氧化锌阵列的制备及其在光电池中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种宽带隙的半导体材料,具有优良的物理和化学性质,是目前光电子研究领域的热点。电化学自组装方法具有沉积速率高、操作温度低、可以在复杂衬底表面生长,成本低和环境友好等优点,而在材料合成领域受到广泛重视。本论文针对目前氧化锌材料研究领域的热点和难点,利用电化学自组装的方法在氧化锌材料制备和光电性能的应用方面开展了一系列的工作:
     详细研究了利用电化学自组装方法制备氧化锌薄膜和纳米粒子,探索了溶液化学法制备氧化锌纳米粒子的生长机理,讨论了制备条件对氧化锌纳米粒子的结构和光学性质的影响。
     将聚环氧乙烷(PEO)引入到电化学沉积电解液中,利用电化学方法控制ZnO的成核,利用PEO控制ZnO晶体的生长,获得分散的、具有高度c-轴取向的ZnO六棱柱,提出了PEO辅助定向生长ZnO纳米棒的机理,认为PEO与ZnO不同晶面的吸附强度不同,导致了ZnO侧面和端面的生长活性不同,从而促进了ZnO晶体的各向异性生长。
     定向生长的ZnO纳米棒阵列薄膜可用于聚合物太阳能电池结构,用以提高体系的电荷传输效率从而提高光伏电池效能。为此,我们制备了结构为ITO/ZnO/PAT6:PCBM/Au的本体异质结型聚合物光伏电池,当在器件结构中插入定向生长的ZnO纳米柱多孔薄膜层,电池的光伏性能有很大的改善,经过ZnO纳米柱生长分布密度和整体装置退火条件的优化分析,我们得到了光电转换效率为1.71%的的光伏电池。
     为了更加清楚的了解ZnO层在光伏电池结构中的作用,我们以相互浸润互穿网络型层层结构光伏装置为研究对象,分析对比了含不同结构ZnO层的器件性能,结果表明,定向生长的ZnO纳米柱多孔结构相比于平整结构的ZnO层更加有利于提高光电池的光伏性能;制备了含双层结构氧化锌的结构为ITO/double ZnO/C60/PAT6/Ag的光电池,在AM1.5(光强为100 mWcm-2)光照射下得到的光电转换效率为1.31%,短路电流为7.74 mAcm-2,开路电压为0.40 V和填充因子为41%。
     结合光电导原理,初步建立了关于不同结构ZnO薄膜对光电池效率的贡献的理论模型,分析了不同结构的氧化锌对光伏装置效能贡献的程度。并且以我们的理论分析为依据,提出了对该课题进一步研究的方向。
Zinc oxide is a kind of wide band-gap semiconductor which has attracted extensive interest in the field of electrical and optical devices because of its multi-functionality. Electrochemical assembly is a simple and convenient method, has been extensively used in the synthesis of many different types of materials. It has several advantages such as low processing temperature, higher deposition rates, controllable film thickness and morphology.
     This dissertation was focused on the growth of ZnO thin films and nanoparticles using electrochemical assembly method, studying their physical properties, such as the structural, optical and electrical properties.
     Nonionic polymer poly (ethylene oxide) (PEO) was introduced into the zinc nitrate electrolyte to modulate the crystal growth and the morphology of ZnO by electrodeposition process. The PEO assistant oriented grown mechanism was put forward in this paper, different attached strength according to different crystal facets result in anisotropic grown activities between side facet and end facet.
     The ZnO arrays prepared by the electrochemical assembly method can be used as electron transportor in the solar cell, which can enhance the device’s performance. The bulk-junction type solar cell with the structure ITO/ZnO/PAT6:PCBM/Au was successfully fabricated. The cell’s photovoltaic performance was improved by inserting the oriented ZnO nanorod layer in the device. A device with a power coversion efficiency of 1.71% was obtained after optimizing the distribution of ZnO nanorods and the device’s annealing condition.
     In order to explore the effect of ZnO in the device further, different interpenetrating type devices with different structured ZnO were compared. The results implied the oriented porous structured ZnO has more contribution to the device’s performance compared to the flat structured ZnO. Double-layer ZnO structure was firistly used in the interpenetrating layer-layer type solar cell with the structure of ITO/double ZnO/C60/PAT6/Ag. Under AM1.5 irradiation, the device exhibits the excellent performace with a power coversion efficiency of 1.31%, a short circuit current of 7.74 mAcm-2, a open circuit voltage of 0.40 V and a fill factor of 41%.
     According to the photoconductive theory, a theoretic model about estimating the contribution value to the device’s photovoltaic performance was set up. Beae on this model, different devices with different structured ZnO were analysed, some new plans according to this topic was put forward.
引文
[1]顾约伦,全球能源工业的新机遇,高桥石化,2005, 20(1):55~56
    [2]子荷,世界环境日:我们一直在行动,中国减灾,2005,6:24~26
    [3]朱跃中,郁聪,当前我国能源消费形势分析,中国能源,2004,26(7):13~15
    [4]邵强,我国能源现状及可再生能源开发问题,西部探矿工程,2005,17(4):208~209
    [5] Zhaedi A, Solar photovoltaic energy: latest developments in the building integrated and hybrid PV systems,Review Energy, 2006, 31(5): 711~718.
    [6] Bunre A, Jenog G, Liddell P A, Sototmura T, Mooer T A, Mooer A L, Gust D, Porphyrin-sensitized nanoparticulate Ti02 as the photo anode of a hybrid photoelectrochemical biofuel cell, Langmuir, 2004, 20: 8366~8371.
    [7]Kazmerski L L, Solar photovoltaics R & D at the tipping point: A 2005 technology overview, Journal of Electron Spectroscopy and Related Phenomena, 2006, 150(2-3): 105~135.
    [8]应根裕,光电导物理及其应用,电子工业出版社,1990
    [9]Chapin D M, Fuller C S, Pearson G L, A new silicon p-n junction photocell for converting solar radiation into electrical power, Journal of Applied Physics, 1954, 25(5): 676~77
    [10]梁宗存,沈辉,太阳能电池研究进展,能源工程, 2004,4: 8~11.
    [11]倪萌,Leung M K, Sumathy K,太阳能电池研究的新进展,可再生能源2004,114(2): 9~11,
    [12]Goetzberger A, Hebling C, Schock H W, et al. Photovoltaic materials, history,status and outlook, Materials Science and Engineering, 2003, 40:l~46
    [13]Konovalov I, Material requirements for CIS solar cells, Thin Solid Films, 2004, 451-452(4): 413~419
    [14]Andersson B A, Azar C, Holmberg J, Material constraints for thin-film solar cells, Enegry, 1998, 23(5): 407~411
    [15]胡晨明,太阳电池,北京:北京大学出版社,1990,55~58
    [16]席珍强,杨德仁,吴丹,单晶硅太阳电池的表面织构化,太阳能学报,2002,23(2): 285~289
    [17]王鹤,杨宏,单晶硅太阳电池纳米减反射膜的研究,固体电子学研究与进展,2003,23(3): 316~319
    [18]赵玉文,太阳电池新进展术,物理,2004,33(2): 99~105
    [19]王晓晶,班群,沈辉,硅太阳电池材料的研究进展,能源工程,2002,4: 28~31
    [20]邱春文,石旺舟,PECVD法低温沉积多晶硅薄膜的研究,液晶与显示,2003,18(3): 201~204
    [21]李维刚,许颖,区熔再结晶制备多晶硅薄膜太阳电池,北京师范大学学报:自然科学版,2001,37(6): 746~749
    [22]刘祖明,陈庭金,多晶硅太阳电池,太阳能,2000, l: 3~9
    [23]王文静,多晶硅薄膜太阳电池,太阳能,1998, 3: 9~11
    [24]张力,薛钮芝,非晶硅太阳电池的研发进展,太阳能,2004, 2: 24~26
    [25]郝国强,张德贤,非晶硅太阳能电池的新进展,飞通光电子技术,2002, 2(4): 190~193
    [26]宋红,耿新华,非晶硅太阳电池的原理,太阳能,2002, 4: 13~14
    [27]耿新华,孙云,王宗畔,薄膜太阳电池的研究进展,物理学和经济建设,1999, 28(2): 96~102
    [28]雷永泉,石群,石永康,新型能源材料,天津大学出版社,2000, 88~91
    [29]Enrnqueza J P, Mathewa X, Hern G P, CdTe/CdS Solar cells on flexible molybdenum substrates, Solar Energy Materials and Solar Cells, 2004, 82(l-2): 307~314
    [30]Romeo N, Bosio A, Tedeschi R, A highly efficient and stable CdTe/CdS thin film solar cell,Solar Enegry Materials and SolarCells, 1999, 58(2): 209~218
    [31]Bonnet D, Manuafcutring of CSS CdTe solar cells, Thin Solid Films, 2000, 361-362: 547~552
    [32]Buahuis G J, Schermer J J, Mtllder P, Thin film GaAs solar cells with increased quantum efficiency due to light reflection, Solar Enegry Materials and Solar Cells, 2004, 83(l): 81~90
    [33]Imaizumi M, Adachi M, Fujii Y, Low-temperautre growth of GaAs polycrystalline films on glass substrates for space solar cell application, Jounral of Cyrstal Growth, 2000, 221: 688~692
    [34]Brabec C J, Organic photovoltaic: technology and market, Solar Enegry Materials and Solar Cells, 200483: 273~292
    [35]Kim H, Kim J Y, Lee K, Park Y, Jin Y, Suh H, Organic photovoltaic cells based on conjugated polymer/fullerene composites, Coordination Chemistry Reviews, 2001, l: 139~143
    [36]Waldauf C, Schilinsky P, Hauch J, Brabec C J, Material and device concepts for organic photovoltaic: towards competitive efficiencies, Thin Solid Films, 2004, 451-452: 503~507
    [37]Camphbell W M, Burrell A K, Officer D L, Jolley K W, Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell, Coordination Chemistry Reviews, 2004, 248: 1363~1379
    [38]Gr?tzel M, Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: photochemistry Reviews, 2003, 4: 145~153
    [39]Jana A K, Solar cells based on dyes, Journal of Photochemistry and Photobiology A: Chemistry, 2000, 132: l~17
    [40]McConnell R D, Assessment of the dye-sensitized solar cell, Renewable and Sustainable Energy Reviews, 2002, 6: 273~295
    [41]Smestad G P, Dye sensitized and organic solar cells, Solar Enegry Materials and Solar Cells, 2003, 76: l~2
    [42] Yu G, Srdanov G, Wang H, Cao Y, Heeger A J, Photovoltaic cells and photodetectors made with semiconductor polymers: Recent progress, Proceedings of SPIE, 2000, 3939: 118~125
    [43]Sariciftci N S, Polymeric photovoltaic materials, Current Opinion in Solid State & Mataterials Science, 1999, 4(4): 373~378
    [44]Lee K, Kim H, Polymer photovoltaic cells based on conjugated polymer-fullerene composites, Current Applied Physics, 2004, 4: 323~326
    [45]Nunzi J M, Organic photovoltaic materials and devices, Comptes Rendus Physique, 2002, 3, 523~542
    [46]Sariciftci N S, Plastic photovoltaic devices, Materials Taday, 2004, 9: 36~40.
    [47]Schilinsky P, Waldauf C, Hauch J Brabec C J, Polymer Photovoltaic detectors: progress and recent developments, Thin Solid Films, 2004, 451-52, 105~108
    [48]Videlot C, Fichou D, Gamier F, Photovoltaic cells based on organic semiconductors, Journal Dechime Physique Et De Physico-Chimie Biologique, 1998, 95(6): 1335~1338.
    [49]Tang C W, Two-layer organic photovoltaic cell, Applied Physics Letters, 1986, 48(2): 183~185
    [50]Sch?n J H, Kloc C, Bucher E, Batlogg B, Efficient organic photovoltaic diodes based on doped pentacene, Nature, 2000, 403: 408~410.
    [51] Sch?n J H, Kloc C, Batlogg B, Efficient photovoltaic energy conversion in pentacene-based heterojunctions, Applied Physics Letters, 2000, 77(16): 177~180.
    [52]Sch?n J H, Kloc C, Bucher E, Batlogg B, Single crystalline pentacene solar cells, Synthetic Metals, 2000, 115: 117~180
    [53]Regan B, Gr?tzel M, A low-cost, high-efficiency solar cells based on dye-sensitized colloidal TiO2 films, Nature, 1991, 335: 737~739
    [54]Saito Y, Fukuri N, Senadeera R, Kitamura T, Wada Y, Yanagida S, Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor, Electrochemistry Communications, 2004, 6: 71~74
    [55]Weinberger B R, Gau S C, Kiss Z, A polyacetylene: aluminum photodiode, Applied Physics Letters, 1981, 38(7): 555~557
    [56]Sariciftci N S, Smilowitz L, Heeger A J, Wudl F, Photoinduced electron transfer from conducting polymer onto Buckminsterfullerene, Science, 1992, 258: 1474~1476
    [57]Morita S, Zakhidov A A, Yoshino K, Doping polythiophenes with fullerenes, Solid State Communications, 1992, 82: 249~252
    [58]Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, 1995, 270: 1789~1791
    [59]Armstrong N R, Carter C, Donley C, Simmonds A, Lee P, Brumbach M, Kippelen B, Domercq B, Yoo S, Interface modification of ITO thin films: organic photovoltaic cells, Thin Solid Films, 2003, 445: 342~352
    [60]Arias A C, Granstr?m M, Petritsch K, Friend R H, Organic photodiodes using polymeric anodes, Synthetic Metals, 1999, 102: 953~954
    [61]Roman L S, Chen L C, Pettersson L A A, Mammo W, Andersson M R, Johansson M, Ingan?s O, Multifunctional polythiophenes in photodiodes, Synthetic Metals, 1999, 102: 977~978
    [62]Aemouts T, Geens W, Poortmans J, Heremans P, Borghs S, Mertens R, Extraction of bulk and contact components of the series resistance in organic bulk donor-acceptor-heterojunctions, Thin Solid Films, 2002, 403-404: 297~301
    [63]Roman L S, Mammo W, Pettersson L A A, Andersson M R, Ingan?s O, High Quantum Efficiency Polythiophene/C60 photodiodes, Advanced Materials, 1998, 10(10): 774~777
    [64]Ding L, Jonforsen M, Roman L S, Andersson M R, Ingan?s O, Photovoltaic cells with a conjugated polyelectrolyte, Synthetic Metals, 2000, 110: 133~140
    [65]Pettersson L A A, R oman L S, Ingan?s O, Enhanced photo conversion efficiency utilizing interference inside organic heterojunction photovoltaic devices, Synthetic Metals, 1999, 102(l-3): 1107~1107
    [66]Jabbour G E, Kawabe Y, Shaheen S E, Wang J F, Morrell M M, Kippelen B, Peyghambarian N, Highly efficient and bright organic electroluminescent devices with an aluminum cathode, Applied Physics Letters, 1997, 71(13): 1762~1764
    [67]Peumans P, Forrest S R, Very high efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells, Applied Physics Letters, 2001, 79: 126~128
    [68] Peumans P, Bulovi? V, Forrest S R, Efficient photon harvesting at high optical intensities in ultra thin organic double-heterostructure photovoltaic diodes, Applied Physics Letters, 2000, 76: 2650~652
    [69]Gao J, Yu G, Heeger A J, Polymer p-i-n junction photovoltaic cells, Advanced Materials, 1998, 10(9): 692~95.
    [70]Gebeyehu D, Pfeiffer M, Maennig B, Echsel J D, Emer A W, Leo, K, Highly efficient p-i-n type organic photovoltaic devices, Thin Solid Films, 2004, 451-452: 29~32
    [71]Granstr?m M, Petritsch K, Arias A C, Lux A, Andersson M R, Friend, R H, Laminated fabrication of polymeric photovoltaic diodes, Nature, 1998, 395(17): 257~260
    [72]Halls J J M, Walsh C A, Greenham N C, Marseglla E A, Friend R H, Morattl S C, Holmes A B, Efficient photodiodes from interpenetrating polymer networks, Nature, 1995, 376: 498~500
    [73]Onoda M, Tada K, Zakhidov A A, Yoshino K, Photoinduced charge separation in photovoltaic cell with heterojunction of p- and n-type conjugated polymers, Thin Solid Films, 1998, 331: 76~81
    [74]Tada K, Onoda M, Nakayama H, Yoshino K, Photocell with heterojunction of donor/acceptor polymers, Synthetic Metals, 1999, 102(l-3): 982~983
    [75]Videlot C, Fichou D, Garnier F, Influence of the molecular orientation on Schottky cells based on octithiophene, Synthetic Metals, 1999, 101: 618~619
    [76]Frans C M, Van D P, The properties and application of ZnO films, American Ceramic Society Bulletin, 1990, 69(12): 1959~1968
    [77] In B J, Bai S H, Lee S Y, Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition. Materials Science Engineering B, 2000, 71(1-3): 301~305
    [78] Fung S, Xu X L, Zhao Y W, Galium/alurninum interdiffudion between n-GaN and sapphire, Journal of Applied Physics, 1998, 84(4): 2355~2359
    [79] Xu X L, Beling C D, Fung S, Formation mechanism of degenerate thin layer at the interface of a GaN/sapphire system, Applied Physics Letters, 2000, 76(2), 152~154
    [80]雅著,徐明霞,溶胶-凝胶技术在氧化物薄膜制备方面的应用,材料工程,1996,5: 21~23
    [81]孙尚梅,赵莲花,康振晋,溶胶一凝胶技术及其在绿色无机合成化学与新型材料制备中的近期应用进展,延边大学学报:自然科学版,2005,31(1): 42~48
    [82]李宁,卢迪芬,陈森风,溶胶一凝胶发制备薄膜的研究进展,玻璃与搪瓷,2004,32(6): 50~55
    [83]庞霖,严瑛白,金国藩,基于微结构制作的溶胶凝胶浸渍成膜特性,中国陶瓷,2001,28(2): 151~154
    [84]胡勇胜,陈文,徐庚,溶胶一凝胶在薄膜制备技术的研究,陶瓷工程,2000,34(6): 7~9
    [85]Scherer G W, Stress and fracture during drying of gels, Journal of Non-Crystalline Solids, 1990, 121(l-3): 104~109
    [86]Ohyama M, Kozuka H, Yoko T, Sol-gel Preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution, Thin Solid Films, 1997, 306(l): 78~85
    [87]Jiménez-González A E, Soto Urueta J A, Suárez-Parra R, Optical and electrical characteristics of aluminum-doped ZnO thin films prepared by Sol gel technique, Journal of Crystal Growth, 1998, 192(3-4): 430~438
    [88]Tan G L, ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property, Journal of Materials Science and Technology, 1997, 13: 302~306
    [89]Lee C, Lim K, Song J, Highly textured ZnO thin films doped with indium prepared by the pyrosol method, Solar Energy Materials and Solar Cells, 1996, 43(l): 37~45
    [90]赵阳培,黄国慧,电沉积纳米晶材料的研究进展,材料科学与工程,2003, 21(l): 126~129
    [91]杨建明,朱荻,雷卫,电沉积法制备纳米晶材料的研究进展,材料保护,2003, 36(4): l~4
    [92]叶皓,熊金平,赵旭辉,电沉积纳米ZnO薄膜,材料保护,2003, 36(4): 41~45
    [93]张宇,王刚,崔一平,氧化锌薄膜的电化学沉积法制备及受激发射研究,中国激光,2004,31(l): 97~100
    [94]Yoshida T, Komatsu D, Shimokawa N, Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths, Thin Solid Films, 2004, 451-452: 166~169
    [95]Mahalingam T, John V S, Sebastian P J, Growth and characterization of electrosynthesised zinc oxide thin films, Materials Research Bulletin, 2003, 38: 269~277
    [96]Luo H M, Zhang J F, Yan Y H, Electrochemical deposition of mesoporous crystalline oxide semiconductor films from lyotropic liquid crystalline phases, Chemistry of Materials, 2003, 15: 3769~3773
    [97]Paraguay D F, Miki Y M, Morales J, Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapor, Thin Solid Films, 2000,373: 137~140
    [98]Nunes P, Fourtnato E, Martins R, Influence of the post-treamtent on the properties of ZnO thin films, Thin Solid Films, 2001, 383: 277~280
    [99]Suh S, Hoffman D M, Atagi L M, A new metal-organic precursor for the low temperature atmospheric pressure chemical vapor deposition of zinc oxide films, Journal of Materials science Letters, 1999, 18(10): 789~791
    [100]Hu J H, Gordon R G, Texutred aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition, Journal of Applied physics, 1992, 71(2): 880~890
    [101]Yuantao Z, Guotong D, Boyang L, Eeffcts of ZnO buffer layer thickness on properties of ZnO thin films deposited by low-pressure MOCVD, Journal of Crystal Growth, 2004, 262(l-4): 456~460
    [102]Pan M, Fenwick W E, Strassbugr M, Metal-ogranic chemical vapor deposition of ZnO,Journal of Cyrstal Growth, 2006, 287(2): 688~693
    [103]Makino T, Isoya G, SegawaY, Optical spectra in ZnO thin films on lattice-matched substrates grown with laser-MBE method, Jounral of Cyrstal Growth, 2000, 214-215: 289~293
    [104]李美成,李连城,杨建平,纳米薄膜脉冲激光沉积技术,宇航材料工艺,2001,31(l): l~4
    [105]Bagnall D M, Chen Y F, Zhu Z, Optically pumped lasing of ZnO at room temperature,Applied Physics Letters, 1997, 70(17): 2230~2232
    [106] Ryu Y R, Zhu S, Wrobel J M, Synthesis of p-type ZnO films, Journal of Cyrstal Growth, 2000, 216: 330~334
    [107]卢亚锋,周廉,激光分子束处延,稀有金属快报,2005,24(l): 4~11
    [108]Sakurai K, Kanehiro M, Effects of oxygen plasma condition on MBE growth of ZnO, Journal of Crystal Growth, 2000, 209(2-3): 522~525
    [109]Bagnall D M, Chen Y F, Zhu Z, Optically pumped lasing of ZnO at room temperuatre,Applied Physics Letters, 1997, 70(17): 2230~2232
    [110]Bagnall D M, Chen Y F, Zhu Z, .Highly temperature excitonic stimulated emission from ZnO epitaxial layers, Applied Physics Letters, 1998, 73(8): 1038~1040
    [111]Takai O, Futsuhara M, Shimizu G, Nanosturucture of ZnO thin films prepared by reactive rf magnetron sputtering, Thin Solid Films, 1998, 318: 117~119
    [112]Kim K K, Song J H, Jung H J, The grain size effects on the photoluminescence of ZnOα-A12O3 grown by radio-frequency magnetron sputtering, Journal of Applied Physics, 2000, 87(7): 3573~3579
    [113]Minami T, Yamamoto T, MiyataT, Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering, Thin Solid Films, 2000, 366(l): 63~68
    [114]Tajahashi Y, Kanamori M, Kondoh A, Photoconductiviyt of ultra thin zinc oxide films, Japanese Jounral of Applied Physics, 1994, 33(6): 611~616
    [115]Fbaricius H, Skettrup T, Bisgaard P, Ultraviolet detectors in thin sputtered ZnO films, Applied Optics, 1986, 25(2): 764~766
    [116]Liu Y, Gorla C R, Liang S, Ultraviolet detectors based on ZnO films grown by MOCVD, Jounral of Electronic Materials, 2000,29(l): 60~65
    [117]刘彦松,王连卫,黄继颇,利用ZnO缓冲层制备AIN薄膜,压电与声光,2000,22(5): 322~325
    [118]吕建国,汪雷,叶志镇,.ZnO薄膜应用的最新研究进展,功能材料与器件学报,2002,8(3): 302~305
    [119]吕建国,叶志镇,黄靖云,退火处理对ZnO薄膜结晶性能的影响,半导体学报,2003,24(7): 729~736
    [120]李春明,刘会冲,徐花蕊,纳米ZnO材料的制备与应用研究进展,材料导报,2003,17(5): 39~78
    [121]吕建国,叶志镇,ZnO薄膜的最新研究进展,功能材料,2002,33(6): 581~587
    [122]吕建国,陈汉鸿,叶志镇,ZnO薄膜的研究与开发应用进展,压电与声光,2002,24(6): 463~467
    [123]章天金,石豪爽,应用射频磁控溅射方法制备表面期间用ZnO薄膜,湖北大学学报:自然科学版,2002,24(3): 232~234
    [124] Look D C, Reynods D C, Hemsky J W, Production and annealing of electron irradiation damage in ZnO, Applied Physics Letters, 1999, 75(6): 811~813
    [125] Sang B S, Dairiki K, Yamada A, High-efficiency amorphous silicon solar cells with ZnO as front contact, Japanese Journal of Applied Physics, 1999, 38(9A): 4983~4988
    [126] Kornaru T, Shimizu S, Kanbe M, Optimization of transparent conductive oxide for improved resistance to reactive and/or high Temperature optoelectric device Processing, Japanese Journal of Applied Physics, 1999, 38(10): 5796~5804
    [127] Jasenek A, Rau U, Weinert K, Radiation resistance of Cu(In,Ca)Se2 solar cells under 1-MeV electron irradiation, Thin Solid Films, 2001,387(1-2): 228~230
    [128] Wei H, Wu Y, Wu L, Preparation and photoluminescence of surface N-doped ZnO nanocrystal, Materials Letters, 2005, 59: 271~275
    [129] Cao H, Zhao Y G, Ho S T, Random Laser Action in Semiconductor Powder, Physical Review Letters, 1999, 82(11): 2278~2281
    [130] Zhang Y T, Du G T, Wang X Q, Li, W C, Yang X T, Ma Y, Zhao B J, Yang H J, Liu D L, Yang S R, X-ray photoelectron spectroscopy study of ZnO films grown by metal-organic chemical vapor deposition, Journal of Crystal Growth, 2003, 252: 180~183
    [131] Konenkamp R, Boedecker K, Lux-Steiner M C, Poschenrieder M, Zenia F, Levy-Clement C, Wagner S, Thin film semiconductor deposition on free-standing ZnO columns, Applied Physics Letters, 2005, 77: 2575
    [132] Park, W I, Yi G C, Kim M, Pennycook S J, Quantum Confinement Observed in ZnO/Zn MgO Nanorod Heterostructures, Advanced Materials, 2003, 15: 526~529
    [133] Kumar M, Mehra R M, Wakahara A, Ishida M, Yoshida A, Epitaxial growth of high quality ZnO:Al film on silicon with a thinγ-Al2O3 buffer layer, Journal of Applied Physics, 2003, 93: 3837
    [134] Greene L E, Law M, Tan D H, Montano M, Goldberger J, Somrjai G, Yang P D, General route to vertical ZnO nanowire arrays using textured ZnO seeds, Nano Letters, 2005, 5 (7): 1231~1236
    [135] Baxter J B, Walker A M, van Ommering K and Aydil E S, Synthesis and characterization ZnO nanowires and their integration into dye-sensitized solar cells, Nanotechnology, 2006, 17: S304
    [136] He F Q and Zhao Y P, Growth of ZnO nanotetrapods with hexagonal crown, Applied Physics Letters, 2006, 88: 193113
    [137] Zhang X L and Kang Y S, Large-Scale Synthesis of Perpendicular Side-Faced One-Dimensional ZnO Nanocrystals, Inorganic Chemistry, 2006, 45: 4186~4190
    [138] Zhang C Y, Li X M, Zhang X, Yu W D, Zhao J L, Seed-layer induced growth of high-quality oriented ZnO films by a sol-gel process, Journal of Crystal Growth, 2006, 290: 67~72
    [139] Heidi R, Mondelaers D, Bael M, Mullens J, Water-based wet chemical synthesis of (doped) ZnO nanostructures, Journal of Sol-Gel Science and Technology, 2006, 39: 41~47
    [140] Peulon S and Lincot D, Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films, Advanced Materials, 1996, 8: 166~170
    [141] Izaki M and Omj T, Transparent zinc oxide films prepared by electrochemical reaction, Applied Physics Letters, 1996, 68: 2439
    [142] Ana M. Peiró, Punniamoorthy Ravirajan, Kuveshni Govender, David S. Boyle, Paul O’Brien, Donal D C Bradley, Jenny Nelson and James R. Durrant, Hybrid polymer metal oxide solar cells based on ZnO columnar structures, Journal of Materials Chemistry, 2006, 16: 2088~2096
    [143] Punniamoorthy Ravirajan, Ana M. Peiró,Mohammad K. Nazeeruddin, Michael Graetzel, Donal D C Bradley, James R. Durrant and Jenny Nelson, Hybrid Polymer Zinc Oxide Photovoltaic Devices with Vertically Oriented ZnO Nanorods and an Amphiphilic Molecular Interface Layer, The Journal of Physical Chemistry part B, 2006, 110: 7635~7639
    [144] Waldo J E Beek, Martijn M Wienk and RenéA J Janssen, Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles, Advanced Functional Materials, 2006, 16: 1112~1116
    [145] L Jan Anton Koster, Wouter J van Strien, Waldo J E Beek and Paul W M Blom, Device Operation of Conjugated Polymer Zinc Oxide Bulk Heterojunction Solar Cells, Advanced Functional Materials, 2007, 17: 1297~1302
    [146] Shirakawa T, Umeda T, Hashimoto Y, Fujii A and Yoshino K, Effect of ZnO layer on characteristics of conducting polymer C60 photovoltaic cell, Journal of Physics D: Applied Physics, 2004, 37: 847~850
    [147] Umeda T, Shirakawa T, Fujii A and Yoshino K, Improvement of Characteristics of Organic Photovoltaic Devices, Japanese Journal of Applied Physics, 2003, 42: 1475~1477
    [148] Takanezawa K, Hirota K, Wei Q S, Tajima K and Hashimoto K, Efficient Charge Collection with ZnO Nanorod Array in Hybrid Photovoltaic Devices, The Journal of Physical Chemistry C 2007, 111, 7218~7223
    [149] Yu G, Pakbaz K, Heeger A J, Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity, Applied Physics Letters, 1994, 64: 3422
    [150] Yu G, Zhang C, Heeger A J, Dual-function semiconducting polymer devices: Light-emitting and photodetecting diodes, Applied Physics Letters, 1994, 64: 1540
    [151] Granst?m M, Petritsch K, Arias A C, Lux A, Andersson M R, Friend R H, Laminated fabrication of polymeric photovoltaic diodes, Nature, 395: 257~260
    [152] Ago H, Petritsch K, Shaffer M S P, Windle A H, Friend R H, Composites of Carbon Nanotubes and Conjugated polymers for photovoltaic Devices, Advanced Materials, 1999, 11, 1281~1285
    [153] Dittmer J J, Marseglia E A, Friend R H, Electron Trapping in Dye/Polymer Blend Photovoltaic Cells, Advanced Materials, 2000, 12, 1270~1274
    [154] Ego C, Marsitzky D, Becker S, Zhang J, Grimsdale A C, Mullen K, MacKenzie J D, Silva C, Friend R H, Attaching perylene Dyes to polyfluorene: Three Simple, Efficient Methods for Facile Color Tuning of Light-Emitting Polymers, Journal of the American Chemical Society, 2003, 125: 437~443
    [155] Brabec C J, Dyakonov V, Sariciftci N S, Graupner W, Leising.G, Hummelen J C, Investigation of photoexcitations of conjugated polymer/fullerene composites embedded in conventional polymers, Journal of Chemical Physics, 1998, 109: 1185~1195
    [156] Dyakonov V., Zoriniants G., Scharber M, Brabec C J, R. Jassen A J, Hummelen J C, Sariciftci N S, Photoinduced charge carriers in conjugated polymer-fullerene composites studied with light-induced electron-spin resonance, Physical Review B, 1999, 59: 8019~8025
    [157] Nomura R, Karim S M A, Kajii H, Hidayat R, Yoshino K, Masuda T, Metathesis Polymerization of 9-(10-Hexoxycarbonyl) anthrylacetylene. A Route to a Widely Conjugated Polyacetylene with Excellent Stability and Solubility, Macromolecules, 2000, 33: 4313~4315
    [158] Onoda M, Tada K, Zakhidov A A, Yoshino K, Photoinduced charge separation in photovoltaic cell with heterojunction of p- and n-type conjugated polymers, Thin Solid Films, 1998, 331: 76~81
    [159] Wang S, Xiao S, Li Y, Shi Z, Du C, Fang H, Zhu D, Synthesis and characterization of new C60-PPV dyads containing carbazole moiety, Polymer, 2002, 43: 2049~2054
    [160] Chen S, Liu Y, Qiu W, Sun X, Ma Y, Zhu D, Oligothiophene-Functionalized Perylene Bisimide System: Synthesis, Characterization, and Electrochemical Polymerization Properties, Chemistry of Materials, 2005, 17: 2208~2215
    [161] Huang H M, He Q G, Lin H, Bai F L, Cao Y, Properties of an alternating copolymer and its applications in LEDs and photovoltaic cells, Thin Solid Films, 2005, 477: 7~13
    [162] Shi C.J, K. Yang X, Cao Y, Synthesis and Optical Properties of Soluble Conjugated Poly(ρ-Diethynylbenzene)s, Synthetic Metals, 2005, 154: 121~124
    [163] Jongh P E D, Vanmaekelbergh D, Trap-limited electronic transport in nanometer-size TiO2 particles, Journal of physical Review Letters, 1996, 77: 3427~3430
    [164] Sariciftci N S, Smilowitz L, Heeger A J and Wudl F, Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene, Science, 258(5087): 1474~1476
    [165]孔庆升,薄膜电阻学,电子工业出版社, 1994: 153~155
    [166] Tench D and Warren L F, Electrodeposition of Conducting Transition Metal Oxide/Hydroxide Films from Aqueous Solution, Journal of The Electrochemical Society, 1983, 130(4): 869~872
    [167] Mukhopadhyay A K, Chakraborty A K, Chatterjee A P and Lahiri S K, Galvanostatic deposition and electrical characterization of cuprous oxide thin films, Thin Solid Films 1992, 209: 92~96
    [168] Cui C Q and Lee J Y, Effects of Oxygen Reduction on Nickel Deposition from Unbuffered Aqueous Solutions, Journal of The Electrochemical Society, 1994, 141 (8): 2030~2035
    [169] Strbac S and Adzic R R, The influence of pH on reaction pathways for O2 reduction on the Au (100) face, Electronchimica Acta, 1996, 41: 2903~2908
    [170] Peulon S and Lincot D, Mechanistic Study of Cathodic Electrodeposition of Zinc Oxide and Zinc Hydroxychloride Films from Oxygenated Aqueous Zinc Chloride Solutions, Journal of The Electrochemical Society, 1998, 145 (3): 864~874
    [171] Izaki M and Omj T, Electrolyte Optimization for Cathodic Growth of Zinc Oxide Films, Journal of The Electrochemical Society, 1996, 143 (3): L53~L55
    [172] Wei C, Myung N and Rajeshwar K, In situ compositional analysis of electrosynthesized cadmium telluride thin films by electrochemical quartz crystal microgravimetry, Journal of Electroanalytical Chemistry, 1993, 347: 223~225
    [173] Cox J A and Brajter A, Electrochim Acta 1979, 24 517
    [174] Ogawa N and Ikada S, On the Electrochemical Reduction of Nitrate Ion in the Presence of Various Metal Ions, Analytical Sciences (supplement) 1991, 7: 1681~1684
    [175] Banfield J F, Welch S A, Zhang H Z, Ebert T T, Penn R L, Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products, Science 2000, 289(5480): 751
    [176] Kashyout A B, Soliman M, Gamal M E, Preparation and characterization nano particles ZnO films for dye-sensitized solar cells, Materials Chemistry Physics, 2005, 90: 230-233
    [177] Hosono E, Fujihara S, Zhou H S, The Fabrication of an Upright-Standing zinc Oxide Nanosheet for Use in Dye-Sensitized Solar Cells, Advanced Materials, 2005, 17: 2091~2094
    [178] Baxter J B, Aydil E S, Nanowire-based dye-sensitized solar cells, Applied Physics Letters, 2005, 86: 053114
    [179] Baxter J B, Aydil E S, Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires, Solar Energy Materials and Solar Cells, 2005, 90: 607~622
    [180] Guo M, Diao P, Wang X D, Journal of Solid State Chemistry, The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films, 2005, 178: 3210~3215
    [181] Guo M, Diao P, Cai S M, Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties, Applied Surface Science, 2005, 249: 71~75
    [182] Cembrero J, Elmanouni A, Mari B, Nanocolumnar ZnO films for photovoltaic applications, Thin Solid Films, 2004, 451: 198~202
    [183] Huynh W U, Dittmer J J, Alivisalos A P, Hybrid Nanorod-Polymer Solar Cells, Science, 2002, 295(5564) 2425~2427
    [184]Ahmadi T S, Wang T C Green, Henglein A, El-Sayed M A, Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles, Science, 1996, 272: 1924~1925
    [185] Law M, Greene L E, Johnson J C, Saykally R, Yang P D, Nanowire dye-sensitized solar cells, Nature materials, 2005, 4(6) : 455~459
    [186] K?nenkamp R, Dloczik L, Ernst K, Olecsh C, Nano-structures for solar cells with extremely thin absorbers, Physica E 2002, 14: 219~223
    [187] Kaidashev EM, Lorenz M, von Wenckstern H, Rahm A, Semmelhack H-C, Han K-H, Benndorf G, Bundesmann C, Hochmuth H, Grundmann M, High electron mobility of expitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition, Applied Physics Letters, 2003, 82: 3901
    [188] Jorgensen M, Norrman K and Frederik C Krebs, Stability/degradation of polymer solar cells, Solar Energy Materials and Solar Cells, 2008, 92: 686~714
    [189] Kroon J M, Wienk M M, Verhees W J H, Hummelen J C, Accurate efficiency determination and stability studies of conjugated polymer/fullerene solar cells, Thin Solid Films, 2002, 403: 223~228
    [190] Monica Lira-Cantu, Kion N, Jens W A and Frederik C Krebs, Oxygen Release and Exchange in Niobium Oxide MEHPPV Hybrid Solar Cells Chemistry of Matererials, 2006, 18: 5684~5690
    [191] Monica Lira-Cantu and Frederik C Krebs, Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2-TiO2) : Performance improvement during long-time irradiation, Solar Energy Materials and Solar Cells, 2006, 90(14): 2076~2086
    [192] Monica Lira-Cantu, Kion N, Jens W A, Nieves Casan-Pastor and Frederik C Krebs, Detrimental Effect of Inert Atmospheres on Hybrid Solar Cells Based on Semiconductor Oxides, Journal of The Electrochemical Society, 2007, 154 (6): B508~B513
    [193] Frederik C Krebs, Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes, Solar Energy Materials and Solar Cells, 2008, 92: 715~726
    [194] Knupfer M, Exciton binding energies in organic semiconductors, Applied Physics A, 2003, 77: 623~626
    [195] Stübinger T and Brütting W, Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells, Journal of Applied Physics, 2001, 90: 3632~3641
    [196] Archer M D and Hill R, Clean electricity from photovoltaics, Imperial College Press, London, UK, 2001
    [197] Kafafi Z and Lane P, Organic photovoltaics IV, SPIE, Bellingham, 2004
    [198] Gregg B A, Excitonic solar cells, The Journal of Physical Chemistry Part B, 2003, 107: 4688~4698
    [199] Brabec C J, Cravino A, Meissner D, Sariciftci N S, Fromherz T, Rispens M T, Sanchez L and Hummelen J C, Origin of the open circuit voltage of plastic solar cells, Advanced Functional Materials, 2001, 11: 374~380

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700