基于地球空间信息技术的新型公路勘察设计中的关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国经济和社会的发展,促进了高速公路的建设和发展。中国的东部及部分中部地区,高速公路的路网已完成。公路建设现正在向中、西部地区延伸。当今公路建设主要集中在崇山峻岭地区,面临的地形条件恶劣,地质条件复杂,大多数地区基础资料空白,公路建设要求的技术含量高、周期短、任务重,并且对土地利用,生态环保提出了更高的要求。公路建设的这些发展形势和特点,给公路建设的前期工作——公路勘察设计带来了新的巨大挑战。
     近年来,以3S(GPS、RS、GIS)技术为代表的地球空间信息技术取得了突飞猛进的发展,使人们对地球的探测和研究上升到一个全新的境地。3S技术与其它技术融合、渗透、集成,极大的促进了技术进步与经济社会的发展。
     研究应用地球空间信息技术,在关键技术上进行突破,改进传统的公路勘察设计与模式,才能适应现代公路建设发展的特点,满足当今公路建设的需要,有效地促进公路交通建设跨越式发展和可持续发展。因此,“基于地球空间信息技术的新型公路勘察设计中的关键问题研究”非常及时,很有必要,并且具有重大的现实意义。
     论文针对当代公路建设的特点,研究了1m高分辨率的Ikonos卫星图像高精度三维测量、地质活跃地区多时相地表变迁分析、工程精化似大地水准面模型等工程建设面临的重大关键技术问题,以及在此基础上形成的现代高新空间信息技术为核心的全新公路勘察设计技术体系。论文的研究成果已成功地应用于世界公路建设的极限地区、我国唯一不通公路的西藏墨脱县的墨脱公路建设项目,改变了我国公路勘察设计模式,实现了公路勘察设计手段与方法的重大突破与创新。
     论文深入研究了高分辨率Ikonos卫星图像的高精度立体测量的理论与方法。Ikonos是世界上首颗分辨率小于1m的商业卫星。不同于其它遥感卫星图像,Ikonos卫星图像具有可应用的量测精度。Ikonos卫星传感器采用线扫描成像,其立体图像为同轨立体。1m分辨率的Ikonos全色黑白图像等价于1:20,000的航空摄影。出于商家利益及应用的方便,严密的Ikonos传感器模型得不到,商家提供有理函数模型系数(RPC)作为替代。
     目前,高分辨率Ikonos立体卫星图像空间变换最合适的通用模型是有理函数模型,DLT变换、仿射变换、多项式变换等空间变换均为有理函数模型的不同形式。Ikonos卫星图像的有理函数模型空间变换在两藏墨脱的应用研究表明:
     (1) 在得不到商家RPC参数时,采用一次有理函数对Ikonos卫星图像进行空间变换,点位精度达到了±0.800m。
     (2) 利用商家提供的RPC参数,无控制点时,Ikonos立体图像定位的平面误差在10m左右,高程误差小于10m。
     Ikonos卫星图像受轨道误差、姿态角误差、星历误差及坐标基准的影响,图像坐标存在误差。基于商家有理函数系数(RPC),加入附加参数,能够显著提高Ikonos立体卫星图像的定位精度。Ikonos卫星图像的附加参数区域网平差能减少野外控制点的数量。西藏墨脱的应用研究表明:
     (1) 各景Ikonos卫星图像均存在偏移和飘移误差,且各不相同。起主要作用的还是偏移误差。
     (2) 区域内加入一个控制点,可以极大地提高成果的精度:用于加密的控制点位置分布可
The development of economy and society in China accelerates the highway construction and development. The network of highway in the east and partial middle region of China has been accomplished, and it has been extended to the middle and the west of China. Nowadays, the highway construction mainly converges at the mountain areas with lofty and precipitous peaks, where the terrain condition is awful and geological conditions is complicated, and the basic data is almost empty. In the highway construction, technology required is more, the period is shorter, and the task is heavier. More strict requirements for land use and ecology-environment protection have been brought forward. These new trends and characters challenge greatly the prophase work of highway construction-highway survey and design. These years, exploration and research about the earth comes to a new era while the geotechnologies, especially 3S (GPS、 RS、 GIS) technologies, are advanced rapidly. Great progress in society, economy and technology is made with the combination or integration of 3S with other technology.Only studying and applying geotechnologies, making a breakthrough on the key issues, and improving traditional manner of highway survey and design can the characteristic of modern highway survey and design be fit, the demand of its construction be met, and sustaining development and spanning development of transportation be realized. Therefore, Research on the Key Issues in the New-style Highway Survey and Design Based on Geotechnology is timely and necessary, and the reality significance of this research is great.The paper aims at the characters of highway construction in the present age, researches on several significant key techniques, i.e. the three dimension high accuracy surveying of Ikonos satellite imagery with 1m resolution, the multi-temporal terrain transformation analysis in the active area of geological environment, and refining engineering quasi-geoid model and so on, and the new highway survey and design system with modern geotechnology based on the key technologies studied above. The research results have been applied successfully to the Mutuo Road construction in Mutuo county, Tibet, where it is the terrific area all over the world and no road county only in China. The mode of highway survey and design has been changed, and a significant breakthrough and innovation of means and method in highway survey and design have been made.The paper lucubrates in the theory and method of high accuracy survey of Ikonos satellite imagery. Ikonos is the first business satellite whose resolution is less than 1m in the world. Differing from others, the accuracy of this satellite imagery can satisfy the need of engineering. Ikonos imaging is line-scanning and forms stereo images along-track. The resolution of Ikonos imagery of panchromatic black and white is 1m, which is equal to an aerial photograph with a scale of 1:20,000. The rigorous sensor model isn't provided, but Rational Polynomial
    Coefficient (RPC) is substitute for benefit of Space Imaging and the convenience of application. At present, the most suitable general model for spatial transformation of high resolution imagery of Ikonos is rational function model. DLT transformation, affine transformation and polynomial transformation etc. are all different formation of rational function model. The practical research on spatial transformation of Ikonos stereo satellite images with rational function model in Mutuo, Tibet, shows that:(1) The accuracy of Ikonos satellite imagery reaches +0.800m with the first order rational function for spatial transformation when the PRC coefficients can not be gotten from vendor.(2) Without control points, the plane error of Ikonos stereo imagery is around 10m and its height error is less than 10m when the vendor's RPC coefficients are used.Ikonos satellite imagery can be affected by orbit error, attitude error, ephemeris error and coordinates datum, so that there are errors in image space. Based on the RPC, the geoposition precision of Ikonos stereo images can be improved evidently by added appended parameters. By block adjustments with parameters, the amount of field control points can be reduced. The practical research in Mutuo, Tibet, shows that:(1) There are both bias error and drift error in each Ikonos image. They are different from image to image, and the bias error is the main factor.(2) The accuracy is improved prominently by adding one control point in the image, and the control points can be distributed random. When there are two control points distributed in south-north direction in each Ikonos image, better precision can be gotten.(3) The precision of the Ikonos triangulation in Himalayas, Tibet, reaches: ±0.945m in plane, ±0.517m in height, ±1.076m in total, and ±0.3 pixels in RMS of image space.(4) When the interval of control points is 15km, the point RMS is around ±1.5m. When the interval is 20km, the point RMS is around ±2.0m. Interval of control points further, the accuracy of point worse.(5) The precision of DOM produced with Ikonos stereo images reaches ±0.70m, the precision of DEM reaches ±1.153m, the precision in plane, height and annotation of DLG reaches ±1.28m, ±1.14m, ±0.64m respectively. They all meet the demand for mapping with the scale of 1:2,000.The paper researches data terrain transformation analysis based on multi-source and multi-temporal roundly. Relative stabilization area in complicated geologic area has been found out so as to put forward a scientific, reasonable and economical project scheme for highway construction. By processed multi-temporal remote sensing data, Digital Elevation Model (DEM) and Digital Orthography Map (DOM) can be generated. The transform analysis of object on DEM is to analyse the differences between multi-temporal DEMs. The transform analysis on DOM uses the method of the sum of absolute value of gray difference and covariance of gray between multi-temporal DOMs to detect the changed area. The combined analysis based on DEM and DOM will improve the accuracy and reliability of results greatly. The research results of the terrain transform analysis with remote sensing data in 30 years
    interval show that the production of combined analysis based on DEM and DOM is more accurate and reliable. It can satisfy the requirement of project. Not only the amount, size and scope of the terrain transformation, but also its trend and law can be found out when the terrain transformation associates with geological phenomenon such as mud-rock flow and landslip. Therefore, the valuable scheme can be put forward. The effect and power of geotechnology are more evident in engineering.The paper researches the theory and method of refining engineering quasi-geoid model. The refining engineering quasi-geoid model is the basis for realization of unitary surveying in plane and elevation. To meet the requirement of project, the relative accuracy of refining engineering quasi-geoid model should be under ±5cm, and its resolution should be l'x 1' at least. The refining engineering quasi-geoid model is related with the arithmetic and the quality, resolution, and precision of the data to be used. So, a gravity field model suited for local region should be selected, the gravity data measured in the ground and terrain data with high accuracy and high resolution should be adopted fully, and optimize arithmetic should be used. The l'x 1' refining engineering quasi-geoid model is formed by using gravity field model, terrain data and gravity data. The height anomaly is considered as the co-contribution one of earth gravity model, close region gravity anomaly and terrain correction, and vertical grads of full-Bouguer gravity anomaly. By using DQM2000B, l'xl' average gravity anomaly, l'x 1' terrain data calculated from Txl" digital terrain model, all possible gravimetric points, GPS-leveling points and some effective gravity points aboard, l'xl' refining engineering quasi-geoid model of Motuo, Tibet, is researched. The field check results show that the relative accuracy of this model reaches ± 2.5cm , the maximal error is not more than the twice of ±3cm which is the specification of height RMS in rule. The accuracy meets the fourth order leveling requirement of project in mountain area. It can replace leveling and be used for height control of the large scale mapping and engineering survey.On the basis of the study of 3D high accuracy survey of the high resolution satellite imagery, multi-temporal analysis of terrain transformation and refining engineering quasi-geoid model, a new highway survey and design system is researched and applied. While geotechnology is integrated into highway CAD, the integration, automation and visualization of highway survey and design are realized. A multi-scale route selection by terrain, geology and ecology-environment with computer assistant is come true, and the quality and technique of highway survey and design are improved.The research and application of the new-style highway survey and design system based on geotechnology in Mutuo Road, Tibet, show that:(1) The new system can acquire high accuracy data of terrain and geology rapidly for highway design, and the data gap of terrain and geology with large scale in Mutuo, Tibet, has been filled up.(2) 43km is shortened by route optimization, comparison and selection, and 1.1 billions yuan in this project is saved.
    (3) About 7,000 yuan per kilometer is saved and about 10 times of the total work efficiency is increased with the new system by comparing with traditional highway survey and design. The innovations of this paper are listed below:(1) A brand-new highway survey and design system with geotechnologies based on 3D high accuracy survey of high-resolution satellite imagery, multi-temporal terrain transform analysis and refining engineering quasi-geoid model by using GPS, RS and GIS technologies is formed(2)The theory and method of both spatial transformation with rational function model for the high-resolution satellite imagery and block adjustment with parameters are studied thoroughly. The practical research of lkonos-2 satellite imagery among large difficult area in China is for the first time. The accuracy of lkonos-2 imagery satisfies the requirement for mapping in difficult area with scale of 1:2,000.(3) A set of schemes for control distribution and triangulation of lkonos-2 satellite imagery are put forward, and the technique specification can be used to direct production of terrain digital data.(4) The terrain transform analysis based on multi-temporal data to find out relative stabilization area is researched for the first time in highway survey and design. With this method, the scheme of highway design can be the most optimum one.(5) VxV refining engineering quasi-geoid model is formed and applied for the first time in pratical project located at difficult area in Mutuo, Tibet. The relative accuracy of the model meets the fourth order leveling requirement of project in mountain area. Unitary surveying of plane and height is realized, and the separation of traditional survey in plane and height becomes history now.(6) The integration of geotechnology and advanced highway CAD is researched in a creative way, and multi-scale, integration, automatization and visualization of highway survey and design are realized.The new highway survey and design system based on modern geotechnology is advanced intechnology. Its economic benefit, society benefit and ecologic benefit are all prominent. It's arevolutionary breakthrough for the method and manner of highway survey and design.The theory and method in this paper will direct the highway survey and design of China in the21st century, and its research results are the examples of highway survey and design of Chinain the new era.In the subsequent work, the significant key technique and the brand-new system of highwaysurvey and design will still be undertaken test in practice. The method should be enriched,perfected and developed so as to accommodate the survey and design to different area anddifferent condition.
引文
[1] GB/T 17941.1-2000.数字测绘产品质量要求.北京:中国标准出版社.2000.
    [2] 曹冲.与GPS相似的卫星导航系统与技术.Http://www.c114.net/technic/technicread.asp.2003.
    [3] 晁定波.关于我国似大地水准面的精化及有关问题.武汉大学学报·信息科学版.2003.V28特刊:110-114.
    [4] 陈楚江.王德峰.公路数字地面模型系统BID-Land2000.“九五”国家重点科技攻关项目成果论文集,2001.
    [5] 陈春明,李建成.利用地球重力场模型确定南极大地水准面.极地研究.2000, 12(1):10-17.
    [6] 陈俊勇.推算我国高精度和高分辨率似大地水准面的若干技术问题.武汉测绘科技大学学报。1998.23(2):95-99.
    [7] 陈俊勇.李建成.宁津生,晁定波,张燕平,张骥.中国似大地水准面.测绘学报, 2002b。V31增刊:1-6.
    [8] 陈俊勇.李建成,姜卫平等.江苏省似大地水准面技术研究报告.2002a.
    [9] 陈俊勇.李建成.宁津生.晁定波,张燕平。张骥.中国新一代高精度、高分辨率大地水准面的研究和实施.武汉大学学报·信息科学版,2001,26(4):283-302.
    [10] 陈俊勇,魏子卿,胡建国,杨元喜,李建成,朱耀仲,许才军,孙和平,罗志才,吴斌,文汉江,查明。即将迈入新千年的大地测量学.测绘学报,2000,29(1):1-11.
    [11] 方针.张剑清,张祖勋.基于城区航空影像的变化检测.武汉测绘科技大学学报,1997.22(3):240-244.
    [12] 冯文灏.非地形摄影测量.北京:测绘出版社.1985.
    [13] 龚建雅.地理信息系统基础.北京:科学出版社,2001.
    [14] 管泽霖,李建成,晁定波,宁津生.WZD94中国重力大地水准面研究.武汉测绘科技大学学报.1994,19(4):292-297.
    [15] 管泽霖,宁津生.地球形状及外部重力场.北京:测绘出版社.1981.
    [16] 郭春喜。伍寿兵.王惠民,冯根生.王斌.区域厘米级大地水准面的确定.测绘通报, 2000.(9):3-4.
    [17] 郭海荣.焦文海.杨元喜.1985国家高程基准与全球似大地水准面之间的系统差及其分布规律.测绘学报。2004.33(2):100-104.
    [18] 郭仁忠.空间分析.北京:高等教育出版社.2001.
    [19] 何正贵.原墨脱公路失败原因分析.山区公路勘察设计技术交流现场会论文集.2002.
    [20] 黄谟涛.翟国君,管铮.凌勇,欧阳永忠.利用FFT技术计算大地水准面高若干问题研究.测绘学报.2000,29(2):124-131.
    [21] 黄永军.沿海地区似大地水准面精化探讨.海洋测绘.2004,24(1):23-26.
    [22] 贾永红,李德仁,孙家柄.多源遥感影像数据融合.遥感技术与应用。2000,15(1):41-44.
    [23] 姜建军.地质环境与城市可持续发展.Http://special.dayoo.com/2004/node_2033/node_203612004103131/108072477760721.shtml, 2004.
    [24] 李博.生态学.北京:高等教育出版社.2000.
    [25] 李德仁.论RS,GPS与GIS集成的定义、理论与关键技术.遥感学报。1997,1(1):64-68.
    [26] 李德仁.信息高速公路、空间数据基础设施与数字地球.测绘学报,1999,28(1):1-5.
    [27] 李德仁.摄影测量与遥感的现状及发展趋势.武汉测绘科技大学学报.2000,25(1):1-6.
    [28] 李德仁.从影像到数字地球.武汉:武汉测绘科技大学出版社.2001.
    [29] 李德仁.论21世纪遥感与GIS的发展.武汉大学学报·信息科学版,2003a, 28(2):127-131.
    [30] 李德仁.利用遥感影像进行变化检测.武汉大学学报·信息科学版,2003b,V28特刊:7-12.
    [31] 李德仁,关泽群.空间信息系统的集成与实现.武汉:武汉测绘科技大学出版社.2000.
    [32] 李德仁,郭丙轩。王密,雷霆.基于GPS与GIS集成的车辆导航系统设计与实现.武汉测绘科技大学学报,2000.25(3):208-211.
    [33] 李德仁,李清泉.论地球空间信息科学的形成.地球科学进展,1998,13(4):319-326.
    [34] 李德仁,李清泉.地球空间信息学与数字地球.地球科学进展,1999,14(6):535-540.
    [35] 李德仁,刘良明,胡晓沁.1996-2000年中国摄影测量与遥感进展.测绘学报,2001, 30(2):117-126.
    [36] 李德仁,郑肇葆.解析摄影测量学,测绘出版社,1992
    [37] 李德仁等.GPS辅助全自动空中三角测量.遥感学报,1997,1(4):306-310.
    [38] 李建成,陈俊勇,宁津生,晁定波.地球重力场逼近理论与中国2000似大地水准面的确定.武汉:武汉大学出版社.2003.
    [39] 李兴华.现代交通可持续发展若干问题的思考.上海公路,2003,NO.1.
    [40] 李征航,包满泰,叶乐安.利用GPS测量和水准测量精确确定局部地区的似大地水准面.测绘通报.1994,(6):7-12.
    [41] 李志林,朱庆.数字高程模型.武汉:武汉测绘科技大学出版社,2000.
    [42] 刘凤德.邱懿,李健.JX-4A全数字摄影测量工作站中Ikonos立体影像的处理方法与应用.遥感信息,2001(4):26-29.
    [43] 刘经南.广域差分GPS原理和方法.北京:测绘出版社.1998.
    [44] 刘铁志,郑树果.地质学原理.北京:地质出版社,1996.
    [45] 刘文熙.对3S集成技术的一些认识.四川测绘.1996.19(3):99-103.
    [46] 刘亚文,叶晓新.利用VirtuoZo检测航片变化区域.测绘通报,2000.(10).
    [47] 刘直芳,张继平.变化检测方法及其在城市中的应用.测绘通报,2002(9):25-27.
    [48] 路伯祥,岑敏仪,卢健康.地球重力场模型在线路GPS高程转换中的应用.工程勘察, 2004.(2):52-53.
    [49] 罗志才.陈永奇,宁津生.地形对确定高精度局部大地水准面的影响.武汉大学学报·信息科学版.2003,28(3):340-344.
    [50] 罗志才,宁津生。杨沾吉,陈永奇.高分辨率厘米级局部大地水准面的典型应用.武汉大 学学报·信息科学版,2003,V28特刊:100-103.
    [51] 宁津生.跟踪世界发展动态,致力地球重力场研究.武汉大学学报·信息科学版.2001, 26(6):471-474.
    [52] 宁津生.现代大地测量参考系统.测绘学报.2002,V31增刊:7-11.
    [53] 宁津生,罗志才,李建成.我国省市级大地水准面精化的现状及技术模式.大地测量与地球动力学,2004.24(1):4-8.
    [54] 宁津生.罗志才.杨沾吉.陈永奇.张天纪.深圳市1km高分辨率厘米级高精度大地水准面的确定,测绘学报,2003,32(2):102-107.
    [55] 宁津生.邱卫根.陶本藻.地球重力场模型理论.武汉:武汉测绘科技大学出版社,1990.
    [56] 宁津生,李德仁.祝国瑞。张正禄。翟国君.姜卫平.中国测绘科技发展综述(2001年).地理空间信息技术与应用·中国科协 2002年学术年鉴论文集,2002:1-7.
    [57] 宁津生,李建成,晁定波,管泽霖.WDM94 360阶地球重力场模型研究.武汉测绘科技大学学报,1994,19(4):283-291.
    [58] 钱易.唐孝炎.环境保护与可持续发展.北京:高等教育出版社.2000.
    [59] 申文斌,宁津生.李建成.晁定波.论大地水准面.武汉大学学报·信息科学版,2003.28(6):683-687.
    [60] 石盘,盛宗琪.可见和重力场信息—地形在重力场研究中的应用.动力大地测量学进展.北京:地震出版社,1991.
    [61] 石磐,夏哲仁。孙中苗.李迎春.高分辨率地球重力场模型DQM99.中国工程科学.1999.1(3):51-55.
    [62] 宋玉兵.朱风云.江苏省域似大地水准面成果的应用分析.测绘通报.2003,(12):6-8.
    [63] 孙凤华等.我国陆海1′×1′平均重力异常数字模型的建立及可靠性检验.地面网与空间网联合平差论文集(四)。2003:190-196.
    [64] 童庆禧.地球空间信息科学之刍议.地理与地理信息科学,2003,19(4):1-3.
    [65] 王峰.李德仁.杨树强,陈火旺.地理信息系统三十年:83-91.
    [66] 王仁宏,朱功勤.有理函数逼近及其应用.北京:科学出版社,2004.
    [67] 王之卓.摄影测量原理.北京:测绘出版社.1979.
    [68] 王之卓.摄影测量原理续编.北京:测绘山版社.1986.
    [69] 王志刚,王净.官厅水库的遥感动态变化探测及边岸稳定性判别.遥感学报,2003, 7(4):328-331.
    [70] 魏子卿.高程现代化问题.武汉大学学报·信息科学版,2001.26(5):377-380.
    [71] 魏子卿,王刚.用地球位模型和GPS/水准数据确定我国大陆似大地水准面.测绘学报, 2003,32(1):1-5.
    [72] 文贡坚.从新卫星遥感影像中自动发现变化区域.博士后研究工作报告,2003.
    [73] 吴强,杨季湘.“GPS、航测遥感CAD集成技术”主要研究成果的推广应用.2002年中国公路学会计算机应用学会年会学术论文集,2002.
    [74] 夏哲仁,石磐,李迎春.高分辨率区域重力场模型DQM2000.武汉大学学报·信息科学版,2003,V28特刊:124-128.
    [75] 熊介.椭球大地测量学.北京:解放军出版社,1988.
    [76] 徐卫明,陆秀平,朱穆华,粱德清.利用地球重力场模型精化GPS水准.海洋测绘,2003.23(2):5-8.
    [77] 许殿元.丁树柏.遥感图像信息处理.北京:宇航出版社,1990.
    [78] 许厚泽,陆仲连等.中国地球重力场与大地水准面.北京:解放军出版社,1997.
    [79] 颜佳义.对墨脱公路工程可行性研究的个人意见.2002.
    [80] 杨季湘.公路CAD技术研究.“九五”国家重点科技攻关项目成果论文集.2001.
    [81] 杨逸畴.神秘的雅鲁藏布大峡谷.http://www.tibet-web.com/ziranl06yangyichou/yangyc/zrstl.htrn,2004.
    [82] 杨元喜.陆仲连.吴晓平.似大地水准面系统转换及其评述.中国地区重力场与大地水准面(吴晓平主编)。北京:解放军出版社。2001.
    [83] 易善桢.李琦.承继成.略论地球地理空间信息基础设施.科技导报,1 999,(9):4749.
    [84] 於宗俦.鲁林成.测量平差基础,测绘出版社,1978
    [85] 袁修孝.GPS辅助空中三角测量原理及应用.北京:测绘出版社,2001.
    [86] 曾元武,杨沾吉,张天纪.EGM96,WDM94和GPM98CR高阶地球重力场模型表示深圳局部重力场的比较与评价.测绘学报.2002.31(4):289-291.
    [87] 张勤,李天文.重力大地水准与GPS水准联合平差精化大地水准面.西安工程学院学报,1999,21(1):64-68.
    [88] 张赤军.用GPS/重力、地形确定山区正高.云南大学学报(自然科学版).2001.23(4):258-261.
    [89] 张传定,吴晓平.孙风华等.中国1′×1′数字大地水准面和垂线偏差模型的建立.地面网与空间网联合平差论文集(四),2003:155-158.
    [90] 张全德,张燕平.张鹏,陈现军.精化区域大地水准面若干问题的探讨.武汉大学学报·信息科学版。2003.V28特刊:94-96.
    [91] 张雨化.公路勘测设计.北京:人民交通出版社,1986.
    [92] 张祖勋.数字摄影测量的发展与展望.地理信息世界,2004,2(3):1-5.
    [93] 张祖勋,张剑清.数字摄影测量.武汉:武汉测绘科技大学出版社,1996.
    [94] 章绍银.测绘垂直基准相互转换与统一技术.地理空间信息技术与应用·中国科协 2002年学术年鉴论文集,2002.
    [95] 赵喜安.GPS、航测遥感、CAD集成技术.“九五”国家重点科技攻关项目成果论文集。2001.
    [96] 郑家庆.公路勘察设计方式的重大变革.“九五”国家重点科技攻关项目成果论文集.2001.
    [97] 周斌.针对土地覆盖变化的多时相遥感探测方法.矿物学报,2000.20(2):165-171.
    [98] 周忠谟,易杰军.GPS测量原理与应用.北京:测绘出版社.1992.
    [99] 朱庆.3维地理信息系统技术综述.地理信息世界,2004,2(3):8-12.
    [100] 朱庆,林珲.数码城市地理信息系统.武汉:武汉大学出版社.2004.
    [101] 朱华统.大地坐标系的建立,测绘出版社,1986.
    [102] 朱亮璞.遥感地质学.北京:地质出版社.1999.
    [103] Abdel-Aziz Y. I., Karara H.M. Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Close-range Photogrammetry. Proceedings of ASP Symposium on Close-range Photogrammetry, 1971.
    [104]Ackermann F. Practical Experence with GPS-supported Aerial Triangilation. Photogrammetric Record, 1994,14(84).
    [105]Agouris P., Mountrakis G., Stefanidis A. Automated Spatiotemporal Change Detection in Digital Aerial Imagery. Proceedings of SPIE "Automated Geo-Spatial Image and Data Exploitation" , 2000.
    [106]Atiek Widayati, Bruno Verbist, Allard Meijerink. Application of Combined Pixel-based and Spatial-based Approaches for Improved Mixed Vegetation Classification Using Ikonos.
    [107]Atkinson K. E. Elementary Numerical Analysis. John Wiley & Sons, 2003.
    [108]Baltsavias E., Pateraki M., Zhang LRadiometric and Geometric Evaluation of Ikonos Geo Images and Their Use for 3D Building Modelling. Proceedings of Joint ISPRS Workshop "High Resolution Mapping from Space 2001", 2001.
    [109]Bayram B., BayraktarH., Helvaci C, Acar U.Coast Line Change Detection Using corona, Spot and Irs 1d Images. Proceedings of the XXth ISPRS Congress, 2004, XXXV(B7):437-441.
    [110]Behdinian B. Generating Orthoimage from Ikonos Data. Publication in session "Very high resolution mapping" in 23rd Asian Conference on Remote Sensing, 2002.
    [111]Bouman J., Koop R. Stabilization of Global Gravity Field Solutions by Combining Satellite Gradiometry and Airborne Gravimetry. DEOS Progress Letter 98(1): 43-55.
    [112]Bruntland, G.Our Common Future: The World Commission on Environment and Development. Oxford: Oxford University Press, 1987.
    [113]Burbridge S., Zhang Y. A neural network based approach to detecting urban land cover changes using Landsat TM and IKONOS imagery. Remote Sensing and Data Fusion over Urban Areas (GRSS/ISPRS), 2003:157 -161.
    [114]Burroug P. Principle of Geographical Information System for Land Resource Assessment, Clarendon Press, 1986.
    [115]Chen D. A Multi-resolution Analysis and Classification Framework for improving Land Use/cover Mapping from Earth Observation Data. Proceedings of the XXth ISPRS Congress, 2004, XXXV(B7):1187-1191.
    [116]Chiroiu L., Andre G. Damage Assessment Using High Resolution Satellite Imagery: Application to 2001 Bhuj, India, Earthquake. http:// www.riskworld.com/Nreports/ 2001/Bhuj,lndia,earthquake2001 .PDF, 2003.
    [117]Coelho C. P., Phillips J. R., Silveira L. M. Robust Rational Function Approximation Algorithm for Model Generation. Proceedings of the 36th ACM/IEEE conference on Design automation, 1999.
    [118]Collins D., Kliparchuk K., Connor M., WarttigW. Preliminary Assessment of the Application of IKONOS Satellite Imagery and Its Fusion with RADARSAT-1 Data for Forest Resource Management. Technical Report in Forest Research(TR-014), Vancouver Forest Region, 2001.
    [119]Corbley K. P.lmage Processing and Analysis Empowering Users with New Tools. Http://www.imagingnotes.com/mayjun00/mayjune1 .htm, 2000.
    [120]Dawson J., Steed J. International Terrestrial Reference Frame (ITRF) to GDA94 Coordinate Transformations. http://www.ga.gov.au/image_cache/GA3795.pdf, 2004.
    [121]Demana F., Waits B. K., Foley G. D., Kennedy D.Precalculus: Functions and Graphs(5/E). Boston: Addison-Wesley, 2004.
    [122]Demianov G., Maiorov A., Medvedev P. Comparison and evaluation of the new Russian global geopotential model to degree 360. In: Geodesy Beyond 2000 (Schwarz K. P.), 2000.
    [123]Denker H., Torge W., Wenzel G. Investigation of different methods for the combination of gravity and GPS/leveling data. Proceedings of IAG symposium, 1999.
    [124]Di K., Ma R., Li R. Rational Functions and Potential for Rigorous Sensor Model Recovery. PE&RS, 2003, 69(1): 33-42.
    [125]Dial G. RPC Data File Format, Space Imaging, QA-REF-054, Rev B, 9/12/00.
    [126]Dial G.,Grodecki J. Ikonos Accuracy without Ground Control.Proceedings of ISPRS Commission I/FIEOS 2002 Conference, 2002a.
    [127]Dial G., Grodecki J. Block Adjustment with Rational Polynomial Camera Models. Proceedings of ACSM-ASPRS 2002 annual conference, 2002b.
    [128]Dial G., Grodecki J. Block Adjustment of High-resolution Satellite Images Described by Rational Polynomials. Photogrammetric Engineering and Remote Sensing, 2003, 69(1): 59-68.
    [129]Douglas J. S.Commercial High Resolution Satellite Imagery: An Overview. Proceedings of the CHRSI Workshop at the 10th Australasian Remote Sensing and Photogrammetry Conference, 2000.
    [130]Eisenbeiss H., Baltsavias E., Pateraki M., Zhang L. Potential of Ikonos and Quickbird Imagery for Accurate 3d Point positioning, Orthoimage and Dsm Generation. Proceedings of the XXth ISPRS Congress, 2004, XXXV(B7):1250-1256.
    [131]EI-Raey M., NasrS.M.,EI-HattabM.M. Change Detection of Rosetta Promontory Over the Last Forty Years. Int. J of Remote Sensing, 1995,16:825-834.
    [132]Eric W. Weisstein. Rational Polynomial Function. MathWorld, http://mathworld.wolfram.com/RationalPolynomialFunction.html, 2004.
    [133]Esan O. Spectral Analysis of Gravity Field Data and Errors in view of Sub-Decimetre Geoid Determination in Canada. UCGE Reports, Number 20137, 2000.
    [134]Euler H. J., Landau H.Fast GPS Ambiguity Resolution On-The-Fly for Real Time Application. The 6th Int. Geodetic Symposium on Satellite Positioning, 1992.
    [135] Featherstone W. E., Stewart M. P. Possible Evidence for Distortions in the Australian Height Datum in Western Australia. Geomatics Research Australasia, 1998, (67).
    [136]Fell P., Tanembaum M. Comparison of National Vertical and Chart Datums with WGS 84 (EGM96) Geoid. Oceans '02 MTS/IEEE , 2002, (2) :1121 -1126.
    [137]Ferland R. Reference Frame Working Group Technical Report. International GPS Service, 2001-2002 Technical Reports, 2003.
    [138] Francois Kayitakire, Christine Farcy, Pierre Defourny IKONOS-2 imagery potential for forest stands mapping. Proceedings of ForestSAT Symposium Heriot Watt University, 2002.
    [139]Fraser C. S., Baltsavias E., Gruen A. Ikonos Geo Stereo Images: Geometric Potential and Suitability for 3D Building Reconstruction. Proceedings of Third International Workshop on Automatic Extraction of Man-Made Objects from Aerial and Space Images, 2001.
    [140]Fraser C. S., Hanley H. B. Bias Compensation in Rational Functions for Ikonos Satellite Imagery, PE&RS, 2003, 69(1):53-58.
    [141]Fraser C. S., Yamakawa T. Applicability of the Affine Model for Ikonos Image Orientation over Mountainous Terrain. Proceedings of Joint Workshop High Resolution Mapping from Space 2003, 2003.
    [142]Fraser C. S., Yamakawa T., Hanley H. B., Dare P. M. Geopositioning from High-resolution Satellite Imagery: Experiences with the Affine Sensor Orientation Model. Geoscience and Remote Sensing Symposium(IGARSS), 2003, (5):3002 - 3004.
    [143]FuntT., Ledrew E. The Determination of Optimum Threshold Levels for Change Detection. Photogrammetric Engineering and Remote Sensing, 1988, 54:1499-1454.
    [144]Gewin V. Mapping opportunities. Nature, 2004, 427:376 - 377.
    [145]Goodwin R. F., Hudson W. D. Comparison of Air Photo and Satellite Image Sources for Updating Land Cover and Land Use Maps Http://www.rsgis.msu.edu/pdf/comparison.pdf, 2003.
    [146]Gorham D., Borgione J., Wright D., Holle C, Ramsey R. D., Messmer T., Werstak C, Tangermann H. Remote Sensing for Wetlands Delineation Around Utah's Great Salt Lake. Final Report of 2000 ARC Projects, http://www.gis.usu.edu/ArcWebpage/ inside_table/AGRC_1_FinalReport.pdf, 2003.
    [147]Grodecki J. Ikonos Stereo Feature Extraction-RPC Approach. Proceedings of ASPRS 2001 Conference, 2001.
    [148]Grodecki J., Dial G., Lutes J. Error Propagation in Block Adjustment of High-resolution Satellite Images. Proceedings of ASPRS 2003 Annual Conference, 2003.
    [149]Gruber M., Wilmersdorf E.Urban Data Management - A Modern Approach. Computer, Environment and Urban Systems, 1997, 21(2):147-158.
    [150]Gruber Th., Anzenhofer M., Rentsch M., Schwintzer P. Improvements in High Resolution Gravity Field Modeling at GFZ. IAG Symposia Proceedings: Gravity, Geoid and Marine Geodesy(Segawa, Fujimoto, Okubo), 1997.
    [151]Haklay M. E. Virtual Reality and GIS: Applications, treads and directions. In: Peter Fisher and David Unwin(Eds.), Virtual Reality in Geography, Taylor and Francis, London, 2002, 47-57.
    [152] Hall O., Hay G. J. A Multiscale Object-Secific Approach to Digital Change Detection. International Journal of Applied Earth Observation and Geoinformation, 2003.
    [153] Hanley H.B., Yamakawa T., Fraser C.S. Sensor Orientation for High-resolution Satellite Imagery. Int. Archives of Photogrammetry and Remote Sensing, 2002, 34(1):69-75.
    [154]Hartley R. I., Saxena T. The Cubic Rational Polynomial Camera Model. http://rsise.anu.edu.au/~hartley/Papers/cubic/cubic.pdf, 2000.
    [155]Hartwig S., Ramon F., Martin K., Niklas R., Andre R., Rafael W. Change detection with 1m resolution satellite and aerial images. International Geoscience and Remote Sensing Symposium (IGARSS). V5, 2001: 2256 -2258.
    [156]Hector Contreras.GPS+GLONASS Technology at Chuquicamata Mine, Chile. Proceedings of ION-98,1998.
    [157]Helder D., Choi J.MTF Modeling and Error Analysis For High Spatial Resolution Satellite Sensors. http://iplab2out.sdstate.edu/projects/ikonos/docs/ MTF_ERROR_statement.pdf, 2003.
    [158]Hong-Gyoo Sohn, Choung-Hwan Park, Hwan-Hee Yoo. Surface Reconstruction Using Terrain-dependent Rational Function Model. Geoscience and Remote Sensing Symposium(IGARSS), 2002, (6) :3498 - 3500.
    [159]Ho-Sang Sakong, Jung-Ho Im. Application Fields and Strategy of KOMPSAT-2 Imagery. Korean Journal of Remote Sensing, 2002,18(1): 43-52.
    [160]Hsiao K. H., Liu J. K., Yu M. F., Tseng Y. H. Change Detection of Landslide Terrains Using Ground-based Lidar Data. Proceedings of the XXth ISPRS Congress, 2004, XXXV(B7):617-621.
    [161]Jacobsen K. Examples of Topographic Maps Produced from Space and Achieved Accuracy. Proceedings of CARAVAN Workshop on Mapping from Space, 2000.
    [162]Jacobsen K. Mapping with IKONOS Images. Geoinformation for European-wide Integration, Benes (ed.), 2003.
    [163] Jianqing Zhang, Zuxun Zhang. Strict Geometric Model Based on Affine Transformation for Remote Sensing Image with High Resolution. Int. Archives of Photogrammetry and Remote Sensing, 2002, 34(B3):309-312.
    [164] Jianqing Zhang, Zuxun Zhang, Hui Cao. 3-Dimension Modeling of Ikonos Remote Sensing Image Pair with High Resolution. Geoscience and Remote Sensing Symposium (IGARSS), 2001, 1(9-13).
    [165]Jin X., Davis C. Automatic Road Extraction from High-Resolution Multispectral imagery. France, International Geoscience and Remote Sensing Symposium (IGARSS), 2003: 1730-1732.
    [166]Jozef Bartkovjak, Margarita Karovicova. Approximation by Rational Functions. Measurement Science Review, 2001,1(1).
    [167]Karara H. M. Non-Topographic Photogrammetry. ASPRS, Virginia: Falls Church, 1989.
    [168]Karsten J. Examples of Topographic Maps Produced from Space and Achieved Accuracy, Proceedings of CARAVAN Workshop on Mapping from Space, 2000.
    [169]Kiwon Lee, Se-Kyung Oh, Hee-Young Ryu. Application of High-resolution Satellite Imagery to Transportation: Accessibility Index Extraction Approach. Geoscience and Remote Sensing Symposium(IGARSS), 2003, (4) ,:2942 - 2944.
    [170]Kumar M., Castro O.T. Practical Aspects of Ikonos Imagery for Mapping. http://www.crisp.nus.edu.sg/~acrs2001/pdf, 2003.
    [171]Lemoine F. G., Kenyon S. C, Factor J. K.,et al. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96,1998.
    [172] Lerch F. J., Nerem R. S., Putney B. H., Felsentreger T. L, Sanchez B. V., Klosko S. M., Patel G. B., Williamson R. G., Chinn D. S., Chan J. C, Rachlin K. E., Chandler N. L, McCarthy J. J., Marshall J. A., Luthcke S. B., Pavlis D. E., Robbins J. W., Kapoor S., Pavlis E. C. Geopotential models from satellite tracking, altimeter, and surface gravity data: GEM-T3 and GEM-T3S. J. Geophys, 1994, Res., 99(B2):2815-2839.
    [173]Li Deren et al. A Mobile Mapping System Based on GPS,GIS and Multi-sensor, Proceedings of Int. Workshop on Mobile Mapping Tech., 1999.
    [174]Liang-Chien Chen, Chiu-Yueh Lo, Jiann-Yeou Rau. The Generation of True Orthophotos from IKONOS GEO Images. Publication in session "Very high resolution mapping" in 23rd Asian Conference on Remote Sensing, 2002.
    [175]Luo Z. C, Chen Y. Q. Precise determination of Hong Kong geoid using heterogeneous data. Proceedings of FIG XXII International Congress, 2002.
    [176]McGlone C. Sensor Modeling in Image Registration.In: Digital Photogrammetr, published by ASPRS, 1996.
    [177]Mendoza E. H., Santos J. R., Santa Rosa A. N. C, Silva N. C. Land Use/land Cover Mapping in Brazilian Amazon Using Neural Network with Aster/terra Data. Proceedings of the XXth ISPRS Congress, 2004, XXXV(B7):123-126.
    [178]Milbert D. G., Schultz D. G. GEOID93, A new geoid for the United States. Trans. Am. Geophys. U., 1993, 74(16):96.
    [179]Mori, M. Application of IKONOS Imagery on Geographic Information Systems. Geoscience and Remote Sensing Symposium(IGARSS), 2002, (6) :3352 - 3354.
    [180]Nerem R. S. U.S. National Report to IUGG, 1991-1994: Terrestrial and planetary gravity fields, Rev. Geophys. 1995a, V33 Sup.
    [181]Nerem R. S. Terrestrial and Planetary Gravity Fields. Rev. Geophys, 1995b, V33 Sup.
    [182]NIMA. The Compendium of Controlled Extensions (CE) for the National Imagery Transmission Format (NITF).STDI-0002, V2.1, 2000.
    [183] NIST/SEMATECH. Rational Functions.www.itl.nist.gov/div898/handbook/ pmd/section8/pmd812.htm, 2003.
    [184]Nolan J. R. Comparison of Commercial High-resolution Satellite Imagery. Aerospace Conference, 2001:2/925 - 2/930.
    [185]Olmanson L.G.,Bauer M.E., Brezonik P. L.Aquatic Vegetation Surveys Using High-resolution Ikonos Imagery. Proceedings of ISPRS Commission I/FIEOS 2002 Conference, 2002.
    [186]Paderes Jr. F.C, Mikhail E. M., Fagerman J.A. Batch and On-line Evaluation of Stereo SPOT Imagery. Proceedings of the ASPRS-ACSM Convention, 1989: 31-40.
    [187]Rapp R. H. Global Geoid Determination. CRC Press, 1993a.
    [188]Rapp R. H. Geoid Undulation Accuracy. Geoscience and Remote Sensing, IEEE Transactions on , 1993b, 31(2):365 - 370.
    [189]Rapp R. H., Jekeli C. Accuracy of the determination of mean anomalies and mean geoid undulations from a satellite gravity field mapping mission. Reports of the Dep. of Geodetic Science no. 307, The Ohio State University, Columbus, 1980.
    [190]Rapp R. H., Wang Y. M., Pavlis N. K. The Ohio State 1991 geopotential and sea surface topography harmonic coefficient models. Ohio State University, Ohio, 1991.
    [191] Richards J. A. Remote Sensing Digital Image Analysis. New York: Springer, 1993.
    [192]Ritsu Katayama, Masato Shozi, Yoshihide Tokiya, Toshio, Koizumi.A Feasibility on Evalution of District Environmental Method Using Remote Sensing of TM & Ikonos Data for Healthy City. Proceedings of the 22nd Asian Conferrence on Remote Sensing, 2001.
    [193]Roland M., Denker H. Evaluation of Terrestrial Gravity Data by New Global Gravity Field Models. Proceedings of 3rd Meeting of the International Gravity and Geoid Commission, Gravity and Geoid 2002, 2002.
    [194]Rongxing Li, Guoqing Zhou, Songlin Yang, Tuell, G., Schmidt, N. J., Fowler, C. A Study of the Potential Attainable Geometric Accuracy of Ikonos Satellite Imagery. Proceedings of 19th ISPRS Congress, Amsterdam, 2000.
    [195]Ruijin Ma, Kaichang Di, Ron Li.3-D Shoreline Extraction from Ikonos Satellite Imagery. Journal of Marine Geodesy, 2003.
    [196]Samadzadegan F.,Azizi A., Michael Hahn. Automatic Change Detection of Urban Geospatial Databases Based on High Resolution Satellite Images Using Al Concepts. Proceedings of Commission IV Joint Workshop "Challenges in Geospatial Analysis, Integration and Visualization II", 2003.
    [197]Schwintzer P., Reigber C. The Contribution of GPS Flight Receivers to Global Gravity Field Recovery. Journal of Global Positioning Systems, 2002,1(1): 61-63.
    [198]Schwintzer P., Reigber C, Bode A., Kang Z., Zhu S. Y., Massmann F.H., Raimondo J. C, Biancale R., Balmino G., Lemoine J. M., Moynot B., Marty J. C, Barlier F., Boudon Y. Long-Wavelength Global Gravity Field Models: GRIM4-S4, GRIM4-C4. Journal of Geodesy, 1997,71:189-208.
    [199]Sideris M. G., She B. B. A New High-resolution for Canada and Part of the US by the 1D FFT Method. Bulletion Geodesique, 1995, 69(2):92-108.
    [200]Singh A. Change detection in the tropical forest environment of northeastern India using Landsat. London: John Wiley & Sons, 1986.
    [201]Singh A. Review Article: Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 1989,10(6):989 - 1003.
    [202]Smith D. A., Roman D. R. GEOID 99 and G99SSS: 1 arc minute Geoid Models for the United States. Journal of Geodesy, 2001, 75:469-490.
    [203]Space Imaging. Ikonos Relative Spectral Response and Radiometric Cal Coefficients, http://www.spaceimaging.com/products/ikonos/spectral.htm, 2003a.
    [204]Space Imaging. Ikonos Imagery Products and Product Guide, 2003b.
    [205]Symeonakis E., Koukoulas S., Calvo C. A., Arnau R. E., Makris I. A Landuse Change and Land Degradation Study In Spain and Greece using Remote Sensing and GIS. Proceedings of the XXth ISPRS Congress, 2004, XXXV(B7):553-558.
    [206]Takashi Nakajima, Guo Tao, Yoshifumi Yasuoka Simulated Recovery of Information in Shadow Areas on IKONOS Image by Combing ALS Data. Publication in session "Very high resolution mapping" in 23rd Asian Conference on Remote Sensing, 2002.
    [207]Tao C. V., Hu Y. The Rational Function Model: A Tool for Processing High-resolution Imagery. Earth Observation Magazine, 2001a, 10 (1): 13-16.
    [208]Tao C. V., Hu Y. A Comprehensive Study of the Rational Function Model for Photogrammetric Processing, PE&RS, 2001b, 67(12):1347-1357.
    [209]Tapley B. D., Kim M. C, Poole S. R., Cheng M. K., Chambers D. P., Ries J. C. The TEG-3 Geopotential Model. In: Gravity, Geoid and Marine Geodesy(Segawa J., Fujimoto H., Okubo S.), 1997.
    [210]Tapley B. D., Watkins M. M., Ries J. C, Davis G. W., Eanes R. J., Poole S. R., Rim H. J., Schutz B. E., Shum C. K., Nerem R. S., Lerch F. J., Pavlis E. C, Klosko S. M., Pavlis N. K., Williamson R. G. The JGM-3 Gravity Model. Annales Geophysicae, 1994,12, Suppl.
    [211]Thenkabail P. S. Inter-sensor Relationships Between Ikonos and Landsat-7 ETM+ NDVI data in Three Ecoregions of Africa. International Journal of Remote Sensing, 2004, 25(2): 389-408.
    [212]Toutin T.Geometric Processing of Ikonos Geo Images with DEM. Proceedings of ISPRS Joint Workshop "High Resolution Mapping from Space", Hanover, Germany, 2001.
    [213]Toutin T., Cheng P. Demystification of Ikonos. http:// www.ccrs.nrcan.gc.ca/ccrs/rd/ sci_pub/bibpdf, 2004.
    [214]UngarS.G., Pearlman J.S., Mendenhall J.A., Reuter, D. Overview of the Earth Observing One (EO-1) Mission. Geoscience and Remote Sensing, IEEE Transactions on, 2003, 41(6): 1149-1159
    [215]Wang Y., Neville P., Bales C, Jamshidi M., Stan Morain S. Multispectral Landsat Images Classification Using a Data Clustering Algorithm. Proceedings of the XXth ISPRS Congress, 2004, XXXV(B7):17-20.
    [216]Welch R., Ehlers, M. Merging Multiresolution SPOT HRV and Landsat TM Data. Photogrammetric Engineering and Remote Sensing, 1987, 53(3): 301-303.
    [217]Wenzel G. Ultra High Degree Geopotential Models GPM98A, B and C to Degree 1800. Proceedings of Joint Meeting of the International Gravity Commission and International Geoid Commission, 1998.
    [218]Wiemker R., Speck A., Kulbach D., Spitzer H., Bienlein J. Unsupervised Robust Change Detection on Multispectral Imagery. Proceedings of the Third International Airborne Remote Sensing Conference and Exhibition, 1997.
    [219]Willis P., Morel L .Present Mean Sea Level indetermination coming from ITRF Reference Frame uncertainties on TOPEX/DORIS orbits, http://www.aviso.oceanobs.com/documents/ swt/posters2001/willis.pdf, 2001.
    [220]Yongseung Kim, Kwang-Hoon Chi, Sinjae Yoo, Ae-Sook Suh, Youn-Soo Kim, Hyo-Suk Lim, Hong-Yul Paik. Overview of KOMPSAT-1 Data Applications. Geoscience and Remote Sensing Symposium, 2002: 2242 - 2244.
    [221]Young Jae Lim, Hong Gab Kim , Soo Jeong. A Design of Change Detection System Based on Visual Interpretation of High-resolution Satellite Imagery. Proceedings of Commission IV Joint Workshop "Challenges in Geospatial Analysis, Integration and Visualization II", 2003.
    [222]Zavoianu Fl., Caramizoiu A., Badea D. Study and Accuracy Assessment of Remote Sensing Data for Environmental Change Detection In Romanian coastal Zone of The Black Sea. Proceedings of the XXth ISPRS Congress, 2004, XXXV(B7):778-783.
    [223]Zhi-lin Li. Scale Issues in Geographical Information Science. Proceedings of International workshop on Dynamic&Multi-Dimensional GIS, 1997:143-158.
    [224]Zhu Q., Li D. R., Zhang Y. T., Zhong Z., Huang D. CyberCity GIS(CCGIS): Integration of DEMs, Image and 3D Models. Photogrammetric Engineering and Remote Sensing, 2002, 68(4): 361-367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700