SEE复杂系统技术与环境规划方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文进行了社会-经济-环境(Social Economic Environmental,SEE)复杂系统描述与评价、预测与优化等技术的研究和环境规划方法的研究,其目的在于提高规划对社会经济环境协调发展全面、科学和可行的指导作用,主要工作如下。首先,进行了SEE复合系统复杂性定位。研究了SEE复合系统内诸要素间的相关性和作用关系的复杂性,明确了SEE复合系统是个远离平衡态的、非线性的、开放的复杂系统。因而,SEE复合系统有着复杂系统兼具平衡结构和耗散结构的系统结构特征,以及输入与输出的响应关系有时超出人们经验的、定性的认识范围的反直观性和结果的不确定性的系统行为特征。
     其次,针对SEE复杂系统的结构和行为特征,进行了系统描述与评价、预测与优化等复杂系统技术研究和规划方法研究。
     (1)针对SEE复杂系统的反直观性和不确定性行为特征,提出了以下定量化模型方法:
     提出了SD-IO-MOP整合模型。SD-IO-MOP模型以SD模型为基础,以MOP模型为优化取值支持系统,以IO模型为经济子系统详细分析和资源需求精确预测的工具,该模型可以完整地描述SEE系统,反映系统中任一关键要素变动对系统整体所产生的影响;模型中考虑了地区经济结构发展的趋势性和稳定性,设计了当地决策集团和专家意见的入口。以SD-IO-MOP整合模型为工具进行规划优化决策,可提高规划的科学性、可行性和可操作性,并能够保证所选规划方案的优化程度,因此,该模型适于解决社会、经济、环境协调发展的规划优化决策问题。
     开发了SD-IO整合模型,用于SEE复杂系统状态评价,保证了评价程序的客观性和评价结论的正确性。评价内容针对性强,以约束系统发展的瓶颈因素为主要评价对象,保证了评价工作的时效性,可以为规划优化提供及时、准确的决策支持。
     开创性地将能值分析方法应用于SEE复杂系统规划研究。以能值分析方法为工具进行以社会服务为主型区域的SEE复杂系统状态评价,在不降低评价结果正确性的前提下,提高了该方法的时效性,改变了目前能值分析方法只能用于当前状态或历史状态评价的局限,拓展了能值分析理论与方法的应用领域。
     开发了ISMOP优化模型建立和求解技术,用于解决SEE复杂系统中的不确定问题,提高了规划的精度和可操作性。
     (2)针对SEE复杂系统的非平衡态结构特征,提出了以下SEE复杂系统的研究思路及相应的模型方法。
     提出了宏观、整体、微观三个层次的SEE复杂系统预测模式,揭示了宏观结构趋势分析预测的重要作用。该模式规避了目前SEE复杂系统模拟预测模型多建立在系统现有结构基础之上,而不考虑系统宏观结构改变对系统未来发展可能产生重大影响的不足,从而保证了预测结果的正确性。
     原创性地提出了经济联系强度的分形特征,进行了理论模型推导,将经济联系强度分形特征应用于区域宏观结构评价和趋势分析中,可以得到对区域资源高效利用的结构调整建议。
     通过数学模型推导,验证了SD方法应用于具有整体涌现特征的SEE复杂系统模拟的有效性,丰富了SD方法理论体系。
     最后,将以上SEE复杂系统描述与评价、预测与优化等技术和环境规划方法应用于“天津市水资源可持续利用规划”、“临空产业区水资源规划”和“生态校园规划”研究中,取得了满意的效果,验证了以上理论的正确性、方法的有效性和技术的可行性。实践证明了在SEE复杂系统背景下进行全局的优化调控策略设计与规划方案制定是实现社会经济与资源环境全面、协调、可持续发展的正确途径。
To provide a comprehensive, scientific and practical planning that is necessary for the regional coordinate development amongst society, economy and environment, this thesis conducts the research on the description, evaluation, forecast and optimization technologies of the social-economic-environmental (SEE) complex system, as well as the environmental planning method. The contents of the thesis are organized as follows.
     First, SEE system is oriented as a complexity system reflecting the mutual and complicated functions amongst the internal elements, which can be characterized by the complicated system structure properties far from balance status and with dissipation structures, as well as the behaviors of which the input-output response shows uncertainty that beyond people’s experiential and qualitative cognition.
     Secondly, against the complicated structures and behaviors of the complex system, the technologies of description, evaluation, prediction and optimization for SEE system are developed.
     (1) According the counter-intuition and uncertainty characteristics of SEE complex system, the following quantitative models and methods are presented: SD-IO-MOP integrated model is established, which is based on the SD model, combined with the MOP model as the optimization supported system to get values and the IO model as instrument of extract forecasting of the resources demand of SEE. The model can describe the system as a whole and reflect the impacts to the system of all key elements considering the trend and stability of the regional economic structural development with the entrance for the local decision-making groups and expert, thus can be regarded as a useful tool in making optimal decision in a planning research for improvement feasibility and maneuverability of the plan as well as guarantee the optimization level of the selected plan.
     The SD-IO integrated model is constructed for SEE evaluation that ensures the objectivities of the evaluation procedures, accuracy of the evaluation results, and properness and timing of the conclusions.
     The emergy analysis is combined to the SEE planning research for evaluation the state of SEE complex system, which is characterized by social service-oriented function. In the precondition of guaranteeing the correctness of the evaluation results, this study expended the range of emergy analysis from the current method or history state to the future state of the plan level year.
     ISMOP model is also provided to dealing with the uncertainty of SEE complex system and improved the precision and feasibility of the plan design.
     (2) According the dissipation structures of the SEE complex system, the following quantitative models and methods are also presented: The importance of macro structure analysis is revealed, based on which a three-step mode of SEE complex forecasting is proposed in the macro, whole and micro aspects, avoiding the prevalent mode shortcomings that ignore the effect of the macro structure changes to the SEE complex system and guarantee the correctness of the forecasting result.
     The fractal characteristic of regional economic relation intensity in the typical areas is illuminated with theoretical models and logical derivation, which has been applied to the regional macro-structure assessment and trend analysis amongst cities and counties, resulting in useful suggestions for regional high-efficient resource utilizations.
     The effectiveness of SD method is proved in describing and forecasting the emergence of SEE complex system, thus enriching the SD theoretical framework.
     Finally, the technologies and methods mentioned above are applied to the project of“Sustainable utilization planning of the water resources in Tianjin city”,“Water resources planning in the Linkong industrial area of Tianjin city”, and“Eco-campus plan”. The results are reasonable and further verify that the proposed technologies and methods are effective and valuable for practical global optimized planning and optimization in accordance with the comprehensive, coordinate, sustainable development of the economy, resources and society.
引文
[1]郭怀成,尚金城,张天柱.环境规划学[M].北京:高等教育出版社, 2001,7.
    [2]张雪花.在区域国民经济和社会发展“十一五”规划中体现资源价值与环境的成本探讨[C].中国环境保护优秀论文集, 2005.
    [3]钱学森,于景元,戴汝为.一个科学的新领域——开放的复杂巨系统及其方法论[J].自然杂志, 1990, 13(1): 3-10.
    [4]刘小平,黎夏,叶嘉安.基于多智能体系统的空间决策行为及土地利用格局演变的模拟[J].中国科学: D辑, 2006, 36(11): 1027-1036.
    [5]金士尧,吴集,黄红兵.基于复杂系统的公众科学素养仿真及对策研究[J].系统仿真学报, 2006, 18(12): 3498-3502.
    [6]刘西林,刁力,陈红捷.高新区创新网络可持续发展的协调性研究[J].科学管理研究, 2006, 24(6): 17-19.
    [7]苏方国.基于复杂系统观的战略管理[J].企业经济, 2007(6): 74-75.
    [8]赵建伟,周洲,邹定玉等.复杂系统飞机飞行品质等效方法研究[J].计算机仿真, 2006, 23(12): 70-73.
    [9]刘康,李团盛.生态规划——理论、方法与应用[M].北京:化学工业出版社, 2004.
    [10] Meadows DL, Meadows DH. Toward Global Equilibrium: Collected Papers[M]. Cambridge, Mass: Wright-Allen Press, 1973.
    [11] Mashayekhi AN. Rangelands destruction under population growth: the case of Iran[J]. System Dynamics Review, 1990(6): 167–93.
    [12] Saeed K. Development Planning and Policy Design: A System Dynamics Approach[M]. Brookfield: Avebury, 1994.
    [13] Bach NL, Saeed K. Food self-sufficiency in Vietnam: a search for a viable solution[J]. System Dynamics Review, 1992(8): 129–48.
    [14] H. C. Guo, L. Liu, G. H. Huang, et al. A system dynamics approach for regional environmental planning and management: A study for the Lake Erhai Basin[J]. Journal of Environmental Management, 2001, 61(1): 93–111.
    [15] Mark B. Bain, Amy L. Harig, Daniel P Loucks, et al. Aquatic ecosystem protection and restoration: advances in methods for assessment and evaluation[J]. Environmental Science & Policy, 2000, 3(1): 89–98.
    [16] Sibel Mansuroglu, Veli Ortacesme, Osman Karaguzel. Biotope mapping in an urban environment and its implications for urban management in Turkey[J]. Journal of Environmental Management, 2006, 81(3): 175–187.
    [17]胡玉奎.系统动力学——战略与策略实验室[M].杭州:浙江人民出版社, 1987: 2..
    [18] Barbosa P.S.F, Pricilla R.P. A linear programming model for cash flow management in the Brazilian construction industry[J]. Journal of Planning Literature, 2002(16): 339–492.
    [19] Babeyan Koopaei K., Ervine D.A., Pender, G. Field measurements and flow modeling of over bank flows in River Severn, UK[J]. Journal of Environmental Informatics, 2003(1): 28–36.
    [20] Abrishamchi A., Marino M.A., Afshar A. Reservoir planning for irrigation district[J]. Journal of water Resources Planning and Management, 1991(117): 74–85.
    [21] Haung G. H. A hybrid inexact-stochastic water management model[J]. European Journal of Operational Research, 1998(107): 137-158.
    [22] Guo H.C., Liu L., Huang G.H. A stochastic water quality forecasting system for the Yiluo River[J]. Journal of Environmental Informatics, 2003, 1(2): 18–32.
    [23] Tairaj P.G., Vedula S. Multi reservoir system optimization using fuzzy mathematical programming[J]. Water Resources Management, 2000(14): 457–472.
    [24] Huang G.H. IPWM: An interval-parameter water quality management model[J]. Engineering Optimization, 1996(26): 79–103.
    [25] I. Maqsood, G.H. Huang, J.S. Yeomans. An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty[J]. Eur J Oper Res, 2005(167): 208–225.
    [26]钱学森.要从整体上考虑并解决问题[N].人民日报, 1990, 12.
    [27] Alice.“坚持有所为,有所不为”专访天津防织工业大学校长张宏伟[J].中国纺织, 2004(10): 51-52.
    [28]钱学森.社会主义现代化建设的科学和系统工程[M].北京:中共中央党校出版社, 1987.
    [29]钱学森.创建系统学[M].太原:山西科学技术出版社, 2001.
    [30]于长官.现代控制理论[M].哈尔滨:哈尔滨工业大学出版社, 1997.
    [31]李媛,李红星,张益农等.论复杂系统的稳定性[J].北京联合大学学报(自然科学版), 2006(12): 12-14.
    [32] Donella H. Meadows, Jorgen Randers, Dennis L. Meadows. Limits to Growth: The 30-Year Update[M]. Chelsea: Green Publishing Company, 1972.
    [33]德内拉.梅多斯等著,李涛,王智勇译.增长的极限[M].北京:机械工业出版社, 2006.
    [34]钱学敏.钱学森关于复杂系统与大成智慧的探索-谨以此文祝贺钱老95寿辰[J].北京联合大学学报(自然科学版), 2006(12): 5-11.
    [35] L.V.Bertalanffy. Problems of Life[M]. London: Watts, 1952.
    [36] L.V.Bertalanffy. Modern Theories of Development[M], London: Oxford University Press, 1933.
    [37]冯.贝塔朗菲著,林康义,魏宏森等译.一般系统论-基础,发展和应用[M].北京:清华大学出版社, 1987.
    [38]戴汝为.复杂性科学研究重在应用[N].光明日报, 2005-12-26.
    [39]钱学森.人体科学与现代科学技术发展纵横观[M].北京:人民出版社, 1996.
    [40]钱学森,许国志,王寿云.组织管理的技术-系统工程[N].文汇报, 1979-7-27..
    [41]钱学森.论系统工程[M].长沙:湖南科技出版社, 1988.
    [42]钱学森.论地理科学[M].杭州:浙江教育出版社, 1994.
    [43]王寿云.开放的复杂巨系统[M].杭州:浙江科技出版社, 1996.
    [44]王其藩.系统动力学[M].北京:清华大学出版社, 1985.
    [45]贾仁安,涂国平,陆伟锋等.用系统动力学研究复杂系统问题的方法论及其功能[C].西部开发与系统工程-中国系统工程学会第12届年会论文集, 2002.
    [46] M. SEEge. The fifth discipline-The art and practice of the Learning Organization[M]. Century Business, 1993.
    [47]贾仁安.系统动力学教程[M].南昌:江西人民出版社, 1992.
    [48]于景元.钱学森综合集成体系[J].西安交通大学学报:社会科学版, 2006(11): 40-47.
    [49]苗东升.系统科学精要[M].北京:中国人民大学出版社, 1998.
    [50]英百科全书, http://tw.britannica.com, ? 2005 Encyclop?dia Britannica, Inc.
    [51] John H. Holland. Emergence[M]. London: Oxford University Press, 1998.
    [52]约翰.霍兰著,陈禹等译.涌现-从混沌到有序[M].上海:上海科技出版社, 2001.
    [53]马世骏,王如松.社会经济自然复合生态系统[J].生态学报, 1984, 4(1): 1-9.
    [54]. Moffatt I, Hanley N, Modelling sustainable development: Systems dynamic and input-ouput approaches[J]. Environmental Modelling & Software, 2001,16 (6): 545-557.
    [55] Shincheng Yeh, Chaoan Wang, Huiching Yu. Simulation of soil erosion and nutrient impact using an integrated system dynamics model in a watershed in Taiwan[J]. Environmental Modelling & Software, 2006(21): 937-948.
    [56] Fletcher E. J. The use of system dynamics as a decision support tool for the management of surface water resources[C]. Proceedings, First International Conference on New Information Technologies for Decision-Making in Civil Engineering, Montreal, 1998.
    [57] Ford A. Modeling the environment: An introduction to system dynamics modeling of environmental systems [M]. Washington: Island Press, 1999.
    [58] Li L, Simonovic S.P. System dynamics model for predicting floods from snowmelt in North American prairie watersheds [J]. Hydrological Processes Journal, 2002(16): 2645-2666.
    [59]钱学森.关于国民经济核算体系[J].统计工作简报, 1988(40):1-2.
    [60] L.V.Bertalanffy. General System Theory: Foundations, Development, Applications[M]. New York: George Braziller, Inc, 1973.
    [61]鲁森斯.组织行为学[M].北京:人民邮电出版社, 2003.
    [62] M.M. Jiang, J.B. Zhou, B. Chen, et al. Emergy-based ecological account for the chinese economy in 2004[J]. Communications in Nonlinear Science and Numerical Simulation, 2007, 4(28): 17.
    [63] B. Chen, G.Q. Chen. Exergy analysis for resource conversion of the Chinese Society 1993 under the material product system[J]. Energy, 2006(31): 1115–1150.
    [64]陈效逑,赵婷婷,郭玉泉等.中国经济系统的物质输入与输出分析[J].北京大学学报, 2003, (4): 538-547.
    [65] Hongyi Chen, Dundar F. Kocaoglu. A sensitivity analysis algorithm for hierarchical decision models[J]. European Journal of Operational Research, 2008(185): 266-288.
    [66]徐崇刚,胡远满等.生态模型的灵敏度分析[J].应用生态学报, 2004, 15(6): 1056-1062.
    [67]吕永龙,王如松.城市生态系统的模拟方法:灵敏度模型及其改进[J].生态学报, 1996, 16(3): 308-313.
    [68]代富强,李新运,郑新奇.城市适度人口规模的“可能-满意度”(P-S)分析-以济南市为例[J].山东师范大学学报, 2006, 21(1): 104-105.
    [69]张瀛,王浣尘.上海市合理人口规模研究[J].管理科学学报, 2003, 6(2): 1-11.
    [70]史树中.诺贝尔经济学奖与数学[M].北京:清华大学出版社, 2002.
    [71]钟契夫.投入产出分析:修订本[M].北京:中国财政经济出版社, 1997.
    [72]曾力生.关于投入产出模型的比较静态分析-兼评Woods定理之误[J].数量经济技术经济研究, 2000(12): 25-29.
    [73]邱丕群,郁广健.西部地区间投入产出模型及应用研究[J].统计与决策, 2005(4): 4-6.
    [74]赵新良.动态投入产出[M].沈阳:辽宁人民出版社, 1988.
    [75]钟契夫.投入产出分析[M].北京:中国财政经济出版社, 1987.
    [76]葛仁良,魏雪君.广东专利投入产出效率的实证分析[J].统计与决策, 2005(3): 108-109.
    [77]赵新良.动态投入产出[M].沈阳:辽宁人民出版社, 1988.
    [78]雷明.绿色投入产出核算-理论与应用[M].北京:北京大学出版社, 2000.
    [79]李强,刘起运.当代中国投入产出实证与探新[M].北京:中国统计出版社, l995.
    [80]张兰生,周福祥.实用环境经济学[M].北京:清华大学出版社, 1992.
    [81]任泽平.投入产出乘数模型与其扩展方法[J].山西财经大学学报, 2006, 28(3): 16-21.
    [82]卢昌均,玄慧颖.利用系统动能学建立可行性分析模型[J].大连海事大学学报, 2006, 32(2): 59-61.
    [83]王其藩.系统动力学[M].北京:清华大学出版社, 1988.
    [84]王其藩.高级系统动力学[M].北京:清华大学出版社, 1995.
    [85]张雪花.沿海开放城市生态环境规划方法与应用研究-以秦皇岛市为例[D].北京大学硕士论文, 2000.
    [86]王其藩.系统动力学[M].北京:清华大学出版社, 1985.
    [87] Coyle R G. System Dynamics Modeling: A Practical Approach[M]. London: Chapman & Hall, 1996.
    [88] Forrester, J. W. Industral Dynamice[M]. Cambridge: MIT press, 1961.
    [89] Forrester J W. Urban Dynamics[M]. Cambridge: MIT Press, 1969.
    [90] Wu S M, Huang G H, Guo H C. An interactive inexact-fuzzy approach for multiobjective planning of water resources systems[J]. Water Science and Technology, 1997, 36(5): 235–242.
    [91] H. C. Guo, L. Liu, G. H. Huang, et al. A system dynamics approach for regional environmental planning and management: A study for the Lake Erhai Basin[J]. Journal of Environmental Managemen, 2001(61), 93–111.
    [92]郭怀成,徐云麟,邹锐.不完备信息条件下流域环境系统规划方法研究[J].环境科学学报, 1999, 19(4): 421-426.
    [93]张雪花,郭怀成,张宝安.系统动力学-多目标规划整合模型在秦皇岛市水资源规划中的应用[J].水科学进展, 2002, 13(3): 351-357.
    [94] Liu L, Huang G H, Fuller G A, et al. A dynamic optimization approach for nonrenewable energy resources management under uncertainty[J]. Journal of Petroleum Science and Engineering, 2000, 26(5): 301–309.
    [95] Forrester J W. Principles of Systems[M]. Cambridge: Wright-Allen Press, 1968.
    [96] Kenneth W. Able , Thomas M. Grothues. An approach to understanding habitat dynamics of flatfishes: Advantages of biotelemetry[J]. Journal of Sea Research, 2007, 58(7): 1-7.
    [97] Christian Krotscheck, Michael Narodoslawsky. The Sustainable Process Index A new dimension in ecological evaluation[J]. Ecological engineering, 1996(6): 241-257.
    [98] John Gutrich, Deanna Donovan, Melissa Finucane, et al. Science in the public process of ecosystem management: lessons from Hawaii, Southeast Asia, Africa and the US Mainland[J]. Journal of Environmental Management, 2005(8): 197-209.
    [99]钱易.发展循环经济实现“三赢”[N].中国日照, 2004-5-26.
    [100]王文中.循环经济认知误区的实证分析[J].生态经济, 2006(4): 94-98.
    [101] WERNER H. Some Remarks on the System of Integrated Environmental and Economic Accounting of the United Nations [J]. Ecological Economic, 1999, (29): 329-336.
    [102]钟定胜.绿色国民经济核算的理论问题探讨[J].中国软科学, 2006(2): 74-81.
    [103] Alex Coram. Sharing the costs of maintaining environmental resources: a comparison of different programmes[J]. Environmental Modelling & Software, 2001(16 ): 109–117.
    [104]刘天齐,黄小林,官学栋等.区域环境规划方法指南[M].北京,化学工业出版社, 2001.
    [105]蓝盛芳,钦佩,陆宏芳.生态经济系统能值分析[M].北京:化学工业出版社, 2002.
    [106] Odum, H.T. Emergy evaluation of an OTEC electrical power system[J]. Energy, 2000(25): 3989-393.
    [107] Jay F. Martin, Stewart A.W, Diemont, et al. Emergy evaluation of the performance and sustainability of three agricultural systems with different scales and management[J]. Agriculture, Ecosystems and Environment, 2006(115): 128-140.
    [108]蓝盛芳,钦佩.生态系统的能值分析[J].应用生态学报, 2001, 12 (1): 1.
    [109]冈特.绍伊博尔德著,宋祖良译.海德格尔分析新时代的科技[M].北京:中国社会科学出版社, 1993.
    [110]郭怀成.环境规划与方法应用[M].北京:化学工业出版社, 2006.
    [111] LIU Hong-bo, ZHANG Hong-wei, A Study on Wavelet Analytical Forecasting Method of Water C onsumption[J], Transactionsof TianjinU niversity, 2004, 10 (3): 206–20.
    [112]王志良,谢敏萍,王得利.城市用水灰色动态预测模型的研究与应用[J].水土保持研究, 2007(8): 430-433.
    [113] Liu Junguo, Hubert H G S, Xu Jianxin. Forecast of water demand in Weinan City in China using WDF-ANN model[J]. Physics and Chemistry of the Earth, 2003, 28(4/5): 219- 224.
    [114]丁宏达.用回归-马尔柯夫链法预测供水量[J],中国给水排水, 1990, 6(1): 45-47.
    [115]王晓玲,孙月峰,梅传书.区域工业用水量非线性预测模型的优选[J].天津大学学报, 2006(12): 1399-1404.
    [116]刘继生,陈彦光,刘志刚.点轴系统的空间结构及其空间复杂性探讨[J].地理研究, 2003, (22)4: 447-453.
    [117]陈彦光.中心地体系空间结构的标度定律与分形模型-对Christarler中心地模型的数学抽象与理论推广[J],北京大学学报:自然科学版, 2004, 40(4): 626-63.
    [118]张雪花,郭怀成,张宏伟.区域经济联系强度的分形特征分析及其在我国西部地区的应用[J].北京大学学报:自然科学版, 2007, 43(2): 245-250.
    [119]郭怀成,张振兴,陈冰等.西部地区反贫困与生态环境可持续性研究[J].北京大学学报:自然科学版, 2004, (40)1: 144-154.
    [120]刘继生,陈彦光.城镇体系等级结构的分形维数及其测算方法[J].地理研究, 1998, 17(1): 82-89.
    [121]高安秀树著,沈步明,常子文译.分维数[M].北京:地震出版社, 1989.
    [122] Carroll G R. National City-size Distribution[J]. Progress in Human Geography, 1982, 6(1): l-43.
    [123]陈彦光,周一星.基于三角点阵模型的自组织城市网络探讨[J].北京大学学报:自然科学版, 2005, (41)2: 258-264.
    [124]阿克苏地区行署办公室?阿克苏地区统计局.阿克苏地区统计年鉴[R].阿克苏地区:阿克苏统计局, 2005.
    [125]阿克苏地区水利局?阿克苏地区水文水资源勘测大队,新疆阿克苏地区水资源总量统计[R].阿克苏地区:阿克苏地区水利局, 2000.
    [126]周一星.城市地理学[M].北京:商务印书馆, 1995.
    [127]天津市统计局.天津统计年鉴2005[R].天津:天津市统计局, 2005.
    [128]潘颖,郭凤瑞.主成分分析在我国区域经济梯度评价中的应用[J].统计与信息论坛, 2005, 20(2): 79-91.
    [129]郝黎仁,樊元,郝哲欧等. SPSS实用统计分析[M].北京:中国水利水电出版社, 2003.
    [130]方创琳.区域发展战略论[M].北京:科学出版社, 2005.
    [131]汪浩,王维平.区域发展战略研究[J].系统工程, 1992(4): 1-6.
    [132]罗波阳,张汉江.区域社会经济发展战略研究[J].系统工程, 2000(3): 25-30.
    [133]罗波阳.区域发展战略创新[J].系统工程, 2001(5): 4-7.
    [134]向元望,贝兴亚.区域综台发展规划规范化研究[M].长沙:湖南科技出版社, 1991.
    [135]聂华林.区域发展战略学[M].北京:中国社会科学出版社, 2006.
    [136]钟契夫,许光建主编.中长期发展规划的基础理论和方法[M].北京:中国计划出版社, 2002.
    [137]方创琳.区域发展规划系统集成方法论[J].中国软科学, 1999(6): 114–11.
    [138] H. C. Guo, L. Liu, G. H. Huang, et al. A system dynamics approach for regional environmental planning and management: A study for the Lake Erhai Basin[J]. Journal of Environmental Management, 2001(61): 93–111.
    [139] Gordon H Huang. Integrated Decision Support System for Water Quality Management in Lake Erhai Baisn[C]. Proceedings of the CSCE/ASCE Environmental Engineering Conference, 1997.
    [140] H. C. Guo, G. H. Huang, B. Chen. Characteristic Analysis of Environmental System in the Lake Erhai Basin[J]. Bio system Studies, 1999, 2(1): 23–34.
    [141] Amin Elshorbagy, Lindell Ormsbee. Object-oriented modeling approach to surface water quality management[J]. Environmental Modelling & Software, 2006(21): 689-698.
    [142]张雪花,郭怀成. SD-MOP整台模型在秦皇岛市生态环境规划中的应用[J].环境科学学报, 2002, 22(1): 92-97.
    [143]龚健,刘耀林.基于SD-MOP整合模型的土地利用总体规划研究[J].武汉大学学报信息科学, 2005, 30(4): 322–325.
    [144]邹锐,郭怀成,刘磊.基于目标偏离容忍水平多目标交互决策方法[J].系统工程学报, 1998, 13(3): 41–47.
    [145] Haung G. H. A hybrid inexact-stochastic water management model[J]. European Journal of Operational Research, 1998(107): 137-158.
    [146] L. Liu, G. H. Huang, G. A. Fuller, et al. A dynamic optimization approach for nonrenewable energy resources management under uncertainty[J]. Journal of Petroleum Science and Engineering, 2000(5): 301-309.
    [147] Y.P. Li, G.H. Huang, S.L. Nie. An interval-parameter multi-stage stochastic programming model for water resources management under uncertainty[J]. Advances in Water Resources, 2006(29): 776-789.
    [148] Ellis, J. H. Stochastic programs for identifying critical structural collapse mechanisms[J]. Appl. Math. Model, 1991(15): 367–379.
    [149] Yahia Zare M., Ahmad Daneshmand. A linear approximation method for solving a special class of the chance constrained programming problem[J]. Eur.J.Oper.Res, 1995, 80(1): 213–225.
    [150] Charnes, A., Cooper, W. W., Kirby, P. Chance constrained programming: an extension of statistical method. Optimizing Methods in Statistics[M]. New York: Academic Press, 1972: 391–402.
    [151] Baoding Liu, Kakuzo Iwamura. Chance constrained programming with fuzzy parameters[J]. Fuzzy Sets and Systems, 1998, 94(2): 227-237
    [152] Ramadan Hamed Mohamed. A chance-constrained fuzzy goal program[J]. Fuzzy Sets and Systems, 1992(4): 183-186.
    [153] Marc Roubens, Jacques Teghem. Comparison of methodologies for fuzzy and stochastic multi-objective programming[J]. Fuzzy Sets and Systems, 1991(42): 119–132.
    [154] Charnes, A., Cooper, W. W. Response to decision problems under risk and chance constrained programming: Dilemmas in the transitions[J]. Management Science, 1983(29): 750–753.
    [155] Huang G. H., Baetz B. W., Patry G. G. Grey fuzzy integer programming: an application to regional waste management planning under uncertainty[J]. Socio-Economic Planning Science, 1995(29): 17-38.
    [156] Wu, S. M., Huang, G. H., Guo, H. C. An interactive inexact-fuzzy approach for multiobjective planning of water environmental systems[J]. Water Science and Technology, 1997(36): 235–242.
    [157]邹锐,郭怀成,刘磊.基于目标偏离容忍水平多目标交互决策方法[J].系统工程学报, 1998, 13(3): 41-47.
    [158] Zimmermann, H. J. Fuzzy programming and linear programming with several objective functions[J]. Fuzzy Set and Systems, 1978(1), 45-55.
    [159] Cohen J. L. Multiobjective programming and planning[M]. New York: Academic Press, 1978.
    [160]王银平.天津市水资源系统动力学模型的研究[D].天津大学硕士论文, 2007.
    [161]姜文来.水资源价值论[M].北京:科学出版社, 1998.
    [162]蓝盛芳译.能量环境与经济-系统分析导引[M].北京:东方出版社, 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700