用户名: 密码: 验证码:
甘薯若干矿物质营养元素含量的基因型差异及其环境效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘薯(Ipomoea batatas Lam.)是一种重要的粮食、饲料和工业加工原料作物,也是补充人体所需有益矿物质元素的重要食物源。本研究采用电感耦合等离子体原子发射光谱仪(ICP-OES)着重研究了21个甘薯品种(系)5个试点的矿物质营养元素铁、锌、钙和硒的含量,探讨了钾肥对甘薯铁、锌、钙和硒吸收的影响效应,并对主栽品种徐18不同部位矿物质营养元素含量进行了分析。其主要结果如下:
     1.甘薯中矿物质营养元素铁、锌、钙和硒含量平均含量分别为38.97、49.02、889.70、0.1472mg/kg(干基),相应的变幅依次为1.97~167.86、11.68~245.40、37.63~1925.6和0.01~0.51 mg/kg(干基)。
     2.对不同肉色甘薯矿物质营养元素含量分析发现,红黄心品种的铁、锌和硒含量普遍高于白心品种,而钙含量则以红心品种最高,白心种次之,黄心种最低。但显著性测验结果表明,不同肉色甘薯类型间这四种矿物质元素含量的差异没有达到显著水平。说明甘薯铁、锌、钙、硒含量不受甘薯肉色类型的显著影响。
     3.不同干率甘薯类型铁、锌、钙和硒含量有一定差异。低干品种铁、锌和钙含量普遍高于中干和高干品种。统计结果表明,除铁含量以外,锌和钙含量在低干和中高干之间差异达到显著水平。
     4.对不同熟性甘薯矿物质营养元素含量分析发现,甘薯铁元素含量中熟品种普遍较高,但中熟和晚熟品种锌和钙元素含量要高于早熟品种。显著性分析表明,不同熟性间铁和硒含量差异不显著。
     5.甘薯是喜钾作物,本研究发现,钾不仅对甘薯有着独特的增产效应,而且还可促进甘薯对铁、锌和钙的吸收。
     6.通过对徐18品种叶、叶柄、茎和块根中的铁、锌、钙和硒含量的分析发现,叶片和叶柄中铁含量要显著高于茎和块根,地上各部分的铁含量要显著高于块根。徐18叶片中的锌含量最高,显著高于其它各部分,块根中的锌含量最低,与其它部分差异明显。地上部钙含量也显著高于块根。硒元素的分布也有类似趋势。此外,对甘薯块根薯皮和薯心中铁、锌和钙含量分别分析发现,薯皮中这三种元素的含量均显著高于薯心。
    
     甘薯若干矿物质营养元素合量的基因型差异友其抹境致应
     7.对21个品种(系)5个地点种植的甘薯矿物质营养元素铁、锌和钙的AMMI
    模型分析结果表明,锌和钙含量的基因型、环境以及基因型与环境互作均方均达
    到极显著水平。铁含量的基因型以及基因型与环境互作达到极显著水平。双标图
    (b ipfot)分析结果进一步明确了不同甘薯品种(系)铁、锌和钙含量对不同地
    点的适应性和不同地点对不同品种的鉴别力。甘薯矿物质营养元素的基因型环境
    互作效应分析,有利于甘薯合理区划种植,对推动优质高效农业的发展有重要作
    用。
Sweetpotato, which contains large quantity of Iron(Fe), Zinc(Zn), Calcium(Ca) and Selenium(Se), is one of the principal food sources to supply the lack of favorable elements in human body. The Fe, Zn, Ca and Se contents in the storage roots of 21 different varieties of sweetpotato were determined by ICP-OES (The IRIS/AP Optical Emission Spectrometer). The contents of four mineral nutritional elements in sweetpotato under different potasium fertilization were also studied. Meanwhile, the distribution of the four mineral nutritional elements in sweetpotato plant and storage roots was identified. The main results were as follows:
    1. The average contents of Fe, Zn, Ca and Se in sweetpotato storage roots were 38.97, 49.02, 889.70,0.1472mg/kg (dry base) respectively, and their ranges were 1.97-167.86, 11.68-245.40, 37.63-1925.6 and 0.0100-0.5142 mg/kg (dry base).
    2. There were no significant differences in these four mineral contents among genotypes with different flesh color types. In general, the Fe, Zn and Se contents in orange and yellow type were higher than that of white type. The Ca content of orange type was the highest among all genotypes.
    3. There were marked differences in the Zn and Ca contents among genotypes with different dry matter content types. The Fe, Zn and Ca contents in low dry matter content types were higher than that of intermediary and high types.
    4. Significant differences in Fe, Zn and Ca contents of sweetpotato were observed among different growing period types. The Fe content of intermediary maturing types was the highest among all types. The Zn and Ca contents in intermediary and late maturing types are conspicuously higher than that of early maturing types. However, there is no marked difference of Se content between different growing period types.
    5. The Fe, Zn and Ca contents were influenced by the potassium fertilization.
    
    
    
    The Fe, Zn and Ca contents of the storage roots with potassium application were higher than that with non-potassium application. Moreover, the Fe, Zn and Ca contents in the storage roots increased with increase in the potassium application.
    6. Fe, Zn and Ca contents in the leaves and petioles were found to be much higher than that in other parts. Moreover, the Fe, Zn and Ca contents in the cortexes of storage roots were notably higher than that in the piths.
    7. The results of analysis by AMMI model showed that the genotype effect, environment effect and genotype X environment interaction effect in Zn and Ca contents of the storage roots reached the conspicuous level, and the genotype effect and genotype X environment interaction effect in Fe content reached the significent level. The results of biplot analysis indicated the stability and adaptability of these three elements in different varieties, the discriminability of locations were also exhibited.
引文
1.蔡妙珍,林成永,罗安程等。过量Fe2+对水稻生长和某些生理性状的影响.植物营养与肥料学报,2002,8(1):96-99.
    2.陈光财,王人民,张永鑫等.水稻锌营养高效基因型的生理特性.中国水稻科学,2003,17(2):161-165.
    3.陈铭,刘更另.高等植物的硒营养及在食物链中的作用.土壤通报,1996,27(2):88-89
    4.方兴汉,沈星荣.硒对茶树生长及物质代谢的影响.中国茶叶,1992(2):28-30
    5.樊龙江.作物基因型×环境互作效应俞区域试验点研究.1999,江大学博士论文,
    6.高素华,郭建平,王连敏等.气象条件对小麦中量元素和微量元素含量的可能影响.应用气象学报,2001,12(4):507-513
    7.郝明德,魏孝荣,党廷辉.早地小麦长期施用锌肥的增产作用及土壤效应.植物营养与肥料学报,2003,9(3):377-380
    8.孔蘩玲,张群远,杨付新等.棉花品种区域试验的精确度探讨.作物学报,1998,24(5):602-607
    9.李志刚,叶正钱,方云英等.供锌水平对水稻生长和锌积累和分配的影响.中国水稻科学,2003,17(1):61-66.
    10.梁颖,王三根.Ca~(2+)对低温下水稻幼苗膜的保护作用.作物学报,2001,27(1):59-64
    11.林建荣,石春海,吴明国.不同环境条件下粳型杂交稻稻米外观品质性状的遗传效应.中国水稻科学,2003,17(1):16-20
    12.刘宪虎,孙传清,王象坤.我国不同地区稻种资源的铁、锌、钙、硒四种元素的含量初析.北京农业大学学报,1995,21(2):138-142
    13.陆国权.甘薯品质性状的基因型与环境效应研究.气象出版社,2003
    14.卢少云 黎用朝 郭振飞等.钙提高水稻幼苗抗旱性的研究.中国水稻科学,1999,13(3):61-65
    15.梅紫青,屈锡泰,王放虎等.硒对人体的生物医学功效.杨凌职业技术学院学报,2003,2(2):46-49
    16.孟凡花,魏幼璋.水稻中铁的含量及其生物有效性研究进展.西北农林科技大学学报,2004,32(2):73-77.
    17.明道绪,黄玉碧,王超等,作物品种区域试验多年资料的联合方差分析法.作物学报,1997,23(1):44-49
    18.尚庆茂,李平兰.硒在高等植物中的生理作用.植物生理学通讯,1998,34(4):284-287
    19.宋亚娜,王贺,李春俭等.小麦大豆间作对大豆根系质外体铁库积累与利用的影响.作物学报,2000,26(4):462-466
    20.谭周.硒在水稻上的应用研究.湖南师范大学自然科学学报,1995,18(4):58-61
    21.唐启义,冯明光.实用统计分析及其计算机处理平台.中国农业出版社,1997.
    22.王俊,黄明,徐幸莲等.硒及富硒功能食品研究进展.江苏农业科学,2003(2):53-56
    23.王人民,杨肖娥,何慈信.不同锌离子活度下水稻锌高效基因型农艺特性的遗传分析.作物学报,2003,29(2):181-187.
    24.王人民,张永鑫,杨肖娥等.水稻锌高效营养特性的遗传分析.植物营养与肥料学报,2003,9(2):196-202.
    25.王小明,余小平等.IAA和Ca~(2+)对绿豆下胚轴切断伸长的影响及其相互关系.西北植物学报.1993,13(2):84
    
    
    26.吴建国.冬小麦对硒元素的吸收和分配实验.华中农业人学学报,1989,6(s):161-163
    27.徐辉碧,范华汉.生命科学中的微量元素.中国计量出版社,1991,193-197
    28.徐小燕,杨肖娥,赵红军等.不同耐缺锌水稻对HCO~(3-)的生理反应.作物学报,2002,28(5):633-637.
    29.伊虎英,郝玉环等.硒肥对低硒区谷子粒含硒量及产量的影响.土壤学报,1991,22(1):15-17
    30.俞世蓉,陆作镅,周毓珍等.小麦品种审定中品种合理评价问题.中国农业科学,1995,28(3):6-8
    31.张弛,吴永尧,彭振坤.植物硒的研究进展.湖北民族学院学报(自然科学版),2002,20(3):58-61
    32.张勇,何中虎,张爱民.应用GGE双标图分析我国春小麦的淀粉峰值粘度.作物学报,2003,29(2):245-251
    33.张泽,鲁成,向怀忠等.基于AMMI模型的品种稳定性分析.作物学报,1998,24(3):304-309
    34.郑绍建,杨志敏,胡霭堂.玉米、小麦细胞磷、锌营养及交互作用的研究.植物营养与肥料学报,1999,5(2):150-155
    35.周焱.Ca~(2+)对水稻幼苗生长的影响.贵州师范大学学报,2002,20(3):12-14
    36. Arvy ME Selenate and selenite uptake and translocation in bean plants (Phaseolus vulgaris). J Exp Bot, 1993, 23: 279-291
    37. Ballot D, Baynes RD, Bothwell TH, et al. The effects of fruit juices and fruits on the absorption of iron from a rice meal. Brit J Nutr, 1987,57:331-343.
    38. Bienfait H. Mechanisms in Fe-efficiency reactions of higher plants. J Plant Nutr, 1988,11:605-629.
    39. Briat JF, Fobisloisy I, Grignon N, et al. Cellular and molecular aspects of iron metabolism in plants. Biol. Cell, 1995,84:69-81.
    40. Cakrnak I and Marschner H. Enhanced superoxide radical production in roots of zinc-deficient plants. J Exp Bot, 1988,39:1449-1460.
    41. Cakmak I, Kalayci M, Ekiz H, et al. Zinc deficiency as a practical problem in plant and human nutrition in Turkey: a NATO-science for stability project. Field Crops Res, 1999,60:175-188.
    42. Chancy RL. Zinc phytotoxicity, in Zinc in soils and plants, Ed by Robson AD. Kluwer Academic Press, Dordrecht, 1993, 135-150.
    43. Chavez AL, Bedoya JM, Iglesias C, et al. Exploring the genetic potential to improve micronutrient content in cassava, in Improving human nutrition through agriculture: the role of international agricultural research. 1999, 10: 5-7
    44. Cormack R. Development of root hairs in angiosperms. Ⅱ.Botanical Reviews, 1962,28:446-464.
    45. C.Quijano-Guerta, G.J.D.Kirk, A.M.Portugal et al. Tolerance of rice germplasm to zinc deficiency. Field Crops Research, 2002, 76:123-130
    46. Deak M, Horvath GV, Davletova S, et al. Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat Biotechnol, 1999,17:192-196.
    47. DeMaeyer E and Adiels-Tegman M. The prevalence of anaemia in the world. Wld Hlth Statist Quart, 1985,38:302-316.
    48. Eide D, Broderius M, Fett J et al. A novel iron regulated metal transporter from plants
    
    identified by functional expression in yeast. Proc Natl Acad Sci USA, 1996,93:5624-5628.
    49. Eustice DC, Foster I, Kull F J, et al. In vitro incorporation of selenomethionine into protein by Vigna radiata polysomes. Plant Physiol, 1980, 66: 182-186.
    50. Flynn A and Cashman K. Calcium, in The mineral fortification of foods, Ed by Hurrell RF. Leatherhead Food RA, Surrey, UK, 1999, pp 18-53.
    51. Gibson DMand Ullah AH. Purification and characterization of phytase from cotyledons of germinating soybean seeds. Arch Biochem Biophys, 1988,260:503-513.
    52. Goto F, Yoshihara T, Shigemoto N, et al. Iron fortification of rice seed by the soybean ferritin gene [see comments]. Nat Biotechnol, 1999, 17: 282-286.
    53. Graham RD, Senadhira D, Beebe S. Iglesias C and MonasterioI, Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Fieol Crops Res, 1999,60:57-80.
    54. Grotz N, Fox T, Connolly E, et al. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA, 1998,95:7220-7224.
    55. Grusak MA and Dellapenna D. Improving the nutrient composition of plants to enhance human nutrition and health. Ann Rev Plant Physiol Plant Mol Biol, 1999,50:133-161.
    56. Grusak MA, Iron transport to developing ovules of Pisum sativum. Ⅰ. Seed import characteristics and phloem ironloading capacity of source regions. Plant Physiol, 1994,104:649-655.
    57. Guo J-C, Yin S-P. The effect on glutothione peroxidase activity and cultothione content of higher plants by selenium. Acta Bot Boreali-Occid Sin, 1998,18(4):533-537.
    58. Heaney RP and Weaver CM, Oxalate: effect on calcium absorbability. Am J Clin Nutr, 1989, 50: 830-832.
    59. Heaney RP, Weaver CM and Fitzsimmons MC. Soybean phytate content: effect on calcium absorption. Am J Clin Nutr, 1991, 53: 745-747.
    60. Horst W J, Currle C and Wissmeier AH. Differences in calcium efficiency between cowpea (Vigna unguiculata (L) Wap) cultivars, in Developments in plant and soil sciences. Genetic aspects of plant nutrition, Ed by Randall PJ, Delhaize E, Richards RA and Munns R. Kluwer Academic Press, Dordrecht, 1993,pp 59-68.
    61. Hurrell RF, Reddy M and Cook JD. Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. Brit J Nutr, 1999, 81: 289-295.
    62. Hurrell RF. Preventing iron deficiency through food fortification. Nutr Rev, 1997,55:210-222.
    63. Korshunova YO, Eide D, ClarkWG, GuerinotML and Pakrasi HB. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol, 1999,40:37-44.
    64. Loulergue C, Lebrun M and Briat JF. Expression cloning in Fe~(2+) transport defective yeast of a novel maize MYC transcription factor. Gene, 1998,225:47-57.
    65. Loneragan JF and Webb MJ. Interactions between zinc and other nutrients affecting the growth of plants, in Zinc in soils and plants, Ed by Robson AD. Kluwer Academic Press, Dordrecht, 1993, pp 119-134.
    66. Lozoff B, Jimenez E and Xolf A W. Long term development outcome of infants with iron deficiency. New Eng J Med 1991,325:687-694.
    67. MacPhail AP, Charlton R, Bothwell TH et al. Experimental fortificants, in Iron fortification
    
    of food, Ed by Clydesdale FMand Weimer KL. Academic Press, New York, 1985, pp 55-75.
    68. Marschner H. Mineral nutrition of higher plants, 2nd edn. Academic Press, London 1995.
    69. Marschner H. Zinc uptake from soils, in Zinc in soils and plants, Ed by Robson AD. Kluwer Academic Press, Dordrecht, 1993, pp59-78.
    70. Marta Vasconcelos, Karabi Datta, Norman Oliva et al. Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Science, 2003, 164: 371-378.
    71. McGrath SP, Effect of heavy metals from sewage sludge on soil microbes in agricultural ecosystems, in Toxic metals in soil-plant systems, Ed by Ross SM. John Wiley and Sons, Chichester, UK, 1994, pp 247-275.
    72. Miyake C and Asada K. Thylakoid bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product, monodehydroascorbate radicals in the thylakoids. Plant Cell Physiol, 1992,33:541-553.
    73. M.Victoria, Francisco Rincon, Manuel Amaro et al. Intrinsic variability of mineral composition of chickpea. Food Chemistry, 1998, 63(1): 55-60.
    74. NinhNX, Thissen J-P, Collette G et al. Zinc supplementation increases growth and circulatinginsulin-like growth factor Ⅰ (IGF-Ⅰ) in growth-retarded Vietnamese children. Am J Clin Nutr, 1996,63:514-519.
    75. Nordin BE. Calcium in health and disease. Food Nutr and Agr, 1997, 20: 13-26.
    76. Paola Lucca, Richard Hurrell, Ingo Potrykus. Approaches to improving the bioavailability and level of iron in rice seeds. Journal of Science of Food and Agriculture, 2001, 81: 828-834.
    77. Pauline T. Lieu, Marja Heiskala, Per A. Peterson et al. The roles of iron in health and disease. Molecular Aspects of Medicine, 2001, 22:53-66
    78. Pearson J N, Rengel Z, Jenner C F et al. Manipulation of xylem transport affects Zn and Mn transport into developing wheat grains of cultured ears. Physiol Plant, 1996,98(2):229-234.
    79. Pedersen B, Eggum B O. The influence of milling on the nutritive value of flour from cereal grains in rice. Plant Food Hum Nutr, 1983,33: 267-278.
    80. Pernollet J. Protein bodies of seeds: Ultrastructure, biochemistry, biosynthesis and degradation. Phytochem, 1978,17:1473-1480.
    81. Prased AS. Zinc deficiency in women, infants and children. J Am College of Nutr, 1996, 15: 113-120.
    82. Quintana JM. Harrison HC, Nienhuis J, Palta JP and Grusak MA, Variation in calcium concentration among sixty S1 families and four cultivars of snap bean (Phaseolus vulgaris L).J Am Soc Hortic Sci, 1996,121:789-793.
    83. Reid R, Brookes J. Tester M and Smith F, The mechanism of zinc uptake in plants Characterisation of the low-affinity system. Planta, 1996,198:39-45.
    84. Rengel Z, Batten GD and Crowley DE. Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Res, 1999,60:27-40.
    85. Ricardo C.R., Pablo S.H., Elena M et al. Mineral concentrations in cultivars of Potatos. Food Chemistry, 2003, 83: 247-253.
    86. Ritchey KD, Silva JE and Costa UF. Calcium deficiency in clayey B Horizons of savanna oxisols. Soil Sci, 1982,133:378-382.
    87. Rivera JA, Ruel MT, Santizo MC et al. Zinc supplementation improves growth of stunted rural Guatemalan infants. J Nutr, 1998, 128: 556-562.
    88. Robinson N J, Procter CM, Connolly EL et al. A ferric-chelate reductase for iron uptake from
    
    soils. Nature, 1999,397:694-697.
    89. Ruz M, Castillo-Duran C, Lara X, et al. A14-mo zinc-supplementation trial in apparently healthy Chilean preschool children. Am J Clin Nutr, 1997,66:1406-1413.
    90. Satonen JT, Nyyssonen K, Korpela H et al. High stored iron levels are associated with excess risk of myocardial infarction in Eastern Finnish men. Circulation, 1992,86:803-811.
    91. Samotus B and Schwimmer S. Phytic acid as a phosphorus reservoir in the developing potato tuber. Nature, 1962,194:578-579.
    92. Samuelsen AI, Martin RC. Mok DW and Mok MC, Expression of the yeast FRE genes in transgenic tobacco. Plant Physiol, 1998,118:51-58.
    93. Sandberg AS, Hulthen LR and Turk M. Dietary Aspergillus niger phytase increases iron absorption in humans. J Nutr, 1996,126:476-480.
    94. Sandstrom B. Bioavailability of zinc. Eur J Clin Nutr 51, Suppl, 1997, 17-19.
    95. Scrimshaw NS. Functional consequences of iron deficiency in human populations. J Nutr Sci Vitaminol, 1984,30:47-63.
    96. Shacklette, H.T. Elements in Fruits and Vegetables from Areas of Commercial Production in the Conterminous United States. Geol. U.S. Government Printing Office, 1980
    97. Smirnoff N. The function and metabolism of ascorbic acid in plants. Ann Bot, 1996,78:661-669.
    98. Smith BN. Iron in higher plants: storage and metabolic rate. J Plant Nutr, 1984,7:759-766.
    99. Takahashi M, Purification. Characterization and DNA sequencing of nicotianamine aminotransferase (Naat) expressed in Fe deficient rice roots. Plant Nutrition-for Sustainable Food Production and Environment. Kluwer Academic Publisher, 1997,279-283.
    100. Taylor PG, Mendez-Castellanos H, Martinez-Torres C et al. Iron bioavailability from diets consumed by different socioeconomic strata of the Venezuelan population. J Nutr, 1995,125:1860-1868.
    101. Terry N and Low G. Leaf chlorophyll content and its relation to the intracellular location of iron. J Plant Nutr, 1982,5:301-310.
    102. Theil EC, Burlen JW and Beard JL. A sustainable solution for dietary iron deficiency through plant biotechnology and breeding to increase seed ferritin control. Eur J Clin Nutr, 1997,51: 28-31.
    103. Udoessien EI and Aremu CY, Mineral composition of selected Nigerian foodstuffs. J Food Comp Anal, 1991,4:346-353.
    104. Van der Zaal BJ, Neuteboom LW, Pinas JE et al. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol, 1999,119:1047-1055.
    105. Van Wuytswinkel O, Vansuyt G, Grignon N et al. Iron homeostasis alteration in transgenic tobacco overexpressing ferritin. Plant J, 1999,17:93-97.
    106. Velmurugu Ravindran, Ganesharanee Ravindran, Ramish Sivakanesan et al. Biochemical and Nutritional Assessment of Tubers from 16 Cultivars of Sweetpotato (Ipomoea batatas L.). J. Agric. Food Chem, 1995,43: 2646-2651.
    107. Welch R and Graham RD. A new paradigm for world agriculture: meeting human needs.Productive, sustainable, nutritious. Field Crops Res. 1999,60:1-10.
    108. Welch R, Norvell W. Schaefer S, Shaff J and Kochian L, Induction of iron(Ⅲ) and copper(Ⅱ) reduction in pea (Pisumsativum L.) roots by Fe and Cu status: Does the root-cell
    
    plasmalemma Fe(Ⅲ)-chelate reductase perform a general role in regulating cation uptake? Planta, 1993,190:555-561.
    109. Welch RM. Zinc concentrations and forms in plants for humans and animals, Zinc uptake from soils, in Zinc in soils and plants, Ed by Robson AD. Kluwer Academic Press, Dordrecht, 1993,pp183-196.
    110. William A. House. Trace Element Bioavailability as Exemplified by Iron and Zinc. Field Crops Research, 1999, 60:115-141
    111. Yang X, Ye ZQ, Si Ch H et al. Genotypic differences in concentrations of iron, manganese, copper and zinc in polished rice grains. J Plant Nutr, 1998,21:1453-1462.
    112. Yi Y and GuerinotML. Genetic evidence that induction of root Fe(Ⅲ) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J, 1996,10:835-844.
    113. Yilmaz A, Ekiz H, Torun Bet al. Different zinc application methods on grain yield, and zinc concentrations in wheat grown on zinc defcient calcareous soils in Central Anatolia. J Plant Nutr, 1997,20:461-471.
    114. Y.-G.ZHU, S.E.SMITH and F.A. SMITH et al. Zinc-phosphorus interactions in two cultivars of Spring Wheat(Triticum aestivum L.) differing in P uptake efficiency. Annals of Botany, 2001, 88: 941-945.
    115. Zayed A, Lytle CM, Terry N. Accumulation and volatilization of different chemical species of selenium by plants. Planta, 1998,206:284-292.
    116. Zhang F, Romheld V and Marschner H. Release of zinc mobilizing root exudates in different plant species as affected by zinc nutritional status. J Plant Nutr, 1991,14:675-686.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700