纳米结构材料对于光场响应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型光电信息功能材料,包括其设计、性能、制备以及加工过程中的新思路、新发现、新方法、新技术,长期以来一直材料领域的研究热点。具有新特性的信息光电材料的研究和开发对于电子科技产业、经济发展和国家综合国力的提升具有重要战略意义。
     纳米材料是纳米科学技术的一个重要的发展方向。纳米材料是指由极细晶粒组成,特征维度尺寸在纳米量级(1~100nm)的固态材料。由于极细的晶粒,大量处于晶界和晶粒内缺陷的中心原子以及其本身具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等,纳米材料与同组成的微米晶体(体相)材料相比,在催化、光学、磁性、力学等方面具有许多奇异的性能,因而成为材料科学和凝聚态物理领域中的研究热点。
     本文所涉及的研究课题的研究重点在于研究纳米材料结构在均匀光场或点光源的照射下表现出的新型光电特性。本文的主要研究对象分两大类:一是以半导体-金属结(MS结构)为典型的多层膜结构。这种结构对于特定波长的激光将表现出的侧向光伏效应及导波效应;二是嵌入式金属结构。这种结构是将金属以块状的形式嵌入到另一种电介质中,电介质可以随需要而改变,必要的时候可以是空气或是真空。嵌入式结构在均匀光场的照射下会表现出定位聚焦光场能量的作用。
     对于多层膜结构,本文研究了一种新型的灵敏位移探测器(PSD),这种探测器基于金属-半导体(MS)结构。文中提到的样品由硅衬底、自然氧化层和一层金膜构成,其在位移探测方面表现出很高的灵敏度和很好的线性。不但如此,样品产生的侧向光伏(LPV)会随着光入射角的变化而变化,预示着这样的结构在波导制作方面有着很大的潜在应用前景。
     对于嵌入式结构,本文提出了时间反演方法来控制等离子纳米系统中能量最强点的位置。该方法是基于纳米系统中对某一点局域超短脉冲激发的远场的时间反演。尽管在金属等离子系统中存在很强烈的干扰和严重的相位移动和分散,并且所作的时间反演并不完整,但是该方法在控制纳米尺度的光场能量时十分有效,可应用于纳米分光镜、光学调制、超密信息存储和纳米信息处理等领域。
Novel Photoelectronic Materials, including its design, performance,preparation and processing of new ideas, new discoveries, new methods,new technologies, has long been hot in the materials research field.Information with new properties and development of photoelectronicmaterials technology for the electronics industry, economic developmentand enhance overall national strength has important strategic significance.
     Study on nano-materials is one of the important developments innano-science and technology. Nano-material is solid material which iscomposed by extremely small grains and its feature dimension size isnano-meter scale(1-100nm). Compared with micron crystal materials,there are many strange performance in catalytic, optics, magnetic, andmechanics due to these small grains, huge amounts of center-atoms incrystal boundary and crystal grains and its quantum size effect, small sizeeffect, surface effect, and macroscopic quantum tunneling effect. Nanomaterialshave been focused in the field of materials science andcondensed matter physics.
     Two kinds of Photoelectronic nano-materials are studied in thispaper. One is the multilayer structure. Metal-semiconductor structure (MSstructure) is one of the typical multilayer structure. This material presents lateral photovoltage effect (LPE) and waveguide effect under theirradiation of typical laser. The other is the embedded-metal structure.This kind of structure focus the light field energy into the specific location.
     A novel position-sensitive detector (PSD) based on themetal–oxide–semiconductor (MOS) structure, which is simply fabricatedby an n-type Si substrate, a thin native SiO2 layer and an Au film, isreported in this work. This detector shows a large lateral photovoltage(LPV) with high sensitivity and good linearity. Furthermore, the LPV ofthis structure greatly depends on the incident angle of the light,suggesting some extra potential for the development of new types ofwaveguide-like devices.
     An approach has been introduced called time reversal to conherentlycontrol the position in which the optical energy localizes in plasmananosystems. This approach is based on the impulsive localized excitationof the nanosystem and time reversal of the generated far-zone field at asingle point with one polarization. Despite strong interaction andsignificant dephasing and dissipation in metal plasma systems, andincompleteness of this time reversal, the proposed approach proves to bevery efficient in controlling the nanoscale optical fields. The approachmay be applied in nanoscaless spectroscopy, optical modification,ultradensememory, and information processing on the nanoscale.
引文
[1] W. Schottky, Phys. Z . 1930, 31, 913.
    [2] J. Wallmark, Proc. IRE 1957, 45, 474.
    [3] R. H. Willens, Appl. Phys. Lett. 1986, 49, 663.
    [4] B. F. Levine, R. H. Willens, C. G. Bethea, Appl. Phys. Lett. 1986, 49, 1537.
    [5] B. F. Levine, R. H. Willens, C. G. Bethea, Appl. Phys. Lett. 1986, 49, 1608.
    [6] R. H. Willens, B. F. Levine, C. G. Bethea, Appl. Phys. Lett. 1986, 49, 1647.
    [7] D. Brasen, R. H. Willens, S. Nakahara, J. Appl. Phys. 1986, 60, 3527.
    [8] R. Martins, E. Fortunato, Thin Solid Films 1999, 337, 158.
    [9] J. Henry, J. Livingstone, Adv. Mater. 2001, 13, 1023.
    [10] J. Henry, J. Livingstone, J. Mater. Sci. : Mater. Electron. 2001, 12, 387.
    [11] J. Henry, J. Livingstone, J. Opt. A: Pure Appl. Opt. 2002, 4, 527.
    [12] J. Henry, J. Livingstone, IEEE Sens. J. 2002, 2, 372.
    [13] J. Henry, J. Livingstone, IEEE Sens. J. 2003, 3, 519.
    [14] W.M.Webster,”Saturation current in alloy junctions”Proc. IRE. 1955, 43, 277.
    [15]封君、朱永,光子学报1999, 28, 1006.
    [16]邓敢、朱建、王兴松,机器人技术与应用1999, 6, 23.
    [17]朱小平、张永年、杨自本、陈允昌,现代计量测试2001, 02, 0040-44.
    [18]蔡明知、宋洪侠、曹铁泽、王晓东,机电产品开发与创新2007, 20, 5.
    [19] C. Q. Yu, H. Wang, S. Q. Xiao, and Y. X. Xia, Opt. Express. 2009, 17, 21712-21722
    [20] Schottky W 1930 Phys. Z . 31 913.
    [21] Wallmark J 1957 Proc. IRE 45 474.
    [22] Buhler D W, Oxl T R and Nolte L P 1997 Med. Eng. Phys.19 197.
    [23] Kim J, Kim M, Bae J H, Kwon J H, Lee H and Jeong S 2000 Appl. Opt. 39 2584.
    [24] Kaufmann K J 1997 Photonics Spectra 31 167.
    [25] ParkW S and Cho H S 2002 Opt. Eng. 41 860.
    [26] Wallmark J 1957 Proc. IRE 45 474.
    [27] Willens R H 1986 Appl. Phys. Lett. 49 663
    [28] Levine B F, Willens R H, Bethea C G and Brasen D 1986 Appl. Phys. Lett. 49 1537
    [29] Levine B F, Willens R H, Bethea C G and Brasen D 1986 Appl. Phys. Lett. 49 1608
    [30] Willens R H, Levine B F, Bethea C G and Brasen D 1986 Appl. Phys. Lett. 49 1647
    [31] Tabatabaie N, Meynadier M H, Nahory R E, Harbison J P and Florez L T 1989 Appl. Phys.Lett. 55 792
    [32] Henry J and Livingstone J 2001 J. Mater. Sci., Mater. Electron. 12 387
    [33] Henry J and Livingstone J 2004 J. Phys. D: Appl. Phys. 37 3180
    [34] Rhoderick E H 1970 J. Phys. D: Appl. Phys. 3 1153
    [35] Markiewicz R S and Harris L A 1981 Phys. Rev. Lett. 46 1149
    [36] Xiao S Q, Wang H, Zhao Z C and Xia Y X 2007 J. Phys. D: Appl. Phys. 40 5580–3
    [37] Xiao S Q, Wang H, Yu C Q, Xia Y X, Lu J J, Jin Q Y and Wang Z H 2008 New J. Phys. 10033018
    [38] Wang H, Xiao S Q, Yu C Q, Xia Y X, Jin Q Y and Wang Z H 2008 New J. Phys. 10 093006
    [39] Yu C Q, Wang H, Xiao S Q and Xia Y X 2009 Opt. Express 17 21712
    [40]林志浪、程新利、王永进、张峰,Fabrication of SIMOX Single-mode Rib Waveguides withLarge Cross-section. Journal of Optoelectronics. Laser 2004 15(1): 25
    [41] Splett A, Petermam K, Low loss single-mode optical waveguides with large cross-section instandard epitaxial silicon. 1994 IEEE Photon. Technol. Lett. 6(3) 425-427
    [42]余金中、陈少武、夏金松、王章涛、樊中朝、李艳萍、刘敬伟、杨笛、陈媛媛,SOI光波导期间和集成光开关矩阵的研究进展Scinece in China Ser. E: Information Sciences 200434(10): 1081-1093
    [43]李维刚、许颖、励旭东,区熔再结晶制备多晶硅薄膜太阳电池Journal of Beijing NormalUniversity (Natural Science) 2001 37(6)
    [44]韩伟华、余金中、王启明,直接键合硅片界面键合能的理论分析Chinese Journal ofSemiconductors 2001 22(2)
    [45]苦史伟、孙铁囤、刘志刚、汪建强、安静、叶庆好,背腐蚀在晶体硅太阳能电池生产中的应用第九届中国太阳能光伏会议2006
    [46]阮刚、徐晨曦、俞强,注入氧形成的SOI结构中氧分布的模拟Chinese Journal ofSemiconductors 1989 10(7): 514
    [47]欧海燕、雷红兵、杨沁清、王红杰、王启明、胡雄伟,Theoretical Analysis on PolarizationCharacteristics of Silicon-Based Silica Optical Waveguide Devices ACTAOPTICA SINICA 200121(1): 122
    [48] Schmidtchma J, splett J A, Sehtippert B. Lowlcss ngle mode optical waveguides with largecrosection in silicon-oreinsulator. 1991 Electron Lett. 27(16):1486~1488
    [49]邓晓清、杨沁清、王红杰、胡雄伟、王启明,硅基二氧化硅波导的双折射效应补偿理论分析Chinese Journal of Semiconductors 2002 23(12)
    [50] David Wang, John White, Kam Law,Cissy leung, Salvador Umotoy, Kenneth Collins, JohnAdamik Thermal CVD/PECVD Reactor and Use for Thermal Chemical Vapor Deposition ofSilicon Dioxide and In-situ Multi-step Planarized Process United States Patent 1991 5000113
    [51]魏红振、余金中、张小峰、韩伟华、刘忠利、史伟、房昌水,Geometric Structures and Modesof SOI and GeSi/Si Rib Optical Waveguides ACTA OPTICA SINICA 2001 21(5)
    [52] Pesarclk S F, Treyz G V lyre S S. Silicon germanium optical waveguides with 0.5 dB/cmlosse for singlemode fiber optic system 1992 Electron. Lett. 28(2):159~160
    [53]刘育梁、王启明,硅基光波导结构与器件Semiconductor Optoelectronics 1996 17(1): 1
    [54] Soref R A, Bennet B R. Electrooptical effects in silicon. 1987 IEEE J. Quantum Electron.23(1): 123--129
    [55] Fisther U, Zinke T. Schappert B. Novel silicon waveguide switch based on total internalreflection 1994 Electron Lett. 30(5):406~408
    [56] Lu H, Cao Z, Li H and Shen Q 2004 Appl. Phys. Lett. 85 4579.
    [57] Brixner T, Garcia de Abajo F J, Schneider J, et al. Nanoscopic ultrafast space-time-resolvedspectroscopy. Phys. Rev. Lett. 2005 95: 093901
    [58] Sukharev M, Seideman T. Coherent control appraoaches to light guidance in the nanoscale. J.Chem. Phys. 2006 124: 144707.
    [59] Kubo A, Onda K, Petek H, et al. Femtosecond imaging of surface Plasmon dynamics in ananostructured silver film. Nano Lett. 2005 5: 1123-1127.
    [60] Aeschlimann M, Bauer M, Bayer D, et al. Steeb adaptive subwavelength control ofnanooptical fields. Nature. 2007 446(7133): 301-304.
    [61] Kurizki G, Shapiro M, Brumer P. Phase-Coherent control of photocurrent directionality insemiconductors. Phys. Rev. B. 1989, 39: 3435-3437.
    [62] Brumer P, Shapiro M。Laser control of molecular processes. Annu. Rev. Phys. Chem . 199243: 257.
    [63] Rabitz H. de Vivie-Riedle R, Motzkus M, et al. Whither the future of controlling quantumphenomena. Science 2000 288: 824-828.
    [64] Geremia J M, Rabitz H. Optimal Identitication of hmiltonian information by closed-loop lasercontrol of quantum systems. Phys. Rev. Lett. 2002 89: 263902.
    [65] Nguyen N A, Dey B K, Shapiro M, et al. Coherent control in nanolithography: rydberg atoms.J. Phys. Chem. A. 2004 108(39): 7878-7888.
    [66] Shapiro M, Brumer P. Quantum control of bound and continuum state dynamics. PhysicsReports. 2006 425: 195-264.
    [67] Derode A, Tourin A, deRosny J, et al. Taking advantage of multiple scattering to communicatewith time reversal antennas. Phys. Rev.Lett. 2003 90(1): 014301摘要............................................................ 2ABSTRACABSTRACT....................................................... 4第一章绪论......................................................91.1.引言.....................................................91.2.侧向光伏及其物理机制.......................................91.2.1.物理模型:..........................................101.2.2.理论模型:..........................................121.3.侧向光伏的应用...........................................131.3.1.二维PSD器件测量小角度...............................141.3.2. PSD高精度激光位移传感器..............................151.3.3. PSD在汽车悬架稳定度主动控制中的应用....................161.3.4. PSD器件应用于近感引信目标探测.........................171.3.5.基于PSD器件的深孔直线度检测..........................171.3.6.二维PSD器件测量两平面的平行度........................181.4.本章小结:...............................................18第二章样品制备、测试与分析方法.....................................192.1.金属薄膜制备...............................................192.1.1.衬底制备.............................................192.1.2.溅射.................................................242.2.侧向光伏测量方法...........................................252.3.本章小结:................................................26第三章金属半导体结侧向光伏理论.....................................273.1.金属半导体结侧向光伏........................................283.2.半导体的光吸收简介..........................................283.2.1.本征吸收.............................................293.2.2.激子吸收.............................................293.2.3.自由载流子吸收........................................293.2.4.杂质吸收.............................................303.2.5.晶格振动吸收..........................................313.3.本章小结:................................................31第四章金属膜制备、侧向光伏实验测量及结果分析..........................314.1.硅--二氧化硅—金属薄膜(MOS)结构中的侧向光伏..................324.2.金属薄膜制备...............................................334.2.1.沉积率...............................................334.2.2.制备工艺及步骤.........................................354.3.金—二氧化硅—硅结构(Au-SiO2-Si)中的侧向光伏效应.................374.3.1.实验样品.............................................38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700