金属性与半导体性碳纳米管的密度梯度分离法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为分离金属性与半导体性单壁碳纳米管,本文以蔗糖为梯度介质对密度梯分离方法进行系统的研究。
     本文采用YNi2合金为催化剂使用电弧放电的方法制备单壁碳纳米管。分别采用硝酸回流法和表面活性剂提纯单壁碳纳米管,硝酸回流法主要经过超声、回流、水洗、研磨、焙烧。而用表面活性剂提纯单壁碳纳米管主要经过超声、回流、水洗、再超声、超速离心。分别用可见-近红外光谱、拉曼光谱、热重分析、扫描电镜进行表征,发现用硝酸和表面活性剂处理后都可以得到较纯净的单壁碳纳米管。而且对表面活性剂提纯单壁碳纳米管在离心力和离心时间等方面进行初步的讨论,优化实验条件,提高分离效率。实验结果表明,用表面活性剂不仅可以纯化单壁碳纳米管,而且其离心液可以用于密度梯度分离。
     本文分别从物理、化学和生物的角度介绍了目前分离金属性和半导体性单壁碳纳米管的方法,密度梯度分离碳纳米管的方法优于其它的方法,能够将不同导电性单壁碳纳米管分离出来,并且在分离的数量上优于所有其它的分离方法。并对密度梯度分离法的影响因素进行初步研究,采用可见-近红外光谱和拉曼光谱对分离的单壁碳纳米管进行了表征。在离心管不同层,获得金属性单壁碳纳米管的最高纯度为68.49%,而半导体性单壁碳纳米管最高纯度为96.47%。密度梯度分离法不仅可以按不同的导电性排列单壁碳纳米管,而且可以按直径大小排列单壁碳纳米管,并对其初步讨论。
For the separation of metallic and semiconducting single-walled carbon nanotubes(SWCNTs), In this paper, the method of density gradient separation has been systematic investigated in gradient medium of sucrose .
     In this paper, the SWCNTs have been prepared with the catalyst of YNi2 alloy via arc discharge. We purify the SWCNTs with nitric acid reflux and surfactant, respectively, and the method of nitric acid reflux mainly involves the ultrasound, reflux, washing, grinding, roasting. The samples have been characterized by near infrared visible spectroscopy, Raman spectroscopy, thermal analysis, scanning electron microscopy and it is found that the higher pure SWCNTs can be obtained via nitrate and surfactant treatment. Furthermore the aspects of centrifugal force and centrifugation time have been initially discussed on purifying SWCNTs with surfactant, in order to optimize experimental conditions and increase the separation efficiency. The results show that the surfactant can not only purify SWCNTs, but also its solution of centrifugation can be used for separation of density gradient.
     To begin with we will provide a brief introduction on the current methods of the separation of metallic and semiconducting SWCNTs in the field of chemical, physics and biological. Also, the method of separation of carbon nanotubes(CNTs) with density gradient can be equipped to separate from SWCNTs of different electrical conductivity, both of the density gradient method and quantity of separation of CNTs are superior to the others. In addition, the influencing factors of method of density gradient separation and the samples of SWCNTs have been preliminary studied and characterized by visible- near infrared spectroscopy and Raman spectra, respectively. In different layers of solution in centrifuge tube, we have obtained metallic SWCNTs of the highest purity of 68.49% and semiconducting SWCNTs of the high purity up to 96.47%. The method of density gradient can not only be used to arrange SWCNTs by different electroconductibility, but also can be ordered to SWCNTs by the diameter, and allow be initially discussed.
引文
[1] H.W.Kroto,J.R.Heath, et al.C60:Buckyminister-fullerene[J]. Nature,1985, 318 (14): 162-163.
    [2] J.B. Howard, J.T. McKinnon, Y. Makarovsky, et al. Fullerenes C60 and C70 in flames [J]. Nature,1991,352:139-141.
    [3] S. Iijima. Helical microtubules of graphitic carbon[J]. Nature,1991,354(7): 56-58.
    [4] S. Iijima, and T. Ichibashi.Single-Shell Carbon Nanotubes of l-nm Diameter [J].Nature,1993,363(6430): 603-605.
    [5] D.S.Bethune, C.H. Kiang, M.S. Devries, et al. Cobalt-Catalysed Growth of Carbon Nanotube with Single-Atomic-Layer walls[J], Nature,1993, 36 3:605-607.
    [6] M.S. Dresselhaus, P. Avouris. Introduction to carbon materials research [J]. Carbon Nanotubes, 2001, 80:1-9.
    [7] X. Zhou, JJ. zhou, ZC. OuYang. Strain energy and Young's modulus of single- wall carbon nanotubes calculated from electronic energy-band theory[J]. Phys Rev B,2000, 62(20):13692-13696
    [8] R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanot ubes[M]. London, Imperial College Press, 1998, chapter 10.
    [9] C. Kamal, T. K. Ghanty, A. Banerjee,el at. The Van der Waals Coefficients Between Carbon Nanostructures and Small Molecules: A Time-dependent Density Functional Theory Study[J]. Chem. Phys, 2009, 131(16):164708.
    [10] A. Bachtold, C. Strunk, J. P. Salvetat, et al. Aharonov-Bohm oscillations in carbon nanotubes[J] Nature 1999, 397, 673-675.
    [11] S.Zaric, G.N. Ostojic, J. Kono,et al. Optical Sigatures of the Aharonov-Bohm Phase in single-walled carbon nanotubes[J]. Science 2004, 304(5674):1129 -1131.
    [12] S. Roche, G. Dresselhaus, M.S. Dresselhaus, R.Saito. Aharonov-Bohm spectral features and coherence lengths in carbon nanotubes[J]. Phys.Rev.B 2000,62, 16092-16099.
    [13] T. W. Ebbesen,P. M. Ajayan, Large-scale Synthesis of Carbon Nanotubes[J]. Nature, 1992, 358 (6383), 220-222.
    [14] T. Guo, P. Nikolaev, A. Thess, et al. Catalytic growth of single-walled nanotubes by laser vaporization[J]. Chem. Phys. Lett, 1995, 243(12):49-54.
    [15] M. Endo, K. Takeuchi, S. Igarashi, et al. Stacking Nature of Graphene Layers in Carbon Nanotubes and Nanofibres[J]. J. Phys. Chem. Solids, 1993, 54(12), 1841-1848.
    [16] C. Jourent,W.K. Master,P. Beier,et al. Large-scale Production of single Walled Carbon Nanotubes by the Eleetric-arc Technique[J]. Nature,1997, 388, 756-758.
    [17] C. Liu, H.T. Cong, F. Li, H.M. Cheng. Semi-continuous Synthesis of single-walled Carbon Nanotubes by a Hydrogen Arc Discharge Method,Carbon,1999, 37(11):1865-1868.
    [18] A. Thess, R. Lee, P. Nikolaev, et al. Crystalline Ropes of metallic carbon nanotubes[J]. Science,1996 (273):483-487
    [19] T. Guo, P. Nikolaev, A.G. Rinzler, et al. self-assembly of Tubular fullerenes.[J] J.physs.Chem.1995, 99(27):10694-10697.
    [20] F. Kokai, K.T. akakashi, D. Kasuya,et al. Synthesis of single-wall carbon nanotubes by millisecond-pulsed CO2 Laser vaporization at room temperature[J]. Chem phys lett,2000, 332(5-6):449-454.
    [21] H. Hu, B. Zhao, M.E. Itkis, and C. Robert. Haddon. Nitric Acid Purification of Single-Walled Carbon Nanotubes[J]. J. Phys. Chem. B 2003, 107(50):13838 -13842
    [22] T.W. Ebbesen, Pmajayan,H. Hiura, et al. Purification of Nanotubes[J] Nature, 1994, 367(10):519-522.
    [23] J.L. Zimmerman, R.K. Bradley, C.B. Huffman, et al. Gas-Phase Purification Of Single-Wall Carbon Nanotubes[J]. Chem. Mater. 2000, 12,1361-1366.
    [24]] K. Ralph, H. Frank, V.L. Hilbert, et al. Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes[J]. Science,2003, 301 (5631):344-347.
    [25] GC. Philip, S.A. Michael, P. Avouris. Engineering carbon nanotubes and nanotube circuits usingelectrical breakdown[J]. Science,2001,292(5517) :706—709.
    [26] Cheol-Min Y,Jin S,Park,K H.An.Selective removal of metallic single-walled carbon nanotube with small diameters by using nitric and sulfuric acids[J].J Phys Chem B,2005, 109(41):19242-19248.
    [27] C. Zhihong, D. Xu, D. Mao-Hua, et a1. Bulk separative enrichment in metallic or semiconducting single-walled carbon nanotubes[J]. Nano Lett,2003,3(9): 1245-1249.
    [28] L. Huaping, Z. Bing. L. Yi, et a1. Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes[J]. J Am Chem Soc,2004, 126(4),1014-1015.
    [29] C. Debjit, G. Izabela, P. Fotios. A Route for bulk separation of semiconducting from metallic single-wall carbon nanotube[J]. J Am Chem Soc,2003, 125(11):3370-3375.
    [30] M. Yutaka, K. Shin, K. Makoto. Large-scale separation of metaltic and semiconducting single-walled carbon nanotubes[J]. J Am Chem Soc,2005, 127(29): 10287-10296.
    [31] M. Yutaka, K. Makoto, H. Masahiro, et a1. Dispersion and separation of small-diameter single-walled carbon nanotubes[J]. J Am. Chem. Soc, 2006,128(37): 12239-12242.
    [32] M. Cecilia, I. Nicolas, Separation of semiconducting from metallic carbon nanotube by selective functionalization with azomethine ylide[J]. J Am. Chem. Soc, 2006, 128(20): 6552-6653.
    [33] M. Zheng, J. Anand , D.S. Ellen, et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Nature,2003, 302(5650), 1545-1548.
    [34] M.S. Strano, M. Zheng, A. Jagota, et a1. Understanding the nature of the DNA-assisted separation of single-walled carbon nanotubes using fluorescence and Raman spectroscopy [J]. Nano Lett, 2004, 4(4):543-550.
    [35] K.S. Kim., D.J. Bae, J.R. Kim, K.A. Park. Modification of electronic structures of a carbon nanotube by hydrogen functionalization[J]. Adv. Mater, 2002, 14(24):1818-1821.
    [36] An.K.H. Heo, J.G. Jeon, K.G. Bae, D.C.S Jo. X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes[J]. Appl.Phys. Lett,2002, 80(22):4235-4237.
    [37] K. Kamaras., M.E. Itkis, H. Hu, et al. Covalent Bond Formation to a Carbon Nanotube Metal[J]. Science,2003, 301(5639):1501.
    [38] G.T. Liu, Y.C. Zhao, K.H. Zheng. et al. Coulomb Explosion: A Novel Approach to Separate Single-Walled Carbon Nanotubes from their Bundle[J]. Nano Lett,2009, 9(1):239-244.
    [39] O'Connell, M.J. Bachilo, S.M. Huffman, et al. Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes[J]. Science,2002, 297(5581): 593–596.
    [40] Arnold, M. S. Green, A. A. Hulvat, J. F. Stupp, S. I. Hersam, M. C. Sorting Carbon Nanotubes by Electronic Structure Using Density Differentiation[J]. Nat. Nano,2006, 1, 60-65.
    [41] N. Nair, W.J. Kim, R.D. Braatz, M.S. Strano. Dynamics of Surfactant -Suspended Single-Walled Carbon Nanotubes in a Centrifugal Field[J]. Langmuir,2008, 24(5):1790-1795.
    [42] Niyogi, S. Densmore, C.G. Doorn, S. K. Electrolyte Tuning of Surfactant Interfacial Behavior for Enhanced Density-Based Separations of Single-Walled Carbon Nanotubes[J]. J. Am. Chem. Soc, 2009, 131, 1144–1153.
    [43] Y. Feng, Y. Miyata, K. Matsuishi, and H. Kataura. High-Efficiency Separation of Single-Wall Carbon Nanotubes by Self-Generated Density Gradient Ultracentrifugation[J]. J. Phys. Chem. 2011, 115(5):1752-1756
    [44] Alexander, L. Antaris, J.W.T. Seo, et al Sorting Single-Walled Carbon Nanotubes by Electronic Type Using Nonionic, Biocompatible Block Copolymers[J]. ACS Nano.2010, 4(8):4725-4732.
    [45] Kazuhiro, Yanagi, Toshie, Iitsuka, et al. Separations of Metallic and Semiconducting Carbon Nanotubes by Using Sucrose as a Gradient Medium[J]. J.Phys. Chem. C, 2008, 112(48):18889-18894.
    [46] T.W. Odom, J.L. Huang, P. Kim, et al. Structure and Electronic Properties of Carbon Nanotubes[J]. J. Phys. Chem. B, 2000, 104(13),2794–2809
    [47] Baughman, R. H. Zakhidov, A. A. de, Heer. W. A. Carbon Nanotubes--the Route toward Applications[J]. Science,2002, 297(5582):787–792.
    [48]成会明.纳米碳管制备、结构、物性及应用[M].北京:化学工业出版社,2002.
    [49] C.Dekker. Carbon Nanotubes as Molecular Quantum Wires[M]. Phys. Today, 1999, 52(5): 22–28.
    [50] Q. Cao, J.A. Rogers, Ultrathin Films of Single-WalledCarbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects[J]. Adv. Mater,2009, 21(1):29–53.
    [51]王青,戴剑锋,李维学等.碳纳米管的提纯及表征[J],兰州理工大学学报,2006, 32(3):157-160.
    [52] Endo. M,KrotoH. W. Formation of carbon fibers. [J].Phys.Chem,1992,96(17):6941-6949.
    [53] S.Iijima. Growth of Carbon nanotubes[J]. mater. Sci. Eng. B,1993, 19(1-2):17 2 -180.
    [54] S.Arepalli, P.Nikolaev, O.Gorelik,et al. Protocol for the characterization of single- wall carbon nanotube material quality[J]. Carbon, 2004, 42:1783-1791.
    [55] A. Yu, E. Bekyarova, M.E. Itkis, et al. Application of Centrifugation to the Large-Scale Purification of Electric Arc-Produced Single-Walled Carbon Nanotubes[J]. J Am Chem Soc. 2006, 128(30):9902-9908.
    [56] H. Hu, A. Yu, E. Kim, et al. Influence of the Zeta Potential on the Dispersability and Purification of Single-Walled Carbon Nanotubes[J]. J. Phys. Chem. B. 2005, 109(23):11520-11524.
    [57] H. Kataura, Y. Kumazawa, Y. Maniwa, et al. Diameter Control of Single-walled Carbon Nanotubes[J]. Carbon, 2000, 38(11-12): 1691-1697.
    [58] M.E. Itkis, D.E. Perea, S. Niyogi, et al. Purity Evaluation of As-Prepared Single-Walled Carbon Nanotube Soot by Use of Solution-Phase Near-IR Spectroscopy[J]. Nano Lett,2003, 3(3):309-314.
    [59]徐中辉,邱复生,牛海波等.单壁碳纳米管的提纯及拉曼光谱分析[J].西南民族大学学报,2007, 32(2):368-371.
    [60] J. kurti, G. Kresse, H. Kuzmany. First-principles calculations of the radial breathing mode of single - wall carbon nanotubes[J]. Phys. Rev. B, 1998, 58(14):8869-8872.
    [61] A.M. Rao, E. Richter, S.J. Bandow, et al. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes[J]. Science, 1997, 275(5297):187-191.
    [62] J. Kurti, A. Gruneis, H. Kuzmany, Double resonant Raman phenomena enhanced by van Hove singularities in single-wall carbon nanotubes[J]. Phys. Rev. B, 2002,65(16):165433.1-165433.9.
    [63] A. Anson, J.M. Gonza, L.Dominguez, et al. Separation of single-walled carbon nanotubes from graphite by centrifugation in a surfactant or in polymer solutions[J].Carbon, 2010,48(10): 2917-2924.
    [64] A. Thess, R. Lee, P. Nikolaev, et al. Crystalline ropes of metallic carbon nanotubes[J]. Science. 1996, 273(2874):483–487.
    [65]路生满,王玉林,何宝俊.用于日立水平转头的等速蔗糖密度梯度液的制备[J].中国科大学学报,1992, 21(3):187-189.
    [66]刘立仁,赵华路,张俊武.氯化钠密度梯度离心法制备用于显微注射的外源DNA片段[J].遗传HEREDITAS,2003, 25(5):587-590.
    [67]杨苏.密度梯度离心技术的探讨[J].宁德师专学报,1998, 10(4):295-297
    [68]薛清刚,罗挽涛,宋庆云等.酒石酸钾-甘油密度梯度离心法纯化对虾肝胰腺细小病毒的方法学研究[J],水产学报,1997. 21(1):1-5.
    [68] P. Tangney, R.B. Capaz, C.D. Spataru, et al. Structural Transformations of Carbon Nanotubes under Hydrostatic Pressure [J]. Nano Lett, 2005, 5(11):2268-2273.
    [69] Rueckes. T, Kim. K, Joselevich. E, et al. Carbon Nanotube-based Nonvolatile Random Access Memory for Molecular Computing[J]. Science, 2000, 289(5476): 94-97.
    [70] M.C. Hersam. Progress Towards Monodisperse Single-Walled Carbon Nanotubes[J]. Nat. Nanotechnol, 2008, 3,387–394.
    [71] L. Huang, H. Zhang, B. Wu. A Generalized Method for Evaluating the Metallic-to-Semiconducting Ratio of Separated Single-Walled Carbon Nanotubes by UV-vis-NIR Characterization[J]. Phys. Chem. C, 2010, 114,12095–12098
    [72] A.A. Green, M.C. Hersam. Colored Semitransparent Conductive Coatings Consisting of Monodisperse Metallic Single-Walled Carbon Nanotubes[J]. Nano Lett, 2008, 8, (5)1417–1422.
    [73] K. Yanagi, Y. Miyata, H. Kataura. Optical and Conductive Characteristics of Metallic Single-Wall Carbon Nanotubes with Three Basic Colors; Cyan, Magenta, and Yellow[J]. Appl.Phys. Exp, 2008, 1,034003.
    [74] L.M. Peng, Z.L. Zhang, Z.Q. Xue, et al. Stability of carbon nanotubes: How small can they be?[J]. Phys Rev Lett, 2000, 85(15):3249-3252.
    [75] N.Wang, Z.K. Tang, G.D. Liet, et al. Materials science:Single-walled 4? carbon nanotube [J ]. Natare, 2000, 408(2):50-51.
    [76] P. Nikolaev, M.J. Bronikowski, R.K. Bradley, et al. Gas-phase catalytic growth of single- walled carbon nanotubes from carbon monoxide[J]. Chemical Physics Letters 1999, 313, 91-97.
    [77] B. Kitiyanan, W.E. Alvarez, J.H. Harwell, et al. Controlled Production of single-Wall Carbon Nanotubes by Catalytic Decomposition of CO on BimetallicCoMo Catalysts[J]. Chem. Phys. Lett,2000, 317.,97.
    [78]蒋萍初,陆依蓉,王一峰.离子型表面活性剂的克拉夫点及其影响因素的研究[J].上海师范大学学报,1996,25, (2): 45-49.
    [79] Arnold, M. S. Stupp, S. I. Hersam, M. C. Enrichment of Single-Walled Carbon Nanotubes by Diameter in Density Gradients[J]. Nano Lett, 2005, 5(4):713–718.
    [80] Erik H. Haroz, William D. Rice, Benjamin Y. Lu et al. Enrichment of Armchair Carbon Nanotubes via Density Gradient Ultracentrifugation: Raman Spectroscopy Evidence [J] ACS Nano,2010, 4(4):1955–1962.
    [81]林元喜,赵健仓.垂直转头的特点及应用[J]仪器仪表学报,1991, 12(1):61-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700