多晶硅酸刻蚀表面织构化的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前日益严重的环境污染和能源危机,使得太阳能近年来成为研究的热点,晶体硅材料因为储量丰富和无毒性,广泛地应用于光伏产业,而最近几年多晶硅材料则成为制备太阳电池最重要的材料。多晶硅表面织构化可以减少光的损失,提高多晶太阳电池的光电转换效率。近些年,研究者采用机械刻槽,反应离子,激光刻槽和酸腐蚀织构等方法来获得具有陷光效应的多晶硅织构表面。其中酸腐蚀织构法,成本低、高效率且易于大规模制备等优点被广泛的应用到工业生产中。本文的主要的结果如下:
     (1)腐蚀速率随着HNO_3的比例的增加,先升高,后下降。在富HF体系下,可以获得较低的反射率的表面织构,但晶界处的腐蚀深度很深,不易于电极的印刷和电子的收集;而富HNO_3的腐蚀体系下,制备得到的织构表面反射率较高。
     (2)不同配比的腐蚀体系中,温度对反应速率的影响存在较大差异,低温刻蚀比常温刻蚀更具优势,应当选择在HNO_3比例相对较低的腐蚀体系(HF:HNO_3:H_2O=1:4:2)中进行,当体系温度为3℃时,刻蚀反应速率为2.6μm/min,该反应速率适合于工业生产。
     (3)腐蚀反应先从激活能较低处发生反应,然后逐渐形成深宽比较大的腐蚀坑,反射率逐渐达到最低;然后表面腐蚀坑开始横向发展,最后趋于平坦。酸腐蚀织构反应过程中反射率先降低,后升高,最后趋于稳定的过程。
     (4)在富HNO_3的腐蚀体系下,可以通过调整温度和时间,来控制腐蚀重量在一定范围,这样可以保证长时间大面积生产,后续工序可以获得稳定的织构化表面。“蚯蚓状”的腐蚀坑结构,可以兼顾太阳电池的光学和电学性能,具有最佳的转化效率。该方案已在25MW多晶硅太阳电池生产线上实施,不增加工艺难度和生产成本,适合于工业生产。
Recently the increasing serious environment pollution and energy crisis prompt the rapiddevelopment of solar energy. Crystalline silicon (c-Si) is a material commonly used byterrestrial photovoltaics (PV) industry because of non-toxicity and abundance (25%of theEarth’s crust). In recent years, the multi-crystalline silicon (mc-Si) has become one of themost important substrate materials for solar-cell applications. It is known that texturizationtechnology can reduce the reflection losses thus overall efficiencies on mc-Si solar-cellapplications can be improved. There has been growing interest in the development of surfacetreatment to enhance light-trapping cells by several methods, such as the use of physicalanti-reflection sputter, reactive ion etcher(RIE), laser process and acid etching. Among thesemethods, the acid etching for texturing the surface is the major industrial process because ofits low-cost, high etching rate and large-area uniformity. This paper reports the optimizedcondition for crystalline silicon solar cell fabrication, which easily meets the requirement foroptical and electrical performance of solar cells. The main results are as following.
     (1)The etching rate decreased at first but increased later on with the HNO_3being added. InHF-rich system,low reflectivity surface texture could be obtained, while it was difficult toprint the electrode on the grain boundary when it is deep. In HNO_3-rich system, the surfacereflectivity obtained was higher.
     (2)There was large difference for reaction rate affecting by temperature as ratio changed inHF-HNO_3-H_2O system. Low-temperature acid etching had more advantages compared toroom-temperature acid etching. Good result was obtained as the HNO_3content decreased atlow-temperature acid etching. The optimum technique for textured structure onmulti-crystalline silicon was as following: HF:HNO_3:H_2O=1:4:2, temperature at3℃andetching rate was2.6μm/min,
     (3)The acid etching occurred at crystal boundary when activation energy was low. Theetching pit had a large H(depth)/R(width) when the reflectivity reached the minimum. Then H decreased and R increased, the surface morphology tended to be smooth. The reflectancedecreased at first, increased later on. Ultimately it tended to be stabilized.
     (4)In HNO_3-rich system, stable textured surface and production could be obtained byadjusting the temperature and time to control corrosion weight in a certain range. Worm-liketextures could easily meets the requirement for optical and electrical performance of solarcells, which could achieve the best efficiency. The applied was successfully used in25MWproduction line of multi-crystalline silicon solar cell.
引文
[1]姜谦.2009-2012年中国可再生能源市场投资分析及前景预测报告.中投顾问,2009
    [2] Boudaden J, Monna R, Loghmarti M, et al. Comparison of phosphorus gettering fordifferent multi-crystalline silicon. Solar Energy Materials and Solar Cells,2002,72:381-387.
    [3]王书荣,陈庭金,刘祖明等.多晶硅太阳电池的吸杂实验研究.云南师范大学学报,2001,21(6):43-44.
    [4] Armin G. Overview on SiN surface passivation of crystalline silicon solar cells. SolarEnergy Materials and Solar Cells,2001,(65):239-248
    [5]王育伟,刘小峰,陈婷婷等.薄膜太阳电池的最新进展.半导体光电,2008,2:151-158
    [6]洪瑞江,沈辉.薄膜太阳电池的研发现状和产业发展.中国材料进展,2009,9:35-44
    [7]杨树人,丁墨元.外延生长技术.北京:国防工业出版社,1992,299.
    [8]胡芸菲,沈辉,梁宗存等.多晶硅薄膜太阳电池的研究与进展.太阳能学报,2005,2:200-206
    [9] Reber S, Zimmermann W, Kieliba T. Zone melting re-crystallization of silicon films forcrystalline silicon thin-film solar cells. Solar Energy Materials&Solar Cells,2001,65:409-416.
    [10]李维刚,许颖,励旭东等.区熔再结晶制备多晶硅薄膜太阳电池.太阳能学报,2001,37:746
    [11] Repins I, Contmras M, Egaas B, et al.19.9%-efficient ZnO/CdS/CuInGaSe2Solar Cellwith81.2%Fill Factor. Prog. Photovolt: Res. Appl,2008,16:235-239.
    [12] Satoh T, Hashimoto Y, Shimakawa S,et al. Cu(In,Ga)Se2solar cells on stainless steelsubstrates covered with insulating layers. Solar Energy Materials and Solar Cells,2003,75:65-71.
    [13] Powalla M, Bonnet D. Thin film solar cells based on the polycrystalline compoundsemiconductors CIS and CdTe. Adv Opto Electrnics,2007,2007:6
    [14] Erra S, Shivakumar C, et al. An effective method of Cu incorporation in CdTe solar cellsfor improved stability. Thin Solid Films,2007,515:5833
    [15] Hadrich M, Kraft C, et al. Pathways to thin absorbers in CdTe solar cells. Thin SolidFilms,2009,517:2282
    [16] Ren H, Jiang M, Liu L, et al. Chemical Thermodynamic Analysis of Silicon Doping inMOCVD of GaAs System. Rare Metales,1993,2(12):121-125
    [17] Bauhuis G J, Mulder P, et al.26.1%thin-film GaAs solar cell using epitaxial lift-off.Solar Energy Mater Solar Cells,2009,93(3):332
    [18] O Regan B, Gratzel M. A Low-Cost High-Efficiency Solar Cell Based on Dye-SensitizedColloidal TiO2Films. Nature,1991,353:737-740
    [19] Nazeeruddin M, Angelis F, Fantacci S, et al. Combined Experimental and DFT-TDDFTComputational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of theAmerican Chemical Society,2005,127(48):16835-16847
    [20] Gr tzel M, The advent of mesoscopic injection solar cells. Progress in Photovoltaics:Research and Applications,2006,14(5):429-442
    [21] Restrepo F, Backus C. On black solar cells or the tetrahedral texturing of a silicon surface.IEEE Trans Electron Dev.1976,23(10):1195-1197
    [22] Chaoui R, Lachab M, et al.14th European Photovotaic Solar Energy Conference,Barcelona,1997,14:812-814
    [23]席珍强,杨德仁,吴丹等.单晶硅太阳电池的表面织构.太阳能学报,2002,23(3):285-289
    [24]郭志球,柳锡运,沈辉等.各向同性腐蚀法制备多晶硅绒面.材料科学与工程学报,2007,25(1):68-70
    [25] Erik M,Hans J,Daniel N,et a1.Acidic texturing of multi-crystalline silicon wafers.Proceedings of the31IEEE Photo-voltaic Specialists Conference. Florida,2005:1039-1042
    [26] Macdonald D,Cuevas A,Kerr M,et a1.Texturing industrial multi-crystalline siliconsolar cells. Proceedings of ISES2001Solar World Congress. Adelaide,2001,1-7
    [27] Ju M,Gunasekaran M,Kim K,et a1.A new vapor texturing method for multi-crystallinesilicon solar cell applications. Materials Science and Engineering B,2008,153(1/3):66-69
    [28]李海玲,王文静,周春兰等.在HNO3/HF混合液中反应副产物对腐蚀特性的影响.太阳能学报,2010,31:1150-1153
    [29] Lossen J, Mittelstadt L, Dauwe S,et al,Making use of silicon wafers with low lifetimesby adequate POCl3diffusion. Proceedings of the20th European Photovoltaic SolarEnergy Conferenc,2005,2:1411
    [30]陈金学,席珍强,吴冬冬等.变温磷吸杂对多晶硅性能的影响.太阳能学报,2007,28:160-164
    [31] Perichand I,Floret F, Martinuzzi S. Limiting factors of phosphorus external getteringefficiency in multi-crystalline silicon. IEEE,1993,243-247
    [32] Boubekeur H,Boumaour M. Impact of later junction on selective emitter solar cellperformance.Solar Energy Materials and Solar Cells,1998,56(1):7-15
    [33]姜礼华,曾祥斌,张笑.高温退火处理下SiNx薄膜组成及键合结构变化.物理学报,2012,61(016803):1-6
    [34]刘志平.双层氮化硅减反射晶体硅太阳电池的研究:[北京交通大学专业硕士学位论文].北京:北京交通大学,2011,63-71
    [35]龚灿锋,杨德仁,王晓泉等.氮化硅薄膜对晶体硅材料和电池的钝化效果研究.太阳能学报,2005,26:613-616
    [36]郑建华,张亚平,敖毅伟等.银奖组成对硅太阳电池丝网印刷欧姆接触的影响.太阳能学报,2008,29:1274-1277
    [37]姚剑,蔡万华,席珍强等.单晶硅太阳电池铝背场的快速热处理制备.太阳能学报,2009,30:784-787
    [38]郑建华,张亚萍,敖毅伟等.银浆组成对硅太阳电池丝网印刷欧姆接触的影响.2008,10:1274-1277
    [39]张松,孟凡英,汪建强等.低成本选择性发射区太阳电池的制备和特性.上海交通大学学报,2011,6:793-798
    [40] Willeke G, Nussbaumer H, Bender H,et al, A simple and effective light trappingtechnique for polycrystalline silicon solar cells. Solar Energy Mater and Solar Cells,1992,26:345-356
    [41]赵玉文,李仲明,莫春东等.机械刻槽埋栅高效硅太阳电池.太阳能学报,1998,1:1-3
    [42] Zechner C, Hahn G, Jooss W,et al. Systematic study towards high efficiencymulti-crystalline silicon solar cells with mechanical surface texturization,26th VSC,1997,243-246
    [43] John C, Narayanan S,Stuart R et al. A. Green,16.7%efficient, laser textured, buriedcontact polycrystalline silicon solar cell, Appl. Phys. Lett.27November1989,55(22)
    [44]王学孟,赵汝强,沈辉等.用于太阳电池的多晶硅激光表面织构化研究.激光与电子学进展,2010,47:1-6
    [45] Schaefer S, Ludemann R. Low damage reactive ion etching for photovoltaic applications,J. of Vac. Sci. and Technol. A,1999,17(3):749-752
    [46] Yoo J, Yu G, Yi J. Large-area multi-crystalline silicon solar cell fabrication using reactiveion etching (RIE). Solar Energy Materials and Solar Cells,2011,95:2-6
    [47]王应民,程泽秀,李清华等.多晶硅表面织构化新工艺的研究.光学学报,2011,12:1-6
    [48] Schwartz B, Robbins H, Electrochem J. Chemical etching of silicon, Ⅲ, A TemperatureStudy in the Acid System,1961,108:365
    [49] Izidinov S, Suskin A, Gaponenko V. Silicon Etching in HF/HNO3/NH3H2O/H2O System.Sov. Electroehem.1989,25:18
    [50] Klein D,Stefan D, Controlled etching of silicon in the HF-HNO3system, J. Electrochem.Soc.,1962,109:37-42
    [51] Robbins H, Schwartz B. Chemical etching of silicon, The system HF, HNO3, H2O andHC2H3O2, J. Electrochem. Soc.,1960,107(2):108-109.
    [52] Steinert M, Acker J, HenSge J, et al. Experimental Studies on the Mechanism of WetChemical Etching of Silicon in HF/HNO3Mixtures, Journal of The ElectrochemicalSociety,2005,152(12):843-850
    [53]林育琼,冯仕猛,王坤霞等.两步酸修饰的多晶硅绒面结构.材料科学与工程学报,2011:5:707-710
    [54]许欣翔.多晶硅太阳电池表面织构化工艺的研究[中山大学硕士学位论文].中山:中山大学,2007,13-14
    [55]王艺帆.多晶硅太阳能电池片绒面化处理增效的研究[南昌大学硕士学位论文].南昌:南昌大学,2008,26-33
    [56] Drabczyk K, Panek P. The influence of porous silicon on junction formation in siliconsolar cells. Solar Energy Materials&Solar Cells,2003,76:545-551.
    [57]谢荣国,席珍强,马向阳.用化学腐蚀制备多孔硅太阳电池减反射膜的研究.材料科学与工程,2002,4:507-509
    [58] Ludemann R, Damiani B and Rohatgi. A Novel processing of solar cells with poroussilicon texturing, Proceedings of28th IEEE Photovoltaic Specialists Conference.USA,2000:299-302.
    [59] Schwartz B, Bobbins H R. Chemical etching of silicon-IV. Etching technology,1976,123(12):1903-1909
    [60] Heimann R, Kinetics of dissolution of silicon in CrO3-HF-H2O solution, J. Mater. Sci.,1984,19,1314
    [61] T. Ohmi, Total room temperature wet cleaning for Si substrate surface, J. Electrochem.Soc.1996,143:2957
    [62] Bressers P, Plakman M, Kelly J, Etching and electrochemistry of silicon in acidicbromine solution, J. Electronanal. Chem.1996,406,131
    [63] Schimmel D, Elkind M, An examination of the chemical staining of silicon,J.Electrochem. Soc.1978,125,152
    [64] Nahm K, Seo Y, Lee H, Formation mechanism of stains during Si etching reaction inHF-oxidizing agent-H2O solutions, J. Appl. Phys.,1997,81(5),2418-2424
    [65]汪建强,刘志刚,安静等.氨水在HF/HNO3/H2O系统中对硅片刻蚀的影响.上海交通大学学报,2008,3:467-470
    [66]安静.硅片在HF/HNO3/H2O体系中酸腐蚀的研究[上海交通大学硕士学位论文].上海:上海交通大学,2008,43-50
    [67]赵汝强,沈辉,梁宗存等.多晶硅太阳电池表面酸腐蚀织构化工艺的研究.第十届中国太阳能光伏会议论文集,杭州:浙江大学出版社,2008:58-62
    [68] Robbinshr S. Chemical etching of silicon IV. Etching technology,1976.123(12):1903-1909

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700