太阳能电池用多晶硅薄膜的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着可持续发展,环境保护等观念的深入人心,以及常规化石能源的日渐枯竭,太阳电池研究的主要任务转到了如何成为替代能源的方向上来。但是,基于硅片的太阳电池成本下降的空间有限,很难与常规能源相竞争。硅片成本占到太阳电池原料与能耗成本的95%以上,因此,降低太阳电池成本的主要途径之一是制造薄膜电池。本文着重研究用于太阳电池的多晶硅薄膜的制备技术。本文研究了多晶硅薄膜的制备方法,低温下快速光热退火(RPTA)和高温下陶瓷衬底上快热化学气相沉积(RTCVD),硅膜的生长及区熔再结晶(ZMR),用高温方式在陶瓷衬底上做了太阳电池的尝试,在高温方式下做了层转移新方式的探索。
     1.等离子增强化学气相沉积(PECVD)是低温沉积硅膜的主要方法。本文的第二章中对PECVD沉积多晶硅薄膜做了研究。分析了不同沉积温度、衬底、射频功率、氢稀释比、磷掺杂等参数对多晶硅薄膜结晶状态及光电性能的影响。
     2.固相晶化法(SPC)是制备大晶粒多晶硅薄膜的主要方法。本文的第三章对SPC,特别是对卤钨灯作为光源的快速光热退火(RPTA)进行了较为详细的研究。在普通的RPTA温度控制方式下,实验表明在700℃和750℃之间存在一转折区间,本文给出了解释。退火温度时间对晶化后的多晶硅薄膜的晶粒尺寸和暗电导率都有很大的影响,存在a-Si:H薄膜的最佳退火条件,本文给出了解释。沉积a-Si:H薄膜时的衬底温度越高,得到的a-Si:H薄膜越容易晶化。对快速热退火机理的初步探索:作者在纯热退火的模型的基础上,考虑了光照的影响,给出了一个简单模型,可以趋势上解释我们的实验现象。采用滤除短波光的方法实验,表明短波光作用很大。实验了脉冲快速热退火,可减少衬底承受高温的时间。采用了控制卤钨灯发光光谱范围的新实验方式,给予足够多的短波光,晶化时间缩短,晶化温度也有所降低,电导率提高。即使薄膜的温度较低(<650℃)仍然可以实现快速晶化,本征硅膜在580℃就能晶化。和普通RPTA方式相比,晶化效率提高了几倍,本文给出的原因分析。本文通过给出了不同光照条件下的快
Over years, with the concept of sustainable development and environmental protection deeply rooting among the people and gradual exhaustion of ordinary petrifaction energy sources, the main research task of solar cell focuses on how to replace the energy source. But in view of the limited reduction space upon cost of solar cell of silicon wafer, it is hard to compete with conventional energy. The cost of silicon wafer accounts for over 95% of overall costs of solar cell raw material and energy consumption. Therefore, the main way to reduce the cost of solar cell is to manufacture thin film cell. The article emphasizes the fabrication technology of polycrystalline thin films of solar cell and makes research on the preparation method of polycrystalline thin films, rapid photo-thermal annealing under low temperature (RPTA) and rapid thermal chemical vapor deposition (RTCVD) on ceramic substrate under high temperature, growth of silicon film as well as zone-melting recrystallization (ZMR), attempts of solar cell on ceramic substrate by means of high temperature and makes exploration on new method of layer transfer under high temperature.
    1. Plasma enhanced chemical vapor deposition (PECVD) is one of the matured and simple manipulated among the thin film deposition methods at low temperature. Chapter 2 in this article makes certain research on polycrystalline silicon thin films of PECVD and analyzes the growth principle, regularity and substrate performance of silicon thin film. The influences of deposition parameters include temperature, substrate, radio frequency power, ratio of SiH4 and doping on the crystalline and electric character was studied systematically.
    2 Solid Phase crystallization (SPC) is main re-crystallization techniques. Chapter 3 in this article makes certain research on Solid Phase crystallization (SPC), especially on rapid photo-thermal annealing (RPTA) technique. Two series of experiment were performed.
    The first series of experiment is that the light intensity is automatically adjusted to produce the predefined thermal cycle, controlled by a K-type thermocouple set on the silicon wafer. It was found that when the temperature is below 700 degrees centigrade, it is very difficult for a-Si:H thin films to crystallize. When annealing temperature is above 750 degrees centigrade, it is very ease for a-Si:H thin films to crystallize. That is to say, there exists a temperature transition field between 700 to 750 degrees centigrade. Then the crystallization condition of a-Si:H was studied thoroughly when it is above 750 degrees centigrade and below 700 degrees centigrade. The results turned out that annealing temperature and time have great influence on particle size and dark conductivity. There exists the best annealing condition of a-Si:H thin films. In addition, the influence of using conventional furnace annealing to warm up before photo-thermal annealing and the substrate temperature when a-Si:H film was deposited on the crystallization of a-Si:H thin films was also studied. It was found that to use normal high temperature stove to warm up before photo-thermal annealing is helpful to increase the size of polycrystalline silicon
引文
[1] A.J.Waldau. PVNET European Roadmap for PV R&D. Italy: European Communities, 2004.
    [2] 贾文瑞,徐青,王燕灵等,21世纪中国能源、环境与石油工业发展.北京:石油工业出版社,2002.
    [3] D.Chapin et al., J. Appl. Phys.,25,676(1954)
    [4] 林安中,王斯成.国内外太阳电池和光伏发电的进展与前景.太阳能学报特刊.1999.68
    [5] 赵玉文。21世纪我国太阳能光伏产业发展战略思考。中国第六届光伏会议论文集.昆明:2000:257
    [6] 昌金铭,吴建荣.世界光伏产业崛起对我国的启迪.中国第六届光伏会议论文集.杭州:2002:371
    [7] Makoto KONAGAI,Challenging Targets in the PV Roadmap Until 2030,第八届全国光伏会议,深圳,2004,
    [8] Renewable Energy World, 2002(5):148
    [9] Renewable Energy World, 2002(3):12
    [10] Sun World, 2000(24):4.
    [11] 王文静,中国光伏项目评述,第八届全国光伏会议,深圳,2004
    [12] 马胜红、孔力、陈东兵、苏保忠、马也宽、王燕、潘正祥、桂俊祥、左龙、袁斌、刘建彪、李平林、丁致和,敦煌8MWp并网光伏发电系统预可行性研究,第八届全国光伏会议,深圳,2004
    [13] 崔容强 于化丛 孙铁囤 徐林 周之斌 孟凡英 赵春江 杨宏喜 徐秀琴 程平芳 蔡燕辉 林书铨 唐敦乙,太阳能与2010年上海世博会,第八届全国光伏会议,深圳,2004
    [14] 马胜红、赵玉文、王斯成、孔力、王燕,关于制定阶梯电价和促进我国光伏发电发展的议案(建议稿),第八届全国光伏会议,深圳,2004
    [15] 季秉厚,王万录.多晶硅薄膜与薄膜太阳电池.太阳能学报特刊.1999:102
    [16] B.J.Balinga.U.S.Patent,No.4236947,1980
    [17] W. Hoffmann, K. Jaeger, R. Hezel. Proc. 4th International Photovoltaic Science and Engineering Conference.(PVSEC-4,), 1989,725
    [18] J. Christophe, M.Gratzel et al. J.Am.Ceram.Soc.,Vol80, p3157, 1997
    [19] 左元淮.世界太阳电池产业的发展趋势.2002杭州西湖博览会科技合作周“阳光发电论坛论文集”.杭州:2002:8
    [20] 施正荣.晶体硅太阳能电池的现状和发展.中国第七届光伏会议论文集.杭州:2002:350[21] Participant Survey at the U.S NREL" s 12th Workshop on Crystalline Silicon Solar Cell Materials and Processes,2002,Breckenbridge,Colorado, USA
    [22] 吴瑞华,耿新华.非晶硅太阳电池述评.太阳能学报特刊.1999.95
    [23] J. Yang, S.Guha.Mat,Res.Soc.Symp.Proc.1999(557):239
    [24] M.A.Green. Present and future of crystalline silicon solar cells: Technical Digest of the International PVSEC-14[C]
    [25] M.A.Green. Crystallinend and thin film silicon solar cells: state of the art and future potential. Solar Energy.2003,74(2):181
    [26] Paul A.Basore.Large-area deposition for crystalline silicon on glass module. The 3rd world conf.on PV energy convertion.Osaka,2003
    [27] Paul A.Basore. Polt production of thin-film crystalline silicon on glass module. The 29th IEEE PVSC. New Orleans,2002
    [28] R.P. Gale, et al. 21st IEEE Photovoltaic Specialists Conference, p. 53,1990
    [29] NERL CdTe team fabricates 16.4% CdS/CdTe Device. National Center for Photovoltaics (NCPC) Hotline. April 11,2001
    [30] 王初华,胡黎明.多晶薄膜CdS/CdTe太阳电池.半导体光电.1994(15):377
    [31] 张静全,蔡伟,郑家贵等。CdTe太阳能电池研究进展.半导体光电。2000(21):88
    [32] A.Yamada. High efficiency CdTe thin film solar cells. PVSEC-12, 2001
    [33] 王兴孔.CuInSe2薄膜太阳电池.青岛大学学报.2000(13):85
    [34] Robert W.Birkmire.Recent progress and critical issues in thin film polycrystalline solar cells and modules. 25th IEEE Photovoltaic Specialists Conference, 1997:295
    [35] M.Contreras, et al. Progress in photovoltaics, Vol7, p311, 1999
    [36] A.Goetzberger,C.Hebling.Photovoltaicmaterials,past,present,future.Solar Energy Materials & Solar Cells,2002(62):1
    [37] J. Zhao, A. Wang and M.A. Green. Appl. Phys. Lett.,1998(73):1991
    [38] 赵玉文,林安中.晶体硅太阳电池及材料.太阳能学报特刊.1999:85
    [39] T.M. Btuton, N.B. Mason, S. Roberts et al. Towards 20% efficient silicon solar Solar Cells manufactured at 60 MWp per annum. 3rd World Conference on Photovoltaic Enenrgy Conversion(WCPEC-3) Abstracts for the Technical Program. Osaka, Japan:2003
    [40] 左元淮.世界太阳电池产业的发展趋势.2002杭州西湖博览会科技合作周“阳光发电论坛论文集”.杭州:2002:8
    [41] 杨德仁.太阳能电池硅材料研究进展.2002杭州西湖博览会科技合作周“阳光发电论坛论文集”.杭州:2002
    [42] Emiliano Perezagua(COO of Isofoton company)Photovoltaic technology present and future.2002杭州西湖博览会科技合作周“阳光发电论坛论文集”.杭州:2002
    [43] M. Taguchi, M.Tanaka, T. Matsuyama et al. Technical Digest of the International PVSEC-5, Kyoto, 1990:689[44] T.Sawada, N.Terada, S.Tsuge et al. High efficiency a-Si/c-Si heterojunction solar cell. Conference Record the first WCPEC, Hawaii, 1994:1219
    [45] Hitoshi Sakata, Takuo Nakai, Yoshiaki Baba et al. 20.7% highest efficiency large area(100.5cm2) HITTM cell. 28th IEEE Photovoltaic Specialists Conference,2000:7
    [46] S. Okamoto,e. maruyama, A. Tcrakawa et al. Towards large area high-efficiency a-Si/a-SiGe tandem solar cells. Solar Energy Materials & Solar Cells.2001(66):85
    [47] 耿新华,孙云,王宗畔等.薄膜太阳电池的研究进展.物理.1998(28):96
    [48] S.Zhang, X.Liao, L.Raniero, et al. Polymorphous silicon thin films and their ues in solar cells. Technical Digest of the International PVSEC-14. Bangkok, Thailand, 2004
    [49] A. Goetzberger. Optical confinement in thin solar cell by diffuse back reflectors. 15th IEEE Photovoltaic Specialists Conference, 1981:867
    [50] Stefan Reber. Electrical confinement for the crystalline silicon thin-film solar cell on Foreign substrates. Ph.D Thesis. Mainz University, Mainz Germany 2000.
    [51] K.R. Catchpole, M.J. McCann, K.J. Weber et al. A review of thin-film crystalline silicon for solar cell applications Part 2: Foreign substrates. Solar Energy Materials & Solar Cells. 2001(68):173
    [52] M.J. McCann, K.R. Catchpole, K.J. Weber et al. A review of thin-film crystalline silicon for solar cell applications Part 1:Native substrate. Solar Energy Materials & Solar Cells.2001(68):135
    [53] K. Yamamoto, M. Yoshimi, T. Suzuki et al. Below 5μ m thin film poly-si solar cell on glass substrate fabricated at low temperature.2rd World Conference and Exhibition on Photovoltaic Solar Energy Conversion,Vienna,Austria,1998:1284.
    [54] Frank R. Faller. Epitaxial silicon thin film solar cells. Ph.D Thesis. Albert-Ludwigs-University, Freiburg,Germany.1998
    [55] 卢景霄,硅太阳电池稳步走向薄膜化.第八届全国光伏会议,深圳,2004./太阳能学报.2005.x[1] 陈光华 邓金祥等 《新型电子薄膜材料》,P29.
    [2] Wagner,Plasma Process.,2:95,1982
    [3] Stefano Pitassi,Ph.D. Electrical and optical characterization of non-crystalline silicon used as infrared detector at room temperature
    [4] 程光煦 编著 拉曼 布里渊散射—原理及应用,应用物理学丛书,科学出版社,??2001年
    [5] Reuben Shuker and Robert W.Gammon,Phys.Rev.Lett.,25,222,1970
    [6] W.Weber,Phys.Rev.B15,4798,1977
    [7] J.E.Smith,M.H.Brodsky,B.L.Crowder,M.I.Nathan,A.Pinczuk,Phys.Lett.26,642,1971
    [8] M. Jana D. Das A. K. Barua. Promotion of microcrystallization by argon in moderately hydrogen diluted silane plasma[J]. Solar Energy Materials & Solar Cells, 2002,74(3):407-413
    [9] 陈光华,邓金祥等编,新型电子薄膜材料,化学工业出版社,2002年9月67页
    [10] D.V.Tsu B.S.Chao S.R.Ovshinsky et al. Effect of hydrogen dilution on the structure of amorphous silicon alloys[J].Appl.Phys.Lett, 1997,71(8):1317-1319
    [11] Akihisa Matsuda, Madoka Takai,Tomonori Nishimoto et al.Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate[J]. Solar Energy Materials & Solar Cells, 2003,78(1):3-26
    [12] Michio Kondo,Hiroyuki Fujiwara, Akihisa Matsuda. Foundamental aspects of low-temperature growth of microcrystalline silicon[J].Thin solid films, 2003,430(1):130-134
    [13] Akihisa Matsuda. Growth mechanism of microcrystalline silicon obtained from reactive plasmas[J]. Thin solid films,1999,337(1): 1-6
    [14] R.Dewarrat,J.Robertson. Surface diffusion of SiH_3 radicals and growth mechanism of A-Si:H and microcrystalline Si[J]. Thin Solid Films,2003,427(1):11-15
    [15] T.Kitagawa, M.Kondo, A.Matsuda. In situ observation of low temperature growth of crystalline silicon using reflection high-energy electron diffraction[J]. Journal of Non-Crystalline Solids,2000, 266-269(1):64-68
    [16] 陈永生,杨仕娥,卢景霄等衬底材料对微晶硅薄膜结构特性的影响,第八届全国光伏会议,2004年11月,深圳,267-271页
    [17] T.Matsuyama, N.Terada, T.Baba et al.Hight-quality polycrystalline silicon thin film prepared by a solid phase crystallization method[J]. Journal of Non-Crystalline Solid, 1996,198-200(4):940-944
    [18] 刘明,王子欧,奚中和等,磷掺杂纳米硅薄膜的研制,物理学报,2000年5月第5期,983-988[1] T.Matsuyama, N.Terada, T.Baba, et al. High-quality polycrystalline silicon thin film prepared by a solid phase crystallization method. Journal of Non-Crystalline Solids, 1996,198-200:940-944.
    [2] Mimura,N.Konishi,K.Ono et al.,IEEE Trans.Electron Devices,1989,36:351
    [3] Y.Z.Wang, S.J.Fonash, O.O.Awaselkarim, et al. Crystallization of a-Si:H on glass for active layers in thin film transistors: Effedts of glass coating. Journal of electroch-em, 1999,146:291.
    [4] A.T.Voutsas, M.K.Hatalis, J.Boyce, et al. Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition. Journal of Applied Physics, 1996,73(12):6999-7006.
    [5] 杜开瑛,饶海波,由低温退火轻掺杂控制a-Si:H膜的固相晶化成核,物理学报,1994,43(6):966-977.
    [6] T.Matsuyama, et al. High-quality polycrystalline silicon thin film prepared by a solid??phase crystallization method. Journal of Non-crystalline Solids, 1996,198-200: 940-944.
    [7] 陈光华 邓金祥等 《新型电子薄膜材料》,P73
    [8] Xin Zhang, Tong-Yi Zhang, Man Wong, et al. Residual-stre(?)s relaxation in poly-silicon thin films by high-temperature rapid thermal annealing. Sen ors and Actuators, 1998,A 64:109-115.
    [9] R.Singh,M.Fakhruddin, K.F.Poole, et al. Rapid photothermal processing as a semiconductor manufacturing technology for the 21st century Applied Surface Science, 2000,168:198-203.
    [10] Jia Song, Ge Huichun, Geng Xinhua, et al. Preparation of thin film polycrystall-ine silicon on glass by photo-thermal annealing. Solar Energy Materials & Solar Cells, 2000,62:201-205.
    [11] 薛清,郁伟中,黄远明 利用快速退火从非晶硅薄膜中生长纳米硅晶粒,物理实验,22(8):17-20.
    [12] S.Hasegawa, S.Sakamoto, T.Inokuma, et al. Structure of recrystallized silicon films prepared from amorphous silicon deposited using disilane. Applied Physics Letter, 1993, 62(11):1218-1220.
    [13] Yuwen Zhao, Wenjing Wang, Feng yun, et al. Polycrystalline silicon films prep-ared by improved pulsed rapid thermal annealing. Solar Energy Materials & Solar Cells, 2000,62:143-14
    [14] R.B.Bergmann, Optical in situ monitoring of solid phase crystallization of amorphous silicon, Journal of Crystal Growth 165(1996)341
    [15] M.K.Hatalis, and D.W.Greve, J. Appl. Phys. 63(1988)2260.
    [16] R.Singh,R.Sharangpani, et.al. How rapid isothermal processing can be a dominant semiconductor processing technology in the 21st century. Mat. Res. Soc. Syrup. Proc. Vol.429(1996)
    [17] K.N.Tu, J.W.Mayer, and L.C.Feldman, Electronic thin film science for for electrical engineers and materials scientists, Macmillan Publishing Company,N.Y. 46(1992)
    [18] A.E.Kiv and F.T.Umarova, Sov. Phys. Semicond.,7(9),474,(1970).
    [19] 康锡惠,刘梅清。光化学原理及应用,(超星图书馆) 1995
    [20] 何宇亮,陈光华,张仿清.非晶态半导体物理学,高等教育出版社,北京,1989
    [21] 曹瑾,光化学概论,高等教育出版社,北京,1985。[1] M.Hammond, Introduction to Chemical Vapour Deposition,Solid State Technology(December 1979)p61
    [2] H.Cheng,Dielectric and Polysilicon Film Deposition,ULSI Technology(1996)p211
    [3] Frank R.Faller,Epitaxial Silicon Thin-film Solar Cells, Ph.D thesis, Albert-Ludwigs-University, Freiburg,Germany,1998
    [4] 艾斌,沈辉,丁孔贤,梁宗存等,多晶硅薄膜的快速热化学气相沉积,第8次全国光伏会议,深圳,2004
    [5] 电子工业生产技术手册,第6册,国防工业出版社,1989
    [6] 王阳元,T.I.卡明斯,赵宝瑛等,多晶硅薄膜及其在集成电路中的应用,第二版,北京:科学出版社,2001
    [7] 杨树人,王宗昌,王兢等,半导体材料,第一版,吉林大学出版社,1997
    [8] 阚瑞麟,陈修治,硅材料科学与技术,第一版,杭州:浙江大学出版社,2000
    [9] 杨邦朝,王文生,薄膜物理与技术,第一版,成都,电子科技大学出版社,1997
    [10] 励旭东,低成本衬底上晶体硅薄膜太阳电池的研究,北京师范大学研究生院博士学位论文,2003
    [11] R.M.Olsen. Essential of engineering fluid flow.Scranton,1966
    [12] 艾斌,颗粒硅带上外延制备多晶硅薄膜太阳电池,中国科学院研究生院博士学位论文,2004
    [14] 任丙彦等译,《硅外延生长技术》,河北科学技术出版社,1992
    [15] 曲喜新等,《薄膜物理》,上海科学技术出版社 1986
    [16] J.A. Venables, G.D.T. Spiller and M. Hanrticken, Rep. Progr. Phys.,47(1984)399.
    [17] J.A. Venables, Phys. Rev., B36(8) (1987) 4153.
    [18] M.E.Nell, A.Braun et al. Thin silicon on Al_2O_3 for solar cells. Materials Science and??Engineering. B69-70, 542-545, 2000
    [19] S.Bourdaris,et.al.,In Proc. 16th European Photovoltaic Solar Energy Confernce,2000.
    [20] S.Reber, et.al., In Proc.2nd World Conference on Photovoltaic Solar Energy Conversion, Joint Research Centre,European Commission,Ispra,Italy 1998.p1456
    [21] R.Monna,et.al.,InProc. 14th European Photovoltaic Solar Energy Confernce, ed. by. P. H. H. A. Ossenbrink, H. Ehmann (H.S.Stephens,Bedford,UK1997).P1456
    [22] A.V.Keitz,et.al.,In Proc.2nd World Conference on Photovoltaic Solar Energy Conversion. ed. by. J. Schmid, H. A. Ossenbrink P.Helm, H. Ehmann,and E. D. Dunlop (Joint Research Centre, European Commission,Ispra,Italy 1998).p1829.
    [23] 王文静,许颖,罗欣莲,于元,赵玉文,于民,李国辉,在SiO2和Si3N4膜上用RTCVD法沉积多晶硅薄膜的研究.太阳能学报 第20卷第3期(1999)
    [24] Tsutomu YamazakiT, Yukiharu Uraoka, Takashi Fuyuki, Large grain polycrystalline Si thin films by nucleation-controlled chemical vapor deposition using intermittent source gas supply, Thin Solid Films xx(2005) xxx-xxx (from internet)
    [25] G.Beaucarne, S.Bour dais, A.Slaoui, J.Poortmans, Thin-film polysilicon solar cells on foreign substrates using direct thermal CVD: material and solar cell design, Thin Solid Films 403-404(2002)229-237
    [26] Yuwen Zhao, etc., Solar Energy Materials and Cells, pp321-326,48(1-4)(1997)
    [27] A.Staoui, R.Monna, D.Angermeier, et al. 26th IEEE PVSC, 1997, 627
    [28] Lin T. and Hon M. J.Materials Science, 1995, 30:2675
    [29] 曲喜新等,《薄膜物理》,上海科学技术出版社 1986,p18~19]
    [30] C.Rodrigues, R.C.Gamboa, J.C.Henriques, J.M.Serra, J.Maia Alves and A.M.Vallera. Silicon Sheet From Silane: First Results. from internet
    [31] S.Reber, W. Wettling. High-temperature Processing of crystalline silicon thin-film solar cells. Appl.Phys. A 69(1999)215-220
    [33] 中国科学院半导体研究所理化分析中心研究室著,半导体的检测与分析,北京:科学出版社,1986
    [34] 孙恒慧,包宗明.半导体物理实验,第一版.北京:高等教育出版社,1988
    [35] Keithley Instruments,Inc. Model 7065 Hall Effect Card Instruction Manual. Ohio, USA. 1989.
    [36] Stefan Reber, Electrical Confinement for the Crystalline Sillion Thin-film Solar Cells on Foreign Substrate, Ph.D Thesis, Mainz Jonannes Gutenerg-University, Mainz Germany, 2000[1] G. Andra, J. Bergmann, F. Falk, and E.ose, Laser Induced Liquid Phase Crystallization of Amorphous Silicon films on glass for thin Film Solar Cells, In Proc 14th European Photovoltaic Solar Engrgy Conference
    [2] M. Pauli, T. Reindl, W. Kruhler, F. Homberg, and J. muller, A new fabrication method for multicrystalline silicon layers on graphite substrates suited for low-cost thin film solar cells, Sol. Ener. Mat. &sol. cells 41/42(1996)119
    [3] H. Naomoto, S.Hamamoto, A. Takami, S. Arimoto, and T Ishihara, Characterization of thin-film silicon formed by high-speed Zone-melting recrystallization process Sol. Ener. Mater. Sol. Cells 48(1997)261
    [4] C. Hebling, S. Reber, K. Schmidt, R. Ludemann, and F. Lutz, Oriented Recrystallization of silicon layer for silicon thin Film Solar cells, In Proc.26th IEEE PVSC(IEEE;New York, NY, USA 1997)p623
    [5] S. Reber, G. Stollwerck, D. Osswald, T.Kieliba, and C. Habling, Crystalline Silicon thin-film Solar Cells on silicon Nitride Ceramics, In Proc. 16th European Photovoltaic Solar Energy Conference, Glasgow2000
    [6] A. Takami, S. Arimoto, H. Naomoto, S. Hamamoto, T. Ishihara, H. Kumabe, and T. Murotani, Thickness dependence of defect density in thin film polycrystalline silicon formed on insulator by ZMR, In proc. 1st World Conference on Photovoltaic??Energy Conversion (IEEE; New York 1994)1394
    [7]A.Takami, S. Arimoto, T. Ishihara, H. kumabe, and T. Murotani, High Efficiency (16.45%)Thin film Silicon Solar Cell prepared by Zone-Melting Recrystallization, In Proc, 12th European Photovoltaic Solar Energy Conference (UK 1994)P59
    [8]Richard D. Robinson, Ioannis N. Miaoulis. Thermal parameters affecting low temperature zone-melting recrystallization of films. J. Appl. Phys. 75, 1771, 1994
    [9]Douglas A. Kurtze: Pulsations in optical directional melting of semiconductors. Phys. Rev. B 36, 2121-2125 (1987)
    [11]Manabu Ihara, Shuhei Yokoyama, et al. Fabrication of silicon thin films with defects below detection limit of electron spin resonance for solar cells by high-speed zone-melting crystallization of amorphous silicon. Appl. Phys. Lett. 79, 3809, 2001
    [12]J.S.Im, H.Tomita,and C.V.Thompson, Cellular and dendritic morphologies on stationary and moving liquid-solid interfaces in zone-melting recrystallization, Appl. Phys. Lett. 51(1987)685-687
    [13]H.J.Leamy, C.C.Chang, H.Baumgart, R.A.Lemons, and J.Cheng, Cellular growth in microzone melted silicon, Mater. Lett. 1(1982)1994-1997
    [14]Costas P. Grigoropoulos, Richard H. Buckholz and Gerald A. Domoto. The role of reflectivity change in optically induced recrystallization of thin silicon films. J.Appl.Phys. 59(1986), 454
    [15]R.A. Lemons, et al. MRS Symp. Proc. 13, 581, 1983
    [16]H.J. Leamy, et al. Mater.Lett.1, 33, 1982
    [17]Si-Woo Lee, Seung-Ki Joo. Doping effects in zone-melting recrystallization of silicon thin films.J.Appl.Phys.77, 6000, 1995
    [18] P.Y.Wang, and I.N.Miaoulis, Real-time image analysis and control of the solid/liquid interface during zone-melting recrystallization of thin films. In Proc. Microelectronic Processes, Sensors, and Controls(1993)p358-368
    [19]M. Haond, D. P. Vu, D. Bensahel and M. Dupuy: Microanalysis of single-crystal Si recrystallized using halogen lamps. J.Appl.phys. 54(1983)3892
    [20]H. Baumgart and F. Phillipp, in Energy Beam-Solid Interactions and Transient Thermal Processing, Mater. Res. Soc. Proc., Vol.35(1985)pp.593-598.
    [21] F.W. Yong, et al. J.Appl.Phys.35, 1917, 1964
    [22]M.W. Geis, H.I. Smith, and C.K. Chen, "Characterization and Entrainment of Subboundaries and Defect Trails in Zone-Melting-Recrystallized Si Films", J. Appl. Phys. 60(1986), 1152.
    [23]M.W. Geis, H.I. Smith, D.J. Silversmith, R.W. Mountain, and C.V. Thompson, "Solidification-Front Modulation to Entrain Subboundaries in Zone Melting Recrystallization of Si on SIO2", J. Electrochem. Soc. 130(1983), 1178.
    [24]M.W. Geis, H.I. Smith, B.Y. Tsaur, J.C.C. Fan, D.J. Silversmith, R.W. Mountain, andR.L. Chapman, (Zone-Melting Recrystallization of Semiconductor Films), Laser-Solid Interactions and Transient Thermal Processing of Materials Symposium, Mat. Res. Soc. Symp. Proc. Vol. 13, 477 (1983).
    [25]Loren Pfeiffer, A. E. Gelman, K. A. Jackson, K. W. West, and J. L. Batstone: Subboundary-free zone-melt recrystallization of thin-film silicon. Applied Physics Letters, Volume 51, October 19, 1987, pp. 1256-1258
    [26]P. W. Mertens and H. E. Maes. Different Defect Patterns in Stacked Silicon Films Obtained by Radiative-Heating Zone-Melting Recrystallization. Jpn. J. Appl. Phys. Vol. 31 (1992) L63-L65
    [27]Naomoto, H. Hamamoto, S. et al. Characterization of thin-film silicon formed by high-speed zone-melting recrystallization process. Solar Energy Materials and Solar Cells.48(1-4), 261-267, 1997
    [28]C.K. Chen and J.S. Im. Zone-melting recrystallization with enhanced radiative heating for preparation of subboundary-free silicon-on-insulator thin films.Appl.Phys.Lett. 55, 1238, 1989
    [29]P.V. Evans, D.A. Smith, et al. Absence of electrical activity at high-angle grain boundaries in zone-melt-recrystallized silicon-on-insulator films. Appl.Phys.Lett.60, 439, 1992
    [30]Piera. E, Tellez. C, Coronas. J, et al. Use of zeolite membrane reactors for selectivity enhancement: application to the liquid-phase oligomerization of i-butene. CATAL TODAY. 67(1-3): 127-138, 2001
    [31]Shuhei Yokoyama, Manabu Ihara, et al. Fabrication of SOI Films with High Crystal Uniformity by High-Speed Zone-Melting Crystallization. J.Electrochem.Soc.150, A594, 2003
    [32]Chun-Teh Lee and Chenson K. Chen. Defect-related dielectric breakdown, charge trapping, and interface-state generation of gate oxides grown on zone-melting-recrystallized silicon-on-insulator films.J.Appl.Phys.65, 646, 1989
    [33]T. kieliba, S. Reber. Enhanced zone-melting recrystallization for recrystallization thin-film solar cells. 16~(th) European Photovoltaic Solar Energy Conference.1-5 May 2000, Glasgow, UK
    [34]Slaoui, A. Bourdais, S. et al. Polycrystalline silicon solar cells on mullite substrates. Solar Energy Materials & Solar Cells. 71(2), 245-252, 2002
    [35]T. Ishihara, S. Arimoto, et al. High efficiency thin film silicon solar cells prepared by zone-melting recrystallization. Appl.Phys.Lett.63, 3604, 1993
    [36]P.W. Mertens, J. Leclair, et al. Oxygen distribution in silicon-on-insulator layers obtained by zone melting recrystallization. J.Appl.Phys.67, 7337, 1990
    [37]Thomas Kieliba, Johannes Pohl, Achim Eyer and Christian Schmiga: Optimization of c-Si films formed by Zone-melting recrystallization for thin-film solar cells. WCPEC3-Conference, Osaka, 2003.
    [38] Stefan Reber. Electrical confinement for the crystalline silicon thin-film solar cell onForeign substrates. Ph.D Thesis. Mainz University, Mainz Germany 2000.
    [39] C.Hebling, A.Eyer, F.R.Faller A.Hurrle, R. Ludemann, The crystalline Silicon Thin film Solar cell-The high-Temperature Approach, Advances in solid state physics 38(1999)633
    [40] R. Ludemann, S.Schafer, C,Schijle, and C.Hebling, Dry Processing of mc-Si Thin-Film Solar cell on Foreign Substrates Leading to 11% Efficiency, In proc.26th IEEE Photovoltaic specialists conference (IEEE; New York, USA,1997)P159
    [41] W.Zimmermann, S.Baw, F.Haas, K.Schmidt, and A.Eyer, Silicon sheets from powder (ssp) as low cost substrates for crystalline silicon thin film solar cell, In proc,2nd world conference on photovoltaic solar Energy conversion
    [42] S.Reber, F.R. Faller, C.Hebling, and Ludemann, Crystalline silicon Thin-Film solar cells on Sic based ceramics, In Proc.2nd WC-PVSEC
    [43] M.Takeyama, A, Noya, K Sakanishi, H. Seki, and K. Saki, sand K. Sasaki, Solid Phase Reactions of Diffusion Barriers of Ti and TiN to Copper Layers an SiO_2, Jap. J. Appl. Phys. 35(1996)4027
    [44] S. Janz, S. Bau, F. Lutz, C. Schetter, S. Reber, PECVD-SIC AS INTERMEDIATE LAYER FOR CRYSTALLINE SILICON THIN-FILM SOLAR CELLS ON CERAMIC SUBSTRATES. 19th European Photovoltaic Solar Energy Conference, 7-11 June 2004, Paris
    [45] J.Isenberg, S.Reber, J.Aschaber, and W.Warta: Silicon European Photovoltaic Solar Energy Conference,Glasgow, 1-SMay2000
    [46] F.R.Faller, V.Henninger, S.Hurrle, and N. Schillinger, Optimization of the CVD process for low-cost crystalline-silicon thin-film solar cells; In proc 2nd world conference on photovoltaic Solar Energy Conversion
    [47] Frank R.Faller, Epitaxial Silicon Thin-film Solar Cells, Ph.D thesis, Albert-Ludwigs-University, Freiburg,Germany,1998
    [48] T. Kunz, I. Burkert, R. Auer, R. Brendel, W. Buss, H. v. Campe, and M. Schulz, SILICON CARBIDE BARRIER LAYER ON CERAMIC SUBSTRATES FOR CRYSTALLINE SILICON THIN-FILM MODULES WITH AN INTEGRATED SERIES CONNECTION
    [49] J. Yaskoff, E. DelleDonne, D. Ford, A. Ingram, R. Jonczyk, P. Sims, J. Rand, A. Barnett, THIN SILICON-ON-CERAMIC SOLAR CELLS. NCPV and Solar Program Review Meeting 2003, Page 558
    [50] (澳)马丁.格林著,《太阳电池》,李秀文等译,电子工业出版社,1987。
    [51] 刘恩科等,《光电池及其应用》,科学出版社,1989
    [52] G. Beaucarne, et al, Solar Energy Materials & Solar Cells, 61,2000
    [53] 王阳元,T.I.卡明斯,赵宝瑛等.多晶硅薄膜及其在集成电路中的应用.第二版,科学出版社,2001
    [54] 姚连增.晶体生长基础,第一版.中国科学技术大学出版社,1989[55] 郭可信,叶恒强,吴玉琨,电子衍射图案在晶体学中的应用,第一版.科学出版社,1983
    [56] 艾斌,颗粒硅带上外延制备多晶硅薄膜太阳电池,中国科学院研究生院博士学位论文,2004
    [57] J.A. Venables, G.D.T. Spiller and M. Hanrticken, Rep. Progr. Phys.,47(1984)399.
    [58] J.A. Venables, Phys. Rev., B36(8)(1987)4153.
    [59] C. Hebling, S. W. Glunz, J. O. Schumacher, and J. Knobloch, High-Efficiency (19.2%) Silicon Thin-film Solar Cells with Interdigitated Emitter and Base Front-Contacts, In proc 14th European photovoltaic Solar Energy Conference (UK 1997)P2318
    [60] M.Spiegel, S. Keller, P. Fath, G. Willeke, and E. Bucher, Microwave Induced Remote Hydrogen Plasma (MIRHP)Passivation of solar cells Using Different Silicon Base Materials In Proc. 14th European Photovoltaic Solar Energy Conference (UK,1997)743
    [61] R. Ludemann, A.Hauser, and R. Schindler, Hydrogen Passivation of Low-and-High-Quality mc-silicon for High-Efficiency Solar Cells, In Proc. 2nd World Conference on Photovoltaic Solar Cells Conversion (Ispra, Italy 1998)1638
    [62] 吴虎才,许颖等.SOI衬底上多晶硅薄膜电池的研究.太阳能学报 vol25.2(2004)p133[1] 20兆瓦晶体硅太阳能电池生产线项目可行性研究报告,内部资料,2004
    [2] 电子工业生产技术手册,第6册,国防工业出版社,1989
    [3] 王阳元等,多晶硅薄膜及其在集成电路中的应用。科学出版社,2001
    [4] J. Christophe, M.Gratzel et al. J.Am.Ceram.Soc.,Vol80, p3157, 1997
    [5] H.Morikawa, et al. PVSEC-11, p529,1999
    [6] A.Goetzberger. 26th IEEE PVSC,p1, 1997
    [8] M.Pauli, et al. Sol.Engergy Mater.Sol.Cells, Vol41,p119,1996
    [9] R.Ludemann et al. 26th IEEE PVSC, p159, 1997
    [10] K.Peter et al. Thin film silicon solar cells on upgraded metallurgical silicon substrates prepared by liquid phase epitaxy. PVSEC-12,2001
    [11] H.Wagemann et al. Sol.Engergy Mater.Sol.Cells, Vol.69,p115, 2001
    [12] R.Shimokawa et al. Sol.Engergy Mater.Sol.Cells, Vol.34,p277, 1994
    [13] D.Angermeier et al. 2nd WCPSEC, p1778, 1998
    [14] S.Reber et al. 28th IEEE PVSC, p146, 2000
    [15] C.Hebling, S. Reber, K. Schmidt, R ludemann, and F. Lutz, Oriented Recrystallization of silicon layer for silicon thin Film Solar cells, In Proc.26th IEEE PVSC(IEEE;New York, NY, USA 1997)p623
    [16] Rliidemann, S.Schafer,C,Schijle, and C.Hebling, Dry Processing of mc-si Thin-FILM Solar cell on Foreigh Substrates Leading to 11% Efficiency, In proc.26th IEEE Photovoltaic specialists conference (IEEE; New York, USA,1997)P159
    [17] W.Zimmermann, S.Baw, F.Haas, K.Schmidt, and A.Eyer, Silicon sheets from powder (ssp) as low cost substrates for crystalline silicon thin film solar cell, In proc,2nd world conference on photovoltaic solar Energy conversion,
    [18] S.Reber, F.R. Faller, C.Hebling, and ludemann, Crystalline silicom Thin-Film solar cells on Sic based ceramics, In Proc.2nd WC-PVSEC]
    [19] M.E.Nell, A.Braun et al. Thin silicon on Al_2O_3 for solar cells. Materials Science and Engineering. B69-70, 542-545, 2000
    [20] S.Bourdaris,et.al.,In Proc. 16th European Photovoltaic Solar Energy Confernce,2000.
    [21] R.Monna, et.al., InProc. 14th European Photovoltaic Solar Energy Confernce, ed. by. P. H. H. A. Ossenbrink, H. Ehmann (H.S.Stephens,Bedford,UK1997).P1456
    [22] A.V.Keitz,et.al.,In Proc.2nd World Conference on Photovoltaic Solar Energy Conversion. ed. by. J. Schmid, H. A. Ossenbrink P.Helm, H. Ehmann,and E. D. Dunlop(Joint Research Centre,European Commission,Ispra,Italy 1998).p1829.
    [23] C. Hebling, S. W. Glunz, J. O. Schumacher, and J. Knobloch, High-Efficiency (19.2%) Silicon Thinfilm Solar Cells with Interdigitated Emitter and Base Front-Contacts, In proc 14th European photovailtaic Solar Energy Conference (uk 1997) p2318
    [24] A.Takami, S. Arimoto, T. Ishihara, H. kumabe, and T. Murotani, High Efficiency (16.45%)Thin film Silicon Solar Cell prepared by Zone-Melting Recrystallization, In??Proc, 12th Earopean Photovoltaic Solar Energy Conference(UK 1994)p59
    [25] C.Hebling, A.Eyer, F.R.Faller A.Hurrle,R.liidemam, The crystalline Sillicom Thin film Solar cell-The high-Temperatme Approach, Advances in solid state physies 38(1999)633
    [26] 陈建,潘复生,刘天模.Al/SiC界面结合机制的研究现状,轻金属,2000年第9期,p52
    [27] 马晓春等,Al—SiC系润湿性与界面现象的研究,材料科学于工程,Vol.12,No.1,1994
    [28] 陈振华,Al-Si合金固液混合铸造,中国有色金属学报,Vol.10 No.3,2000
    [29] 周宛玲,李梅,硅酸盐工业用耐火材料的现状和新进展,江苏陶瓷,Vol 65.p30
    [30] 李永利,乔冠军,金志浩,纳米BN包覆的Al2O3复合粉的制备及其烧结性能研究,硅酸盐学报,第30卷第4期,2002.8
    [31] 陈建,潘复生,顾明元.活性金属/陶瓷润湿机理研究,上海交通大学学报,Vol.35 No.3,2001
    [32] 陈凤久,于青,高炉用SiC砖显微结构及其抗侵蚀特征,东北大学学报,Vol.15,No.5,1994
    [33] 钟涛兴,吉元,李英,张静,邓明,固-液反应自生Al2O3/Al复合材料的研制,铸造,1997.12,p11
    [34] 高陇乔,氮化硼陶瓷和金属的接合技术,Electron compon Mater,Vol.14,No.5
    [35] 李晓明,肖磊,SiO2微粉中温结合机理的研究,陶瓷工程,第30卷,p12
    [36] 金胜利,李亚伟,张忻,李楠,陈汀水,β-sialon/Al2O3/SiO2系材料烧结性能及反应过程研究,硅酸盐学报,Vol.31,No.1,2003
    [37] 解荣军,黄莉萍,陈源,符锡仁,氧氮玻璃连接Si3N4陶瓷的可行性研究,无机材料学报,Vol.12,No.6,1997
    [38] 张雄飞,王达健,陈书荣,谢刚,液态铝与陶瓷的润湿性改变机理.Vol.21,No.1,2003
    [39] 金朝阳,陈铮,顾晓波,刘凯,用铝基钎料钎焊SiC陶瓷及其在SiC陶瓷表面浸润性的研究.华东船舶工业学院学报(自然科学版),Vol.15,No.2,2001.4
    [40] 周矿民,有色金属冶炼炉用不定形耐火材料.有色设备,2000.5,p40
    [41] 黄岳山,李文方,蒙继龙,曾美琴,液态浸渗法制备Al2O3-SiO2纤维/Al-Si复合材料.材料开发与应用,第13卷第2期,1998.4
    [42] 于志强,武高辉,孙东立,增强体涂层影响Al/陶瓷界面润湿性的研究,特种铸造及有色合金,2003年第2期
    [43] 马晓春,铝—碳化硅颗粒复合材料的制备,浙江工业大学学报,Vol.24,No.4,1996
    [44] 李戈扬,中江秀雄,羽根哲哉,戴嘉维,铝液在Al2O3上润湿性的改善,材料工程,2000年4期,p11
    [45] 张战营,黄振武,李峻岭,莫来石结合Al2O3/SiC浇注料的显微结构特征,耐火材料 2002,36(4)213~214,220[46] 张旭东,何文,沈建兴,莫来石晶须的制备,中国陶瓷,第34卷第6期,1998.
    [47] 景文珩,吴俊,邢卫红,徐南平,片状陶瓷膜润湿动力学的测试,高校化学工程学报,第18卷第2期,2004年4月
    [48] 禹剑,双相铝硅凝胶莫来石化及烧结行为,硅酸盐学报,第26卷第5期,1998年10月
    [49] (美)米尔恩斯(Milnes,A.G)著,半导体中的深能级杂质,北京:科学出版社,1981
    [50] 实用热物理性质手册 马庆芳编 北京:中国农业机械出版社,1986
    [51] 常用化合物性能数据手册 田德余编 长沙:湖南科学技术出版社,1988
    [52] 化工工艺算图.第一册:常用物料物性数据 吉林化学工业公司设计院,化工部中国环球化学工程公司主编;谢端绶,琚定一,苏元复合编 北京:化学工业出版社,1982
    [53] 低熔点金属的热物性 钱增源编著 北京:科学出版社,1985
    [54] 高物性新型复合材料;石行,朱立群译(日)内田盛也编著 北京:航空工业出版社,1992
    [55] (苏)耶菲莫夫等著;高胜利等译,无机化合物性质手册,西安:陕西科学技术出版社,1987
    [56] (苏)弗列堡.巴布斯著;钟香崇译,高级耐火材料,北京:冶金工业出版社,1956
    [57] 天津大学,华南化工学院合编,硅酸盐工业 第四分册 耐火材料工学
    [58] 徐平坤,董应榜编著,刚玉耐火材料 北京:冶金工业出版社,1999
    [59] 钱之荣,范广举主编,耐火材料实用手册北京:冶金工业出版社,1992
    [60] 梁训裕,刘景林同编译,碳化硅耐火材料,北京:冶金工业出版社,1995
    [61] 高心魁编著,熔融耐火材料,北京:冶金工业出版社,1995
    [62] 胡宝玉,徐延庆,张宏达编著,特种耐火材料实用技术手册北京:冶金工业出版社,2004
    [63] 洪彦若...[等]著,非氧化物复合耐火材料北京:冶金工业出版社,2003
    [64] (日)素木洋一著;刘达权,陈世兴译,硅酸盐手册,北京:轻工业出版社,1982
    [65] (日)河岛千寻著;张绶庆译,特种硅酸盐材料,北京:中国工业出版社,1966
    [66] 马庆芳编,实用热物理性质手册,北京:中国农业机械出版社,1986
    [67] (土耳其)伊赫桑·巴伦主编;程乃良,牛四通,徐桂英等译,纯物质热化学数据手册,北京:科学出版社,2003
    [68] (美)H.F.沃尔夫编;天津半导体器件厂译,硅半导体工艺数据手册,北京:国防工业出版社,1975
    [69] (作者未知)半导体器件制造工艺常用数据手册,网上超星图书馆(出版社、年代未知)
    [70] [美]施敏 《半导体器件 物理与工艺》 1992年5月第1版
    [71] 厦门大学物理系半导体物理教研室,半导体器件工艺原理,1977年6月第1版[72] 乔冠儒著,半导体工艺化学原理 南京:江苏科技出版社,1979
    [73] 陈竹青,半导体工艺化学,天津科学技术出版社,1982
    [74] 刘国维,谢孟贤编,半导体工艺原理.北京:国防工业出版社,1980
    [75] (美)K.A.杰克逊主编;屠海令等译校,半导体工艺,北京:科学出版社,1999
    [76] (美)图雷浦(O.D.)编;王正华等译,半导体器件工艺手册,北京:电子工业出版社,1987
    [77] Imaizumi M, Ito T, Yamaguchi M et al. 14th European PV solar energy conversion conference, 1997. p1385
    [78] A.B.Sproul, S.Edmiston, S.R.Wenham, G.H.Heiser, and M.A.Green. Innovative structures for thin film crystalline silicon solar cells to give high efficiencies from low quality silicon. 1st WCPEC, p1564, 1998
    [79] J.R.Davis, A.Rohatgi, R.H.Hopkins, P.D.Blais, P.Rai-Choudhury, J.R.McCormick, and H.C.Mollenkopf. "Impurities in solar cells" IEEE Trans. Elec. Dev. ED-27(4),1980, pp677-687
    [80] M.Spitzer, et al. 14th IEEE PVSC, p375, 1980
    [81] 叶良修,半导体物理学,高等教育出版社,1983
    [82] 刘恩科等,光电池及其应用,科学出版社,1991
    [83] 赵富鑫等,太阳电池及其应用,国防工业出版社,1985
    [84] M.Keevers and M.A.Green, "Extended Infrared Response of Silicon Solar Cells and the Impurity Photovoltaic Effect." 1st WCPEC. Hawaii, 1994.
    [85] 施敏,半导体器件物理,电子工业出版社,1986
    [86] M.W. Geis, H.I. Smith, and C.K. Chen, "Characterization, and Entrainment of Subboundaries and Defect Trails in Zone-Melting-Recrystallized Si Films", J. Appl. Phys. 60(1986), 1152.
    [87] P. W. Mertens and H. E. Maes: Different Defect Patterns in Stacked Silicon Films Obtained by Radiative-Heating Zone-Melting Recrystallization. Jpn. J. Appl. Phys. Vol. 31(1992) L63-L65[1] 李爱文,张秉慧 《现代逆变技术及其应用》科学出版社;1996
    [2] 张占松,蔡宣三 《开关电源的原理与设计》电子工业出版社;1998
    [3] 赵修科 《实用电源技术手册》磁性元器件分册 辽宁科学技术出版社;2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700