离子层气相反应法(ILGAR)制备硫属半导体薄膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米晶太阳能电池(NPC)以其简单的工艺,低廉的成本以及可实现规模化生产等优势成为绿色能源领域的研究热点之一。本文综述了太阳能电池及其光敏化、吸收材料的发展,研究了NPC太阳能电池无机硫属半导体光吸收层薄膜新型化学法的制备。
    课题选择CdS,CuInS2硫属半导体材料分别作为NPC太阳能电池中缓冲层和光吸收层,采用离子层气相反应法(ILGAR),研究了制备条件对薄膜结构与性能的影响,如阳离子吸附方式、溶剂种类、混合离子浓度及配比、硫化反应温度、热处理温度、时间与气氛、薄膜生长与厚度控制、Ga掺杂等。采用XRD、SEM、UV-Vis、XPS、HALL系统等对薄膜晶型、微结构、化学计量、光学和电学等性能进行了表征。
    ILGAR法制备CdS薄膜的实验结果表明,以CdCl2为反应物,H2O和CH3CN混合液为溶剂,H2S为硫源所得纳米晶薄膜表面较致密、均匀、附着性好;0.05M阳离子浓度吸附下的平均生长速率为2.8nm/cycle;400℃热处理温度下结构为沿(002)面择优生长的六方铅锌矿。
    首次采用混合阳离子溶液吸附工艺,以C2H5OH为溶剂,离子浓度比[Cu+]/[In3+]为1.55,硫化温度在40℃,550℃热处理1h可制备出单相、表面致密、粒径均匀、沿(112)面择优取向生长的黄铜矿型纳米晶CuInS2薄膜。随离子浓度配比的变化,薄膜的光吸收系数均高于104 cm-1,禁带宽度Eg在1.30~1.40 eV之间变化,表面电阻、载流子浓度和迁移率分别在50~10?·cm, 1016~1017cm-3,2~7cm2/V·s的范围内可调。
    Ga掺杂研究结果表明,混合前驱体溶液中[Ga]/[In]低于1时,Ga取代In形成CuIn1-xGaxS2四元单相薄膜;当Ga]/[In]高于1时,Ga和In分别以各自三元相形式独立存在。随[Ga]/[In]的增加,CuIn1-xGaxS2四元单相薄膜的光学禁带宽度变宽,电阻在103~104?/□范围内。
In past decades, considerable attention has been given to nanocrystallinephotovoltaic cells (NPC) because of its simple process, low cost and large scaleproduction. In this paper, developments of NPC cells and its absorbers were reviewed,and a novel chemical deposition method-ILGAR was studied to fabricate metalchalcogenide thin films for NPC.
    CdS and CuInS2 thin films, as buffer and absorber layer respectively, werefabricated by ion layer gas reaction method (ILGAR), and the influence ofpreparation conditions on the film properties was investigated, such as absorptionways of the cations in precursor solution, the type of solvents, the concentration andratio of mixed precursors, sulfidation temperature, heat-treatment temperature, timeand atmosphere, Ga-doping. The characterizations for films were carried out byX-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectronspectrum (XPS), optical absorption spectrum and Hall system.
    The results show that CdS thin films fabricated by ILGAR method are uniform,compact and good in adhesion to substrate, and growth ratio of the film is 2.8 nm/cycle as [Cd2+]=0.05M. The evolution of structure undergoes from cubic tohexagonal with a preferred orientation along (002) plane after annealing of theas-deposited films at 400 ℃.
    ILGAR method for CuInS2 films was developed firstly by using ethanol assolvent and mixed cation precursor. Chalcopyrite CuInS2 film with near stoichiometryderived from [Cu+]/[In3+]=1.55, which is uniform, compact and good in adhesion tothe substrates, can be obtained after annealing in Ar atmosphere for 1h. Withincreasing the [Cu+]/[In3+], the absorption coefficients of CuInS2 films are more than104 cm-1, and the band gap changes from 1.40 to 1.30 eV, the resistivity, the carrierconcentration and the mobility is in the range from 50 to 10 ?-cm, 1015 to 1017 cm-3 and 2to 7 cm2/V·s, respectively.
    In the study of Ga-doping, single phase CuIn1-xGaxS2 thin films can be obtainedas [Ga3+]/[In3+] in mixed cationic solution is below 1, while [Ga3+]/[In3+] is above 1,two ternary compounds CuInS2 and CuGaS2 instead of CuIn1-xGaxS2 occur inannealed films.
引文
[1] 刘恩科,朱炳升,罗晋生等,半导体物理学, 国防工业出版社(第 4 版),2002,
    [2] 吕笑梅,方靖淮,陆祖宏等,敏化TiO2纳米晶太阳能电池,功能材料,1998,29(6):574~578
    [3] W. P. Tai, K. Inoue, Ruthenium dye-sensitized SnO2/TiO2 coupled solar cells, Solar Energy Materials and Solar Cells, 2002, 71(1-4): 553~557
    [4] M. Gr?tzel, Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2003, 4(2):145~153
    [5] G. P. Smestada, S. Spiekermann, J. Kowalik, A technique to compare polythiophene solid-state dye sensitized TiO2 solar cells to liquid junction devices, Solar Energy Materials and Solar Cells, 2003, 76(1-4): 85~105
    [6] I. Konovalov, Material requirements for CIS solar cells, Thin Solid Films, 2004, 451 –452: 413–419
    [7] A. Goetzberger, C. Hebling, H. W. Schock, Photovoltaic materials, history, status and outlook, Materials Science and Engineering, 2003, 40: 1~46
    [8] B. A. Andersson, C. Azar, J. Holmberg, Material constraints for thin-film solar cells, Energy, 1998, 23 (5):407~411
    [9] 胡晨明,太阳电池,北京:北京大学出版社, 1990,55~58
    [10] 赵玉文,太阳电池新进展术,物理,2004,33(2):99-105
    [11] 王晓晶,班群,沈辉等,硅太阳电池材料的研究进展,能源工程,2002,4, 28~31
    [12] 席珍强,杨德仁,吴丹等,单晶硅太阳电池的表面织构化,太阳能学报,2002,23(2):285~289
    [13] 王鹤, 杨宏, 单晶硅太阳电池纳米减反射膜的研究,固体电子学研究与进展,2003,23(3):316~319
    [14] 邱春文,石旺舟,PECVD法低温沉积多晶硅薄膜的研究,液晶与显示 2003,18(3):201~204
    [15] 李维刚,许颖, 区熔再结晶制备多晶硅薄膜太阳电池,北京师范大学学报:自然科学版,2001,37(6):746~749
    [16] 刘祖明, 陈庭金,多晶硅太阳电池,太阳能,2000,1:3~9
    [17] 王文静,多晶硅薄膜太阳电池,太阳能,1998,3:9~11
    [18] 张力,薛钰芝,非晶硅太阳电池的研发进展,太阳能,2004,2:24~26
    [19] 郝国强,张德贤,非晶硅太阳能电池的新进展,飞通光电子技术,2002, 2(4):190~193
    [20] 宋红,耿新华,非晶硅太阳电池的原理,太阳能,2002,4:13~14
    [21] J. J. M. Halls, C. A. Walsh, N. C. Greenham, Efficient photodiodes from interpenetrating polymer networks, Nature, 1995, 376(6540): 498-500
    [22] 林鹏,张志峰,有机太阳能电池研究进展,光电子技术,2004,24(1):55~ 60
    [23] P. Peumans, S. Uchida, S.R. Forrest, Efficient bulk heterojunction photovoltaic cells using small molecular-weight organic thin films. Nature, 2003, 425(6954): 158-162
    [24] G Yu, J. Gao, J. C. Hummelen, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heteroj unctions. Science, 1995,270(5243): 1789-1791
    [25] J. J. M. Halls, C. A. Walsh, N C. Greenham, Efficient photodiodes from interpenetrating polymer networks, Nature, 1995, 376(6540): 498-500
    [26] E. S. Sean, J. B. Christoph, N S. Sariciftci, 2.5% efficient organic plastic solar cells. Appl. Phys. Lett., 2001, 78(6): 841-843
    [27] 耿新华,孙云,王宗畔等,薄膜太阳电池的研究进展,物理学和经济建设,1999,28(2):96~102
    [28] 雷永泉,新型能源材料,天津:天津大学出版社,2000,88~91
    [29] D. Bonnet, Manufacturing of CSS CdTe solar cells, Thin Solid Films, 2000, 361-362: 547-552
    [30] N. Romeo, A. Bosio, R. Tedeschi, A highly efficient and stable CdTe/CdS thin film solar cell, Solar Energy Materials and Solar Cells, 1999, 58 (1-4): 209-218
    [31] J. P. Enrliqueza, X. Mathewa, G. P. Hern, CdTe/CdS Solar cells on flexiblemolybdenum substrates, Solar Energy Materials and Solar Cells, 2004, 82(1-4): 307-314
    [32] 蔡伟,冯良桓,CdTe薄膜的制备和后处理研究,四川大学学报:自然科学版,2002,39(2):273~276
    [33] G. J. Bauhuis, J. J. Schermer, P. Mulder, Thin film GaAs solar cells with increased quantum efficiency due to light reflection, Solar Energy Materials and Solar Cells, 2004, 83 (1): 81-90
    [34] M. Imaizumi, M. Adachi, Y. Fujii, Low-temperature growth of GaAs polycrystalline films on glass substrates for space solar cell application, Journal of Crystal Growth, 2000, 221: 688-692
    [35] H. Du, C.H. Champness, I. Shih, Results on monocrystalline CuInSe2 solar cells, Thin Solid Films, 2005, 480-481: 37-41
    [36] 蔡殉,陈秋龙,李文漪,CIS光伏材料的发展,机械工程材料,2003,27(6):1~3
    [37] Z. A. Shukrl, C. H. Champness, Effect of nonstoichiometry on conductive type in Bridgman grown CulnSe_2, Journal of Cryslal Growth, 1998, 191(1-2): 97-101
    [38] 万斌,敖建平,光电材料CuInSe_2薄膜,中山大学学报:自然科学版,2003,42(A19):35~37
    [39] 毛爱华,太阳能电池研究和发展现状,包头钢铁学院学报,2002,21(1):94~97
    [40] 徐少辉,马忠权,硒化共溅射Cu-In合金法制备CulnSe2多晶薄膜,新疆大学学报:理工版,2001,18(3):330~335
    [41] 李长健,崔芮华,CulnSeJCdS薄膜太阳电池的制备工艺,电源技术,1994,18(3):24~28
    [42] 李长健,谢小健,CIS/CdS太阳电池的研制,南开大学学报:自然科学版,1995,28(4):54~58
    [43] 汤会香,严密,孙云,磁控溅射金属预置层后硒化法制备CulnSe2薄膜工艺条件的优化,半导体学报,2004,25(6):741~744
    [44] N. B. Chaure, J. Young, A. P. Samantilleke, Electrodeposition of p-i-n type CuInSe2 multilayers for photovoltaic applications, Solar Energy Materials and Solar Cells, 2004, 81 (3): 125-133
    [45] 邵乐喜,张昆辉, 用于太阳电池吸收层CuInS2薄膜的RF反应溅射制备及其表征,太阳能学报,2004,25(1):123~126
    [46] 汤会香,严密,太阳能电池材料CuInS2的研究现状,材料导报,2002,16(8): 30~32
    [47] 王东城,刘滔, 电化学沉积CuInS2薄膜,薄膜科学与技术,1990,3(2):
    [48] C. Grasso, M. Nanu, A. Goossens, Electron transport in CuInS2-based nanostructured solar cells, Thin Solid Films, 2005, 480-481: 87-91
    [49] T. Naabayashi, T. Miyazawa, Y. Hashimoto, Over 10% efficient CuInS2 solar cell by sulfurization, Solar Energy Materials and Solar Cells, 1997, 49 (1-4): 357-381
    [50] Y. Onuma, K. Takeuchi, S. Ichikawa, Preparation and characterization of CuInS2 thin fillms solar cells with large grain, Solar Energy Materials and Solar Cells,2001, 69 (1-4): 261-269
    [51] H. Goto, Y. Hashimoto, K. Ito, Efficient thin film solar cell consisting of TCO/CdS/CuInS2/CuGaS2 structure, Thin Solid Films, 2004, 451-452: 552-555
    [52] H. K. Songa, J. K. Jeonga, H. J. Kima, Fabrication of CuInGaSe2 thin film solar cells by sputtering and selenization process, Thin Solid Films, 2003, 435: 186-192
    [53] B. A. Mansour, I. K. El Zawawi, A. Abdel, Electric, thermoelectrical and photoelectric properties of CuGaxIn1-xSe2 thin films, Journal of Physics and Chemistry of Solids, 2004, 65:1353 -1357
    [54] K. T. R. Reddya, R B. V. Chalapathy, M. A. Slifkinb, Photoacoustic spectroscopy of sprayed CuGaxIn1-xSe2 thin films, Thin Solid Films 2001, 387:205-207
    [55] M. K. Nazeeruddin, A. Kay, I. Rodicio, Conversion of light to electricity by is-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensi-tizers (X = Cl, B, I, CN, and SCN) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc.,1993, 115(14): 6382-6390
    [56] A. Hagfeldt, S. Lindquist, M. Gratzel, Charge carrier separation and charge transport in nanocrystalline junctions, Solar Materials and Solar Cells, 1994, 32(3): 245-257
    [57] D. Liu, P. V Kamat, Electrochemically active nanocrystalline SnO2 films: surface modifyication with thiazine and oxaxine dye aggregates, J. Electrochem. Soc, 1995,142: 835-839
    [58] T. A. Heimer, C. A. Bignozzi, G J. Meger, Molecular level photovaltaici: the electrooptical properties of metal cyanide complexes anchored to Titanium Dioxide, J. Phys. Chem., 1993, 97(46): 11987-11994.
    [59] B. A. Parkinson, M. T. Spitler, Recent advances in high quantum yield dye sensitization of semiconductor electrodes, Electrochimica Acta, 1992, 37(5): 943-948
    [60] R. W. Berriman, P. B. Gilman, Spectral sensitization of mobile positive holes, Photog. Sci. Eng., 1973, 17(2): 235-244
    [61] A. F. Nogueira, M. A. De Paoli, Electron transfer dynamics in dye sensitized nanocrystalline solar cells using a polymer, J. Phys. Chem. B, 2001, 105(31): 7517-7524
    [62] Y Tachibana, J. E. Moser, M. Gratzel, Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline tiatanium dioxide films, J. Phys. Chem., 1996, 100(51): 20056-20062
    [63] T. M. Rehm, G L. Mclendon, Y Nogasawa, , Femtosecond electron-transfer dynamics at a sensitizing dye-semiconductor (TiO_2) interface, J. Phys. Chem., 1996, 100(23): 9577-9578
    [64] J. B. Asbury, R. Ellingson, H. N. Ghosh, Femtosecond IR study of excited-state relaxation and eletron-injection dynamics of Ru(dcbpy)2(NCS)2 in solution and on nanocrystalline TiO_2 and Al2O3 thin films, J. Phys. Chem. B, 1999, 103(16): 3110-3119
    [65] R. Huber, S. Sporlein, J.E. Moser et al., J. Wachtveitl, The role of surface dye molecules to semiconductor colloids, J. Phys. Chem. B, 2000, 104(38): 8995-9003
    [66] S. A. Haque, Y Tachibana, D. R. Klug, Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under extremely applied bias, J. Phys. Chem. B, 1998, 102(10): 1745-1749
    [67] S. A. Haque, Y Tachibana, R. L. Willis, Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films, J. Phys. Chem. B, 2000, 104(3): L 538-547
    [68] I. Martini, J. H. Hodak, G V Hatland, Effect of structure on electron transfer reactions between Anthracene dyes and TiO_2 nanoparticles. J. Phys. Chem. B, 1998, 102(47): 9508-9517
    [69] P. E. de Jongh, E. A. Meulenkamp, D. Vanmaekelbergh, Charge carrier dynamics in illuminated, particulate ZnO electrode, J. Phys. Chem. B, 2000, 104(32): 7686-7693
    [70] E. A. Meulenkamp, Electron Transport in Nanoparticulate ZnO Films, J. Phys. Chem. B, 1999, 103(37): 7831-783
    [71] R. Engelhardt, R. Konenkamp, Electrodeposition of compound semiconductors in polymer channels of 100nm diameter, J. Appl. Phys., 2001, 90(8): 4287-4289
    [72] C. Rost, Diploma thesis, Physics Department, Freie Universitat Berlin, 1999.
    [73] I. Kaise, K. Ernst, Ch-H. Fischer, Solar cell using a highly structured p-i-njunction and CuInS2 as an extremely thin absorber, Proc. 12th. Int. Conf. Ternary and Multinary Compounds, Jpn. J. Appl. Phy, 2000, 39: 421-423
    [74] O. Enea, J. Moser, Achievement of incident photon to electric current conversion yields exceeding 80% in the spectral sensitization of titanium dioxide by coumarin. M. Gratzel, J. Electroanal. Chem., 1989, 259(1-2): 59~ 65
    [75] K. Murakoshi, R. Kogure, S. Yanagide, Solid-state dye-sensitezed TiO2 solar cell with polypyrrole as hole transport layer. Chem. Lett., 1997, (5): 471~472
    [76] J. Hagen, W. Schaffrath, P. Otschik, Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material. Synth. Met., 1997, 89(3): 215-220
    [77] K. Murakoshi, R. Kogure, Y Wada, Fabrication of solid-state dye-sensitized TiO_2 solar cells combined with polypyrrole, Solar Energy Mater. Solar Cells, 1998,55(1-2): 113 -125
    [78] F. Cao, G Oskam, P. C. Searson, Solid-state dye-sensitized photoelectrochemical cells, J. Phys. Chem., 1995, 99(47): 17071~17073
    [79] O. A. Ileperuma, M. A. Dissanayake, S. Somasundaram, Dye-sensitized photoelectrochemical solar cells with polyacrytromctrile based solid polymer electrolytes. ElectrochimicaActa, 2002, 47: 2801~2803
    [80] M. Matsumoto, H. Migazaki, K. Matsuhiro, A dye sensitized TiO_2 photoelectrochemical cell constructed with polymer solid electrolyte, Solid State Ionics, 1996, 89(3-4): 263-267
    [81] J. Kruger, R. Plass, Le. Cevey, High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination, Appl. Phys. Lett., 2001, 79(13):2085~2087
    [82] Q. B. Meng, K. Takahashi, X. T. Zhang, Fabrication of an efficient solid-state dye-sensitized solar cell, Langmuir, 2003, 19(9): 3572~3574
    [83] R. W. Berriman, P. B. Gilman, Spectral sensitization of mobile positive holes. Photogr. Sci. Eng., 1973, 17(2): 235-244
    [85] 孙世国, 徐勇前,纳米晶体太阳能电池及染料敏化剂,染料与染色,2003,244
    [84] 郝三存,吴季怀,林建明,染料敏化Ti02纳晶太阳能电池研究进展方向,华侨大学学报::自然科学版,2003,24(4):335~344
     40(6):311~313
    [86] 胡智学,戴松元,染料在纳米TiO2薄膜表面吸附性能的研究,化学研究与应用,2002,14(3):277~279
    [87] 杨术明, 李富友,染料敏化纳米晶太阳能电池,化学通报,2002,65(5):
    [88] 林志东,刘黎明,染料敏化TiO2纳米晶多孔膜太阳能电池,材料导报,2001,15(10):35~37
    [89] A. F. Nogueira, C. Longo, M.-A. De Paoli, Polymers in dye sensitized solar cells: overview and perspectives, Coordination Chemistry Reviews, 2004, 248(13-14): 1455-1468
    [90] C. Rost, K. Ernst, S. Siebentritt, CdTe and CdS as extremely thin absorber materials in an η solar cell (ETA), Proceedings of the 14th European Thotovoltaic Solar Energy Conference and Exibition, Barceloga, 1997: 1823-1826
    [91] K. Tennakone, G R. Kumara, E. R. Kottegoda, Nanoporous n-TiO2/selenium/p-CuCNS photovoltaic cell, J. Phys. D, 1998, 31(3): 2326~ 2330
    [92] J. Wienke, M. Krunks, F. Lenzmann Inx(OFI)yS2 as recombination barrier in TiO_2/inorganic absorber heterojunctions, Semicond. Sci. Technol., 2000, 18(2): 876-880
    [93] J. Mohher, Ch.-H. Fischer, S. Siebentritt, CuInS2 as an extremely thin absorber in an eta solar cell, 2nd World Conference and Exibition on Photovoltaic Solar Energy Conversion, Vienna, 1998, 7: 6~10
    [94] I. Kaiser, K. Ernst, Ch.-H. Fischer, The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta), Solar Energy Mater and Solar Cells, 2001, 67(1-4): 89-96
    [95] C. Grasso, K. Ernst, R. Konenkammp, Photoelectrical characterization and modeling of the eta-solar cell, Proceeding of the 17th European Photovoltaic Solar Energy Conference, WIP-Renewabale Energies, 2001, 1: 211~214
    [96] C. Levy-Clement, A.Katty, S. Bastide, A new CdTe/ZnO columnar composite film for Eta-solar cells., Physica E, 2002, 14(2): 229-232
    [97] A. Belaidi, R. Bayon, L. Dloczik, Comparison of different thin film absorbers used in eta-solar cells, Thin Solid Films, 2003, 431-432: 488~491
    [98] R Volgel, P. Hoyer, H. Weller, Quantum-sized PbS, CdS, Ag2S, Sb2S3, and
     Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors, J. Phys. Chem., 1994, 98(12): 3183~3188
    [99] R. Plass, S. Pelet, J. Kruegere, Quantum dot sensitization of organic-inorganic hybrid solar cells, J. Phys. Chem. B, 2002, 106(31): 7578-7580
    [100] A. Zaban, O. I. Micic, B. A. Gregg, Photosensitization of nanoporous TiO2 electrodes with InP quantum dots, Langmuir, 1998, 14(12): 3153~3156
    [101] L. Reijnen, B. Meester, A. Goossens, Nanoporous TiO_2/Cu1.8S heterojunctions for solar energy conversion, Mater. Sci. Eng., 2002, 19: 311~314
    [102] F. Lenzmann, M. Nanu, O. Kijatkina, Substantial improvement of the photovoltaic characteristics of TiO2/CuInS2 interfaces by the use of recombination barrier coatings, Thin Solid Films, 2004, 451-452: 639~643
    [103] M. Nanu, J. Schoonman, A. Goossens, Inorganic nanocomposites of n-and p-type semiconductors: Anew type of three-dimensional solar cell, Adv. Mater, 2004, 16(5): 453-456
    [104] K. Ernst, A. Belaidi, R. Konenkammp, Solar cell with extremely thin absorber on highly structured substrate, Semicond. Sci. Techno., 2003, 18(6): 475~479
    [105] R Vogel, P. Hoyer, Quantum-size PbS, CdS, Ag2S, Sb3S3, and Bi2S3 particles as sensitizers for various naoporous wide-bandgap semiconductors , J. Phys. Chem., 1994,98: 3183 ~ 3189
    [106] S. H. Wei, L. G. Ferreira, A. Zunger, First-principles calculation of the order-disorder transition in chalcopyrite semiconductors, Phys. Rev. B, 1992, 45(5):2533~2537
    [107] J. E. Jaffe, A. Zunger, Electronic structure of the ternary chalcopyrite semiconductors CuAIS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2 and CuInSe2. Phys. Rev. B, 1983, 28(10):5822~5847
    [108] B.Tell. J. L. Shay, H. M. Kasper, Electrical Properties, Optical Properties, and Band Structure of CuGaS2 and CuInS2, Phys. Rev.B, 1971, 4(8):2463~2469
    [109] J. J. M. Binsam, Luminescence of CuInS2: I. The broad band emission and its dependence on the defect chemistry, Journal of Luminescence, 1982, 27(1):35~72
    [110] H. Y Ueng, H. L. Hwang, The defect structure of CuInS2, J. phys chem. solids 1990,51(l),l~18
    [111] A. Neisser, I. Hengel, R. Klenk, Effect of Ga incorporation in sequentially prepared CuInS2 thin film absorbers, Solar Energy Materials & Solar Cells, 2001,67(1-4): 97-104
    [112] Y. Akaki, H. Komaki, H. Yokoyama, Structural and optical characterization of Sb-doped CuInS2 thin films grown by vacuum evaporation method, Journal of Physics and Chemistry of Solids, 2003, 64 :1863-1867
    [113] M. Abaab, M. Kanzari, B. Rezig, Structural and optical properties of sulfur-annealed CuInS2 thin films, Solar Energy Materials and Solar Cells , 1999, 59(4): 299-307
    [114] M. Kanzari, M. Abaab, B. Rezig, Effect of substrate thermal gradient onas-grown CuInS2 properties, Materials Research Bulletin, 1997, 32(8):1009-1015
    [115] P. Malar, S. Kasiviswanathan, Characterization of stepwise flash evaporated CuIn3Se5 films, Solar Energy Materials and Solar Cells, 2005, 84(4):521-533
    [116] E. Ahmeda, R. D. Tomlinsonc, R. D. Pilkington, Significance of substrate temperature on the properties of flash evaporated CuIn0.75Ga0.25Se2 thin films, Thin Solid Films, 1998, 335(1-2): 54-58
    [117] Y Yamamoto, T. Tanaka, N. Tanahashi, Characterization of CuInS2 thin films prepared by sputtering from binary compounds, Solar Energy Materials and Solar Cells, 1997, 49(1-4): 399-405
    [118] Y B. He, W. Kriegseis, T. Kramer, Deposition of CuInS2 thin films by RF reactive sputtering with a ZnO:Al buffer layer, Journal of Physics and Chemistry of Solids, 2003, 64(9-10): 2075-2079
    [119] H. Bouzouita, N. Bouguila, A. Dhouib, Spray pyrolysis of CuInS2, Renewable Energy, 1999, 17(1): 2075-2079
    [120] Ortega-Lopez, Mauricio, Characterization of CuInS2 thin films for solar cells prepared by spray pyrolysis, Thin Solid Films, 1998, 330(2): 96-101
    [121] M. Krunks, O. Kijatkina, H. Rebane, Composition of CuInS2 thin films prepared by spray pyrolysis, Thin Solid Films, 2002, 403-404(1): 71-75
    [122] I. Oja, M. Nanu, A. Katerski, M. Krunks, Crystal quality studies of CuInS2 films prepared by spray pyrolysis, Thin Solid Films, 2005, 480-481(1): 82-86
    [123] T. Negami, Y Hashimoto, M. Nishitani, CuInS2 thin-films solar cells fabricated by sulfurization of oxide precursors, Solar Energy Materials and Solar Cells, 1997, 49(1-4): 343-348
    [124] R. Klenk, U. Blieske, V Dieterle, Properties of CuInS2 thin films grown by a two-step process without H2S, 1997,49(1-4): 349-356
    [125] Y. Onuma, K. Takeuchi, S. Ichikawa, Preparation and characterization of CuInS2 thin films solar cells with large grain, Solar Energy Materials and Solar Cells, 2001, 69 (3): 261-269
    [126] H. C. Michael, Banger, K. Kulbinder, CuInS2 films deposited by aerosol-assisted chemical vapor deposition using ternary single-source precursors, Materials Science and Engineering B, 2005, 116(3): 395-401
    [127] Harris, Banger, K. Kulbinder, Characterization of CuInS2 films prepared by atmospheric pressure spray chemical vapor deposition, Materials Science and Engineering: B, 2003, 98(2): 150-155
    [128] M. Nanu, L. Reijnen, B. Meester, CuInS2-TiO2 heterojunctions solar cells obtained by atomic layer deposition, Thin Solid Films, 2005, 431-432(1): 492-496
    [129] K. Kuwabara, T.Yukawa, K. Koumoto, Electrodeposition of CuInS2 from aqueous solution (II) electrodeposition of CnInS2 film, Thin Solid Films, 1996, 286(1-2): 151 -153
    [130] S. Nakamura, A.Yamamoto, Preparation of CuInS2 films with sufficient sulfur content and excellent morphology by one-step electrodeposition, Solar Energy Materials and Solar Cells, 1997, 49(1-4): 415-421.
    [131] M. Gossla, H. Metzner, J. Conrad, Thin CuInS2 films by three-source molecular beam deposition, Thin Solid Films, 1995, 268(1-2): 39-44
    [132] G C. Park, H. D. Chung, C. D. Kim, Photovoltaic characteristics of CuInS2/CdS solar cell by electron beam evaporation, Solar Energy Materials and Solar Cells, 1997, 49(1-4): 356-374
    [133] S. D. Sartale, C.D.Lokhande, Growth of copper sulphide thin films by successive ionic layer adsorption and reaction (SILAR) method, Materials Chemistry and Physics, 2000, 65(1): 63-67
    [134] H. J. Moffler, Ch.-H. Fischer, K. Diesner, K.ILGAR -A novel thin-film technology for sulfides, Solar Energy Materials and Solar Cells, 2001, 67(1-4): 121 -127
    [135] H. J. Moffler, Ch.-H. Fischer, K. Diesner, K.Anovel deposition technique for compound semiconductors on highly porous substrates: ILGAR, Thin Solid Films, 2001, 361-362(1-4):113 -117
    [136] H.-J. Moffler, Ch.-H. Fischer, M. C. Lux-Steiner, ILGAR technology IV: ILGAR thin film technology extended to metal oxides, Solar Energy Materials
     and Solar Cells, 2001,67(1-4): 113 -120
    [137] A. G Rolo, O. Conde, One-phonon Raman scattering from arrays of semiconductor nano-crystals, Thin Solid Films, 1998, 318:108-112.
    [138] C. Guillen, M. A. Martinez, J. Hereero, CuInSe2 thin films obtained by a novel electrodeposition and sputtering combined method, Vacuum, 2000, 58: 594-601.
    [139] A. Ashour, N. El-Kadry, S. A. Mahmoud, On the electrical and optical properties of CdS films thermally deposited by a modified source, Thin Solid Flims, 1995,269: 117-120
    [140] H. Hernandez-Contreras, G. Contreras-Puente, J. Aguilar-Hernandez, CdS and CdTe large area thin films processed by radio-frequency planar-magnetron sputtering, Thin Solid Flims, 2002, 403:148-152
    [141] S. Pence, C. W. Bates, L. Varner, Morphological features in films of CdS prepared by chemical spray pyrolysis, Materials Letters, 1995, 23:195-201.
    [142] Belbruno. Mechanistic details for dimethylcadmium decomposition and CdS production by MOCVD, Journal of Crystal Growth, 1997,182: 321-328
    [143] E. Cordoncillo, P. Escribano, G Monros, The Preparation of CdS Particles in Silica Glasses by a Sol-Gel Method, Journal of Solid State Chemistry, 1995, 118: 1-5
    [144] Enriquez, J. Pantoja, Mathew, Influence of the thickness on structural, optical and electrical properties of chemical bath deposited CdS thin films, Solar Energy Materials and Solar Cell, 2003,76(4): 313-322
    [145] J. Zhang, L. Sun, C. H. Liao, Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method, Solid State Communication, 2002, 124:45-48
    [146] B. R Sankapal, R S. Mane, C. D. Lokhande, Deposition of CdS thin films by the successive ionic layer adsorption and reaction (SILAR) method, Materials Research Bulletin, 2000, 35: 177-184
    [147] J. M. Nel, H. L. Gaigher, F D. Auret, Microstructures of electrodeposited CdS layers, Thin Solid Films, 2003, 436: 186-195.
    [148] J. P. Enriquez, X. Mathew, Influence of the thickness on structural, optical and electrical properties of chemical bath deposited CdS thin films, 2003, 76(3): 313-322
    [149] H. Metin, R Esen. Annealing studies on CBD grown CdS thin films, J Crystal
     Growth, 2003, 258(1-2): 141-148
    [150] S. A. Kuhaimi, Influence of preparation technique on the structural, optical and electrical properties of polycrystalline CdS films, Vacuum, 1998, 51:349-355
    [151] S. Bini, K. Bindu, M. Lakshmi, Preparation of CuInS2 thin films using CBD CuxS films, Renewable Energy, 2000, 20: 405~413
    [152] K. Siemer, J. Klaer, I. Luck, Efficient CuInS2 solar cells from a rapid thermal process (RTP), Solar Energy Materials and Solar Cells, 2001, 67(1-4): 159-164
    [153] J. Klaer, K. Siemer, 9.2% efficient CuInS2 mini-module, Thin Solid Films, 2001,387: 169-173
    [154] M. Krunks, V. Mikli, O. Bijakina, Growth and recrystallization of CuInS2 films in spray pyrolytic process, Appl. Surf. Sci., 1999, 142(4): 356~361
    [155] K. Subba, R. Sundara, AEX and XPS analyses of CuIn(S1-xSex)2 thin films grown by spray pyrolysis technique, Scr. Mater, 2001, 44: 771 ~777
    [156] A. N. Tiwari, K. Pandya, L. Chopra, Electrical and optical properties of single-phase CuInS2 films prepared using spray pyrolysis, Thin Solid Films, 1985, 130: 270-231
    [157] H.Y Ueng, H. L. Hwang, Defect identification in undoped and phosphorous-doped CuInS2 based on deviations from ideal chemical formula, J. Appl. Phys, 1987,62(2): 434-439
    [158] J. H. Schon, E. Bucher, Characterization of intrinsic defect levels in CuInS2, Phys. Stat. Sol(a), 1999,171: 511-519
    [159] C. Mien, S. Barnier, Properties of several varieties of CuGaS2 microcrystals, Materials Science and Engineering: B, 2007,86(2): 152~156
    [160] M. S. Branch, P. R Bemdt, J. R Botha, Structure and morphology of CuGaS2 thin films, Thin Solid Films, 2003, 431-432: 94-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700