dynamic drag[M]. Published by the Author. 1965, 3-1 to3-28.
    [25] Wu Jiaming, Chwang A T. Investigation on a two2part underwater maneuverable towed system[J]. Ocean Engineering, 2001, 28(8): 1079- 1096
    [26] Sanders J V. A three2dimensional dynamic analysis of a towed system[J ] . Ocean Engrg. 1982. 9(5) :483-499
    [27] Delmer T N , Stephens T C , Coe J M. Numerical simulation of towed cables[J ] . Ocean Engrg. 1983 ,10(2) :119-132
    [28] Ablow C M,Schechter S. Numerical simulation of undersea cable dynamics[J ] . Ocean Engrg. 1983 ,10(6) :443-457
    [29] Y Sun , J WLeonard , R B Chiou. Simulation of unsteady oceanic cable deployment by direct integration with suppression[J ] . Ocean Engrg. 1994 ,21. 3 :243-256
    [30] Cannon T C , Genin J . Dynamic behavior of a materially damped flexible towed cable [J]. Aeronautical Quarterly, 1972, 23: 109-120
    [31] Irvine H M, Caughey T K. The linear theory of free vibrations of a suspended cable[A]. Proceedings of royal society of london, series,A, 1974, 341:299–315
    [32] Leonard J W, Recher W W. Nonlinear dynamics of cables with low initial tension[J]. Journal of the Engineering Mechanics Division, ASCE. 1972, 98 (EM 2): 293–309
    [33] Ma D, Leonard J. Slack2elasto2plastic dynamics of cable systems[J]. Journal of the Engineering Mechanics Division ASCE. 1979, 105. (EM2): 207–222
    [34] Walton T S, Polachech H. Calculation of transient motion of submerged cables[J]. Mathematics of Computation, 1960, 14:27–46
    [35] Delmer T N, Stephen T C, Tremills J A. Numerical simulation of cable2towed acoustic arrays[J]. Ocean Engineering, 1988,15(6): 511- 548
    [36] 朱克强, 李道根, 李维扬,海洋缆体系统的统一凝集参数时域分析法[J],海洋工程,2002, 20(12): 100-104
    [37] 顾懋祥,邵建南.拖曳系统动力学计算[J].舰船性能研究, 1988, (3):31- 43
    [38] Milinazzo F, Wilkie M, Latchman SA. An efficient algorithmfor simulating the dynamics of towed cable systems[J]. Ocean Engineering, 1987, 14(6) :513-526
    [39] 李力波. 海下缆索系统运动的动力学模拟[J].中国造船, 1989,(4):33-44
    [40] 李英辉,李喜斌,戴杰,庞永杰,徐玉如. 拖曳系统计算中拖缆与拖体的耦合计算. 海洋工程,2002,Vol.20,No14:37-42
    [41] 廖世俊,顾云冠,朱继懋, 6000m 深海拖曳系统动力响应计算[J],海洋工程,1995, 13(2): 31-37
    [42] 张潞怡,朱继懋, 深海拖曳系统运动响应的理论研究[J],海洋学报,1997, 19(2): 99-106
    [43] 朱克强,海洋高速拖曳系统的流体动力分析[J],中外船舶科技,2000,2:21-26
    [44] C. Lambert, M. Nahon, B. Buckham , M. Seto,Dynamics and control of towed underwater vehicle system, part II: model validation and turn maneuver optimization[J],Ocean Engineering,2003,30:471–485
    [45] D.A. Chapman, The adjustment of fin size to minimize the ship induced pitching motion of a towed fish[J], Ocean Engn, 1984, 11(1): 23-64
    [46] Koterayama W,Kyozuka Y, Nakamura M, Ohkusu M and Kashiwagi M, The motion of a depth controllable towed vehicle[C], Proc of the seventh international conference on offshore mechanics and arctic engineering,1988, 1: 423-430
    [47] Wataru Koterayama,Satoru Yamaguchi,takashi Yokobiki, Jong-Hwan Yoon and Hideaki Hase. Space-continuous measurements on ocean current and chemical properties with the intelligent towed vehicle“Flying Fish”[J], IEEE Journal of Oceanic Engineering, 2000,25(1):130-138
    [48] Masahiko Nakamura , Hiroyuki Kajiwara , Wataru Koterayama ,Develop-ment of an ROV operated both as towed and self-propulsive vehicle[J],Ocean Engineering , 2000, 28:1–43
    [49] Giampiero Campa, Jacqueline Wilkie, Mario Innocenti, Robust Control and Analysis of a Towed Underwater Vehicle[J], International Journal of Adaptive Control and Signal Processing, 1998,12:689-716
    [50] Hye-Young Kim and Craig A. Woolsey , Directional control of a streamlined underwater vehicle by feedback passivation[C], 2004 American Control Conference, Boston, MA, July 2004: 2998–3003
    [51] ARATA KANEKO, NORIAKI GOHDA, WATARU KOTERAYAMA, MASAHIKO NAKAMURA, SHINJIRO MIZUNO and HIROHITO FURUKAWA,Towed ADCP Fish with Depth and Roll Controllable Wings and Its Application to the Kuroshio Observation[J], Journal of Oceanography, 1993, 49: 383-395
    [52] John Dalen, Kjell Nedreaas, Ronald Pedersen , A comparative acoustic-abundance estimation of pelagic redfish (Sebastes mentella) from hull-mounted and deep-towed acoustic systems[J], Journal of Marine Science, 2003,60: 472–479
    [53] Wataru Koterayama,Satoru Yamaguchi,takashi Yokobiki, Jong-Hwan Yoon and Hideaki Hase. Space-continuous measurements on ocean current and chemical properties with the intelligent towed vehicle“Flying Fish”[J], IEEE Journal of Oceanic Engineering, 2000,25(1):130-138
    [54] Raymond Pollard, Frontal surveys with a towed profiling conductivity / temperature/depth measurement package(SeaSoar)[J], Nature, 1986, 323(6087): 433-435
    [55] Gwyn Griffiths, R.T.Pollard, Modern tools for upper ocean surveys[J], Journal of Naval Science, 1993,18(1): 66-80
    [56] Huntley, M.E., M. Zhou and W. Nordhausen, Mesoscale distribution of zooplankton in the California current in late spring, observed by Optical Plankton Counter[J], Journal of Marine Research, 1995, 53:647 – 674
    [57] T. M. Dillon, J. A. Barth, A. Y. Erofeev, G. H. May, H. W. Wijesekera,MicroSoar: A New Instrument for Measuring Microscale Turbulence from Rapidly Moving Submerged Platforms[J], Journal of Atmospheric and Oceanic Technology, 2003,20(11):1671–1684
    [58] 夏达英,王振先,张士魁,光学后向散射法在海洋现场探测[J],海洋湖沼通报,1997,2:1-7
    [59] 夏达英,王振先,朱儒弟,等. 用于海洋探测的多参数拖曳荧光计系统[J] . 海洋工程, 1999 , 17(1) : 98 – 105
    [60] Paul Fucile, Allan Gordon,Frank Bahr and Jerome Dean, Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole,MA 02543; USA (508)548-1400
    [61] Rudnick, D. L. and R. Ferrari, 1999: Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science, 283, 526-529
    [62] Ferrari, R. and D. L. Rudnick, 2000: Thermohaline variability in the upper ocean. J. Geophys. Res., 105, 16,857-16,883
    [63] Rudnick, D. L., and J. R. Luyten, 1996: Intensive surveys of the Azores Front, 1, Tracers and dynamics. J. Geophys. Res., 101, 923-939
    [64] Rudnick, D. L., 1996: Intensive surveys of the Azores Front, 2, Inferring the geostrophic and vertical velocity fields. J. Geophys. Res., 101, 16,291-16,303
    [65] Rudnick, D. L., and R. E. Davis, 1988: Frontogenesis in mixed layers. J. Phys. Oceanogr., 18, 434-457
    [66] Rudnick, D. L., and R. E. Davis, 1988: Mass and heat budgets on the northern California continental shelf. J. Geophys. Res., 93, 14013- 14024
    [67] Eriksen, C. C., R. A. Weller, D. L. Rudnick, R. T. Pollard, and L. A. Regier, 1991: Ocean frontal variability in the Frontal Air-Sea Interaction Experiment. J. Geophys. Res., 96, 8569-8591
    [68] Rudnick, D. L., and R. A. Weller, 1993: The heat budget in the North Atlantic subtropical frontal zone. J. Geophys. Res., 98, 6883-6893
    [69] Nahajima T, Motora S , Fujino M. On the dynamic analysis of multi2component mooring lines[A] . Proc. of the 14th offshore technology,conference , Houston , Texas , USA , OTC Paper 4309[C] . 1982 , 105 – 121
    [70] Boom V D. Dynamic behaviour of mooring lines , Behaviour of Offshore Structures[A] . (ed. Battjes , JA) Elsevier Science Publishers,B. V. , Amsterdam[M] . 1985 , 359 – 368
    [71] Koterayama W, Kyozuka Y, Nakamura M, Ohkusu M, Kashiwagi M. The motion of a depth controllable towed vehicle[A] . Proc. Of the seventh international conference on offshore mechanics and arctic engineering[C]. Houston, USA, 1988 , 1:423–430
    [72] Huang S. Dynamic analysis of three - dimensional marine cables[J]. Ocean Engineering, 1994, 21(6) : 587–605
    [73] 王延东. 变长度缆的水动力分析[J] . 中国海洋平台, 1998 , 13(3): 19–21
    [74] B.И 叶果洛夫,水下拖曳系统,北京:海洋出版社,1988,113-126
    [75] 易杏甫,王岩峰,王成等,海洋监测拖曳系统中拖缆导流套设计,海洋工程,2005,23(4),97-101
    [76] Sname,Nomenclature for Treating the Motion of a Submerged Body Through a Fluid. The Society of Naval Architects and Marine Engineers, Technical and Research Bulletin No. 1-5, 1-15,1950
    [77] D. F. Myring. A theoretical study of body drag in subcritical axisymmetric flow. Aeronautical Quarterly, 27(3):186–194, 1976
    [78] Michael S. Triantafyllou. Maneuvering and control of surface and underwater vehicles. Lecture Notes for MIT Ocean Engineering Course 13.49, 1996. 25, 26
    [79] Sighard F. Hoerner and Henry V. Borst. Fluid Dynamic Lift. Published by author, second edition, 1985. 30, 31, 99
    [80] Timothy Prestero,Verification of a Six-Degree of Freedom Simulation Model for the REMUS Autonomous Underwater Vehicle. in partial fulfillment of the requirements for the degrees of Master of Science in Ocean Engineering and Master of Science in Mechanical Engineering at the MASSACHUSETTS institute of technology and the woods hole Oceanographic institution, September 2001
    [81] 秦再白, 孙俊岭, 戴杰等.拖曳式多参数测量系统流体动力试验报告: 苏玉民. 哈尔滨: 哈尔滨工程大学, 2003. 1—18
    [82] 李天森,鱼雷操纵性,北京:国防工业出版社,1999,144-148
    [83] Karl, David, Luis Tupas, Fernando Santiago-Mandujanu, Craig Nosse, Dale Hebel, Eric Firing and Roger Lukas. 1996. Hawaii Ocean Time-Series Data Report 7:1995, SOEST 96-09, University of Hawaii
    [84] UNESCO. 1988. The acquisition, calibration and analysis of CTD data. A report of SCOR WG 51. Tech. Pap. Mar Sci., 54: 59pp. UNESCO, 1991. Processing of Oceanographic Station Data, JPOTS Editorial Panel
    [85] 陈翰馥,郭雷, 现代控制理论的若干进展及展望.科学通报.Vol.43,No.1,专题评述
    [86] 韦巍,蒋静坪, 基于多神经网络的机器人轨迹学习控制研究. 浙江大学学报.July.1997,Vol.31 No.4,505-511
    [87] 缪泉明,顾懋祥,李定,人工神经网络控制器在水下无人运载器导航中的应用。中国造船。Aug.1995,Vol.134,No.3,23-28
    [88] 王宁,神经元控制与两种优化控制方法的比较。仪器仪表学报。Feb.1995,Vol.16,No.1,26-31
    [89] 彭良,卢迎春,万磊,孙俊岭,水下智能潜器的神经网络运动控制。海洋工程。May.1995,Vol.13,No.2,38-46
    [90] 张 潞 怡 , 朱 继 懋 , 深 海 拖 曳 系 统 运 动 响 应 的 理 论 研 究 . 海 洋 学报.March.1997,Vol.19 No.2,99-106
    [91] 赵超,申学仁,周凤岐,飞行轨迹控制系统的 LQG/LTR 设计.南京航空航天大学学报. Feb.1998, Vol.30 No.1,22-27
    [92] 李占明,刘丽华,陈希平, H 2 /H∞组合控制器设计方法.甘肃工业大学学报. Sept.1995,Vol.21 No.3,87-91
    [93] 贾 欣 乐 , 张 显 库 , H ∞控 制 器 应 用 于 船 舶 自 动 舵 . 控 制 与 决策.May.1995,Vol.10 No.3,250-254
    [94] 费树岷,霍伟,非线性系统的输出反馈鲁棒 H ∞控制。北京航空航天大学学报。July.1995,Vol.21 No.3,96-101
    [95] 陈跃鹏,姚波,张庆灵,广义系统 H ∞控制.辽宁大学学报.2001,Vol.28 No.4,305-309
    [96] 贾欣乐,朱利民,蒋丹东,张显库,杨承恩, 人工神经网络和 H ∞优化控制用于航迹舵的实现研究.中国航海.1998,Vol.2 No.43,60-68
    [97] 张 汉 全 , 一 种 改 进 的 H ∞鲁 棒 自 校 正 控 制 。 自 动 化 学 报 。Mar.1995,Vol.21,No.2, 162-169
    [98] 梁军,杜丽,自适应控制系统鲁棒性研究评述。信息与控制。June。1998,Vol. 27,No. 3,197-205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700