结构振动响应预示的能量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
振动响应预示一直是航天等工程领域的重要课题。现代社会的发展对航天器等各种工程对象提出了更多的功能要求,使得工程结构的复杂程度越来越高,有限元等传统方法的计算量因此而急剧增大,结构复杂性的提高也令动力学参数的精确确定变得更加困难。计算量过大和参数的不确定性已经成为结构振动响应预示领域面临的两个主要问题。大量的研究工作致力于这两方面问题的解决。能量流方法以能量密度控制方程为基础,取平均化的振动能量为变量,极大地减少了计算量,并且给出了较为精细的结果,逐渐成为响应预示方法研究的新热点。本文利用平均化方法,求解了能量密度控制方程的解析解,并研究了能量流方法在不确定性结构振动预示领域的应用。主要内容概括如下:
     首先,介绍了能量密度控制方程的数值解法。进一步从结构的位移解出发,将结构的边界效应考虑为能量反射,基于结构的位移Green核,推导了能量密度控制方程的解析解,与数值解进行了对比验证,并求解了飞轮扰动激励下卫星结构的能量流响应。对二维结构的边界处理时,提出利用能量平均自由程的概念进行描述,通过统计的思想将结构的二维边界转化为一维问题。针对随机白噪声激励下的结构,利用能量流方法通过频域积分进行了求解。
     其次,针对随机参数结构,推导了用参数标准差表示的能量响应期望值和标准差公式,得到了给定置信概率时的响应区间。对确定性结构的能量密度控制方程进行摄动分析,通过方程的阶数匹配,得到了随机参数结构的能量密度控制方程组。对Gauss随机参数结构进行摄动,利用概率积分建立了随机参数标准差表示的能量流表达式。进一步利用能量流方法推导了随机结构的能量响应方差和与确定性响应的相对偏差,研究了随机参数对结构振动能量响应的影响。
     对参数随机分布模型未知的结构,基于熵最大原理进行了结构振动能量预示的非参数建模。根据结构参数的不确定性程度,将计算方法分为随机摄动法和直接概率法。随机摄动法采用小参数摄动展开,对摄动部分以随机参数的熵最大为依据,直接概率法则对随机参数直接代入熵表达式取最大值,从而得到两种方法下的概率密度。进一步利用能量流法求解了随机结构的能量响应值,通过与确定性结构响应的比较,给出了结构能量密度响应的偏差变化特征,表明在复杂结构的高频振动时需要考虑结构参数的随机特性。
     最后,对非概率描述的不确定性参数结构进行了能量流求解。利用复杂结构动力学建模的模糊结构描述,将复杂结构分为可以精确建模的主结构和难以精确建模的附加模糊结构,主结构部分采用能量流方法进行描述,附加模糊结构对主结构的影响采用弹簧振子系统进行建模,得到了模糊结构影响下的结构能量流表达式,研究了模糊结构对结构能量响应的大小及传播速度的影响。对已知参数上下界的结构,采用区间分析法进行结构能量流分析建模。利用一阶Taylor级数展开,得到了区间参数结构能量流的响应区间,并且通过与概率方法进行仿真对比,发现区间分析方法能够给出更小的响应区间。
Prediction of vibration response is an important subject in aerospace and otherfields. Recent development of society demands more functions of spacecrafts andthis makes engineering structures more and more complex and dynamicalparameters are more difficult to obtain. Meanwhile, increasing complexity bringsmore computation cost for FEM and other traditional method. Computation cost andparameter uncertainty are two main problems in prediction of structural vibration.Plenty of work focuses on the two problems. Based on energy density governingequations, energy flow method uses averaged energy as a variable to reducecomputation cost dramatically and provide more precise results. Energy flowmethod is now a popular solution for response prediction. This work providesanalytical solutions for energy density governing equations. Response prediction foruncertainty structures is also studied using energy flow method. Detailed works are:Numerical solutions of energy density governing equations are introduced. Energycharacteristic of a satellite structure under excitation of a flying wheel is studied byEnergy Finite Element Method. Taking boundary effect as energy reflection,analytical solutions of energy density governing equations are derived withdisplacement. And the analytical solutions are validated by numerical solutions.Energy mean free path is introduced to describe boundary effect of two-dimensionalstructures. Frequency integral is used to obtain energy response under randomexcitation.
     Further, for structures with probabilistic parameters, the expectation andstandard variance of energy density are expressed by the parameter standardvariance. The response interval is obtained under certain confidence probability.Introducing perturbation technique, new control equation sets of energy density foruncertain structures are obtained. For structures with Gauss parameters, probabilityand perturbation techniques are combined to derive the energy density expressedwith standard variances of the uncertain parameters. Response variances of theenergy density and the relative variance comparing the deterministic structures areobtained.
     For structures whose random model is unknown, maximum entropy principle isused to prediction energy response of vibrating structures using non-parametermodel. Random perturbation method and direct probability method are provided.According to the maximum entropy, deployment is carried with random perturbationand direct probability utilizes the formulation directly. Probability densities of theparameters are derived with the two methods and the energy responses are obtainedwith energy flow method. The mean responses and the variance to the normal responses are provided. The results indicate randomness must be considered for highfrequency vibration of complex structures.
     Finally, for structures with non-probabilistic parameters, fuzzy structuresmethod is introduce into energy flow method. Fuzzy structure method describescomplex structures with master structure that can be modeled precisely and fuzzystructures that lack of modeling information. The master structure is described byenergy flow method and the fuzzy structures are modeled by spring and masssystems. Energy flow of structures is obtained and simulations show that fuzzystructures influence the wave velocity and energy response through wave number.For prediction of structures with interval parameters, Taylor deployment is used toobtain the energy interval. Comparison with probability method shows that intervalmethod provides smaller response interval.
引文
[1]刘炜,成楚之.防空导弹横向振动响应计算研究[J].现代防御技术,2000,28(2),21-27.
    [2]马兴瑞,于登云,韩增尧,邹元杰.星箭力学环境分析与试验技术研究进展[J].宇航学报,2006,27(3):323-331.
    [3]王其政,刘斌,宋文斌.航天事故与动力学环境预示和控制技术研究述评[J].环境技术,1995(4),1-6.
    [4]张玉梅,韩增尧,邹元杰.随机振动环境下航天器结构强度设计方法综述[J].力学进展,2012(4).
    [5]王其政.声振环境预示技术研究的进展与应用[J].环境技术,1993(1),33-35.
    [6]蒋国伟,周徐斌,申军烽,顾亦磊,杜冬,孔祥森。某卫星微振动建模与仿真[J],航天器环境工程,2011,28(1):36-40.
    [7]徐鹏,黄长宁,王涌天,郝群.卫星振动对成像质量影响的仿真分析[J],宇航学报,2003,24(3):259-263.
    [8]白争锋,赵阳,马文来,王有懿.反作用轮扰动对航天器动态结构的影响分析[J].宇航学报,2009,30(5):339-345.
    [9]韩增尧,曲广吉.航天器宽带随机振动响应分析[J].中国空间科学技术,2002,22(1):24-30.
    [10]张利新.反作用轮扰动对航天器结构动态特性影响分析[J].哈尔滨工业大学硕士论文,2010.
    [11]梁震涛.不确定性结构的分析方法研究[D].西安电子科技大学博士论文,2007.
    [12] Lyon R H. Statistical energy analysis of dynamical systems: theory andapplication[M],Cambridge: MIT Press,1975.
    [13] Desmet D. Mid-frequency vibro-acoustic modeling: challenges and potentialsolutions[C]. Proceedings of ISMA2002, Leuven: Belgium,2(2002):835–862.
    [14] Desmet W, Hal B, Sas. P and Vandepitte D. A computationally efficientprediction technique for the steady-state dynamic analysis of coupledvibro-acoustic systems[J]. Advances in Engineering Software,2002.33(7-10):527-540.
    [15] Hal B, Desmet W, and Vandepitte D. Hybrid finite element-wave-basedmethod for steady-state interior structural-acoustic problems[J]. Computersand Strutures.2005,83(2-3):167-180.
    [16] Lyon R H. and Maidanik G. Power flow between linearly coupled oscillators[J].Journal of the Acoustical Society of America,1962,34(5),623-639.
    [17] Heckl M. Vibrations of point-driven cylindrical shells[J]. Journal of theAcoustical Society of America,1962,34(10):1553-1557.
    [18] Wilkinson J P. Modal Densities of certain shallow structural elements[J].Journal of the Acoustical Society of America,1968,43(2):24-256.
    [19] Renji K.Nair P S, and Narayanan. Modal density of composite honeycombsandwich panels[J]. Journal of Sound and Vibration,1996,195(5):687-699.
    [20] Langley R S. A general derivation of the Statistical Energy Analysis equationsfor coupled dynamic-systems[J]. Journal of Sound and Vibration,1989,135(3):499-508.
    [21] Langley R S. A derivation of the coupling loss factors used in StatisticalEnergy Analysis[J]. Journal of Sound and Vibration,1990,141(2):207-219.
    [22] Simmons C. Structure-borne sound-transmission through plate junctions andestimates of SEA coupling loss factors using the finite-element method[J].Journal of Sound and Vibration,1991,144(2):215-227.
    [23] Lyon R H and Eichler, E. Random vibration of connected structures[J]. Journalof the Acoustical Society of America,1964,36(7):1344-1354.
    [24] Sun J C, Wang C., Sun Z H. power flow between tree series coupledoscillators[J]. Journal of Sound and Vibration,1996,189(2):215-229.
    [25] Wang M Q, Sheng M P and Sun J C. The direct and indirect power flows ofthree non-conservatively series coupled oscillators[J]. Journal of Sound andVibration,1998,212(2):231-251.
    [26]盛美萍,王敏庆,孙进才.非保守耦合系统的等效内损耗因子[J].声学学报,1999,24(5):550-556.
    [27]张建,顾崇衔.非保守耦合系统的统计能量分析原理[J].声学学报,1993,18(1):66-73.
    [28]胡国友,李舜酩,夏品奇,张万良.相关激励作用下板结构的统计能量分析[J].中国制造业信息化,2012,41(3):58-61.
    [29]颜松,盛美萍,赵颖坤,贺晨.耦合质量对非保守耦合系统功率流影响特性研究[J].机械科学与技术,2006,25(7):824-855.
    [30]孔宪仁,张红亮.基于ERA的统计能量分析参数确定方法[J].振动与冲击,2010,29(11):1-5.
    [31]孔宪仁,张红亮,杨正贤.基于OKID的损耗因子辨识方法研究[J].振动工程学报,2011,3:253-259.
    [32]张红亮,孔宪仁,张国威.利用子空间法识别统计能量分析参数[J].工程力学,2012,19(1):13-19.
    [33]张婧雯.基于统计能量分析的卫星高频振动分析及隔振研究[D].上海:上海交通大学硕士学位论文,2009.
    [34]王昆.飞行器结构统计能量建模方法及声振响应分析[D].哈尔滨:哈尔滨工业大学硕士学位论文,2010.
    [35]孙树森.基于统计能量法的潜射导弹振动噪声分析研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2011.
    [36]林联达.高速飞行器典型板式结构统计能量建模及试验研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2011.
    [37] Goyder H G D and White R G. Vibration power flow from machines intobuilt-up structures. Part I: Introduction and approximate analyses of beam andplate-like foundations[J]. Journal of Sound and Vibration,1980,68(1):59-75.
    [38] Goyder H G D and White R G. Vibration power flow from machines intobuilt-up structures. Part II: Wave propagation and power flow inbeam-stiffened plates[J]. Journal of Sound and Vibration,1980,68(1):77-96.
    [39] Goyder H G D and White R G. Vibration power flow from machines intobuilt-up structures. Part III: Power flow through isolation systems[J]. Journalof Sound and Vibration,1980,68(1):97-117.
    [40] Pinngton R J. Vibration power transmission to a seating of vibration isolatedmotor[J]. Journal of Sound and Vibration.1987,118(3):515-530.
    [41] Pinnington R J. and White R.G. Power flow through machine isolators toresonant and non resonant beams[J]. Journal of Sound and Vibration,1981,75(2):179-197.
    [42] Cuschieri J M. Structural power-flow analysis using a mobility approach of anL-shaed plate[J]. Journal of the Acoustical Society of America.1990,87(3):1159-1165.
    [43] Kon Y K and White R G. Analysis and control of vibrational powertransmission to machinery supporting structures subjected to a multi-excitation system, Part I: Driving point mobility matrix of beams andrectangular plates[J]. Journal of Sound and Vibration,1996,196(4):469-493.
    [44] Kon Y K and White R G. Analysis and control of vibrational powertransmission to machinery supporting structures subjected to a multi-excitation system, Part II: Vibrational power analysis and control schemes[J].Journal of Sound and Vibration,1996,196(4):495-508.
    [45] Kon Y K and White R G. Analysis and control of vibrational powertransmission to machinery supporting structures subjected to amulti-excitation system, Part I: Vibrational power cancellation and controlexperiments[J]. Journal of Sound and Vibration,1996,196(4):509-522.
    [46] Xiong Y P, Xing J T and Price W G. Power flow analysis of complex coupledsystems by progressive approaches[J]. Journal of Sound and Vibration.1995,182(4):637-657.
    [47] Beales L S and Accorsi M L. Power flow in two and three dimensional framestructures[J]. Journal of Sound and Vibration,1995,18(4):685-702.
    [48]仪垂杰. BBD板结构的振动功率流研究[J].力学学报,1995,27(4):495-500.
    [49]朱祥,李天匀,赵耀,刘敬喜.含表明裂纹板的振动功率流特性研究[J].工程力学,2007,24(2):62-67.
    [50] Belov V D and Rybak S A. Applicability of the transport equation in theone-dimensional wave-propagation problem[J]. Journal of Soviet Physics andAcoustics,1975,21(2),110-114.
    [51] Belov V D, Rybak S A and Tartakovskii B D. Propagation of vibrationalenergy in absorbing structures[J]. Journal of Soviet Physics and Acoustic,1977,23(2),115-119.
    [52] Nikiforov A S. Estimating the intensity of structure-borne noise in ribbedStructures[C]. International Congress on Intensity Techniques,Senlis,1990.
    [53] Buvailo L E and Ionov A V. Application of the finite-element method to theinvestigation of the vibroacoustical characteristic of structures at high audiofrequencies[J]. Journal of Soviet Physics and Acoustics.1980,26(4),277-279.
    [54] Nefske D J and Sung S H. Power flow finite element analysis of dynamicssystems: basic theory and application to beams[J]. Journal of Vibration, andAcoustics,1989,111(1),94-100.
    [55] Burrell S C, Warner J L and Chernuka M W. Power flow finite elementanalysis applied to a thin circular plate[C]. ASME Winter Annual Meeting,Dallas,1990.
    [56] Lase Y and Jezequel L. Analysis of a Dynamics System Based on a NewEnergetic Formulation[C]. International Congress on Intensity Techniques,Senlis,1990.
    [57] Wohlever J and Bernhard R. Energy distributions in rods and beams[D]. AIAA12thAeroacoutics Conference,San Antonio,1989.
    [58] Wohlever J C and Bernhard R J. Mechanical energy flow models of rods andbeams. Journal of Sound and Vibration,1992,153(1),1-19.
    [59] Bouthier O M. Energetics of vibrating system[D]. West Lafayette: PurdueUniversity,1992.
    [60] Bouthier O M, Bernhard R J. Models of space-averaged energetics of plates[J].AIAA Journal,1992,30(3):616-623.
    [61] Bouthier O M, Bernhard R J. Simple models of the energetics of transverselyvibrating plates[J]. Journal of Sound and Vibration,1995,182(1):149-164.
    [62] Bouthier O M, Bernhard R J. Simple models of the energy flow in vibratingmembranes[J]. Journal of Sound and Vibration,1995,182(1):129-147.
    [63]解妙霞,陈花玲,吴九汇.圆柱壳高频弯曲振动的能量有限元分析[J].西安交通大学学报,2008,42(9):1113-1116.
    [64] Xie M, Chen H, Wu J. Transient energy density distribution of a rod underhigh-frequency excitation[J].Journal of Sound and Vibration,2011(330):2701-2706.
    [65] Cho P E and Bernhard R J. The energy finite element method for coupledstructures[C]. Proceding of Inter-Noise94,Yokohama,1994.
    [66] Cho P E and Bernhard R J. Energy flow analysis of coupled beams[J]. Journalof Sound and Vibration,1998,211(4):593-605.
    [67] Cho P E. Energy Flow analysis of coupled structures[D]. West Lafayette:Purdue University,1993.
    [68]孙丽萍.能量有限元研究及其应用[D].哈尔滨:哈尔滨工程大学博士学位论文,2004.
    [69]孙丽萍,聂武.能量有限元法在船舶结构中的应用[J].哈尔滨工业大学学报,2008,40(9):1491-1494.
    [70]曾勤谦,华宏星,韩祖舜.耦合结构中的功率流有限元法[J].上海交通大学学报,2000,34(4):503-506.
    [71] Bitsie F Bernhard R J. Sensitivity caculations for structural-acoustic EFEMpredictions[C].Proceding of Inter-Noise97,Pennsylvania,1997.
    [72] Bitsie F. The Structural-acoustic energy finite element method[D]. WestLafayette, Purdue University,1996.
    [73] Bitsie F and Bernhard R J. Sensitivity calculations for structural-acousticEFEM predictions[J].Noise Control Engineering Journal,1998,46(3):91-96.
    [74] Huff J E and Bernhard R J. Prediction of high frequency vibrations in coupledplates using energy finite elements[C]. Proceding of Inter-Noise95,NewportBeach CA,1995.
    [75] Bernhard R J and Huff J E. Structural-acoustic design at high frequency usingthe energy finite element method and energy boundary element method[J].Journal of Vibration and Acoustics. Transactions of the ASME,1999,121(3):295-301.
    [76] Zhang W, Wang A, Vlahopoulos N. An alternative energy finite elementformulation based on incoherent orthogonal waves and its validation formarine structures[J]. Finite Elements in Analysis and Design,2002,38(2):1095-1113.
    [77] Zhang W. Energy Finite Element Method for Vibration Analysis of StiffenedPlates under Fluid Loading[D]. Michigan: University of Michigan,2003.
    [78] Zhang W, Wang A, Vlahopoulos N, et al. High-frequency vibration analysis ofthin elastic plates under heavy fluid loading by an energy finite elementformulation[J]. Journal of Sound and Vibration,2003,263(1):21-46.
    [79] Zhang W, Wang A, Vlahopoulos N, et al. A vibration analysis of stiffenedplates under heavy fluid loading by an energy finite element analysisformulation[J]. Finite Elements in Analysis and Design,2005,41(11-12):1056-1078.
    [80] Zhang W, Vlahopoulos N, Wu K. An energy finite element formulation forhigh-frequency vibration analysis of externally fluid-loaded cylindrical shellswith periodic circumferential stiffeners subjected to axi-symmetricexcitation[J]. Journal of Sound and Vibration,2005,282(3-5):679-700.
    [81]贺云南,何琳,吕志强,束立红.功率流有限元法结果分析辐射噪声[J].船舶力学,2006,10(5):150-154.
    [82] Borlase G A and Vlahopoulos N. An energy finite element optimizationprocess for reducing high-frequency vibration in large-scale Structure[J].Finite Elements in Analysis and Design,2000,(36):51-67.
    [83] Dong J. Design Sensitivity analysis and optimization of high frequencystructural-acoustic problems using energy finite element method and energyboundary element method[D]. Iowa: The University of Iowa,2004.
    [84] Dong J, Choi K K, Vlahopoulos N, et al. Sensitivity analysis and optimizationusing energy finite element and boundary element methods[J]. AIAA Journal,2007,45(6):1187-1198.
    [85] Santos E R O. High Frequency Vibration analysis by energy methods[D].Campinas: State University of Campinas,2006.
    [86] Santos E R O, Arruda J R F, Santos D. Modeling of coupled structural systemsby an energy spectral method[J]. Journal of Sound and Vibration,2008,316(1-5):1-24.
    [87] Wang S. High frequency energy flow analysis methods:NumericalImplementtion, Applications, and Verification[D]. West Lafayette: PurdueUniversity,2000.
    [88] Wang S and Bernhard R J. Theory and applications of a simplified energyfinite element method and its similarity to SEA[J]. Noise Control EngineeringJournal,2002,50(2):63-72.
    [89] Wang S and Bernhard R J. A zero-order energy finite element method: theory,applications, and similarity to SEA[C]. Proceding of Inter-Noise99, Florida,1999.
    [90]吴轶钢.零阶能量有限元方法及其在船舶结构声辐射中的应用研究[D].武汉:武汉理工大学博士学位论文,2008.
    [91] Yan X. Energy Finite element analysis developments for high frequencyvibration analysis of composite structures[D]. Michigan: The University ofMmichigan,2008.
    [92] Lee S. Energy Finite element method for high frequency vibration analysis ofcomposite rotorcraft structures[D]. Michigan: The University of Michigan,2010.
    [93]游进,孟光,李鸿光.随机激励下框架结构能量有限元分析[J].上海交通大学学报,2009,43(10):1632-1645.
    [94]游进,孟光,李鸿光.三维框架结构能量流分析[J].上海交通大学学报,2010,44(8):1150-1154.
    [95]游进,李鸿光,孟光.耦合结构随机能量有限元分析[J].振动与冲击,2009,28(11):43-46.
    [96]游进,孟光,李鸿光. L型耦合板相关激励下高频随机能量流分析[J].振动工程学报,2010,23(1):60-63.
    [97] You J, Meng G, Li H G. Random energy flow analysis of coupled beamstructures and its correlation with SEA[J]. Archive of AppliedMechanics,2011,81(1):37-50.
    [98] You J, Li H G, Meng G. Validity investigation of random energy flow analysisfor beam structures[J]. Shock and Vibration,2011,18(1-2):269-280.
    [99] Vlahopoulos N, Zhao X. Basic evelopment of hybrid finite element method formidfrequency structural vibrations[J]. AIAA Journal,1999,37(11):1495-1505.
    [100] Zhao X, Vlahopoulos N. A hybrid finite element formulation formid-frequency analysis of systems with excitation applied on shortmembers[J]. Journal of Sound and Vibration,2000,237(2):181-202.
    [101] Vlahopoulos N, Zhao X. An investigation of power flow in the mid-frequencyrange for systems of co-linear beams based on a hybrid finite elementformulation[J]. Journal of Sound and Vibration,2001,242(3):445-473.
    [102] Zhao X, Vlahopoulos N. A basic hybrid finite element formulation formid-frequency analysis of beams connected at an arbitrary angle[J]. Journal ofSound and Vibration,2004,269(1-2):135-164.
    [103] Hong S B, Wang A, Vlahopoulos N. A hybrid finite element formulation for abeam-plate system[J]. Journal of Sound and Vibration,2006(298):233-256.
    [104] Shinozuka M. Monte Carlo solution of structural dynamics[J]. Computers andStrcutres,1972,2(5-6):855-874.
    [105] Shinozuka. Digital simulation of random processes and its applications[J].Journal of Sound and Vibration,1972,25(1):111-128.
    [106] Astill C J. Nosseir S B, and Shinozuka M. Impact loading on structures withrandom properties[J]. Journal of Structural Mechanics,1972,1(1):63-77.
    [107] Hisada T, Nakagiri S. Stocastic finite element analysis of uncertain structuresystem[C]. Proceedings of4th international conference on FEM.Australia,1982.
    [108]陈塑寰.随机参数结构的振动理论[M].长春:吉林科学技术技术出版社,1992.
    [109] Impollonia N and Muscolino G. Static and dynamic analysis of non-linearuncertain structures[J]. Meccanica,2002,37(1):179-192.
    [110] Zhang Y M, Wen B C and Chen S H. PFEM formalism in Kroneckernotation[J]. Mathematics and mechanics of solids,1996,1(4):445-461.
    [111] Zhang Y M, Chen S H, Liu. Q L, Liu T Q. stochastic perturbation finiteelements[J]. Computers and structures,1996,59(3):425-429.
    [112] Zhang Y M, Liu Q L, and Wen B C. Dynamic research of a nonlinearstochastic vibratory machine[J]. Shock and Vibration,2002,9(6):277-281.
    [113]张义民,刘巧伶,闻邦椿.多自由度非线性随机参数振动系统响应分析的概率摄动有限元法[J].计算力学学报,2003,20(1):8-11.
    [114] Kaminski M. stochastic second-order perturbation approach to the stree-basedfinite element method[J]. International Journal of Solids and Structure,2001,38(21):3831-3852.
    [115] Kaminski M. On generalized stochastic perturbation-based finite elementmethod[J]. Communications in Numerical Methods in Engineering,2006,22(1):23-31.
    [116] Viktorovith M. Thouverez F and Jezequel L. A new random boundary elementformulation applied to high frequency phenomena[J]. Journal of Sound andVibration,1999,223(2):273-296.
    [117] Viktorovith M. Thouverez F and Jezequel L. An integral formulation withrandom parameters adapted to the study of the vibrational behavior ofstructures in the middle-and high-frequency field[J]. Journal of Sound andVibration,2001,247(3):431-452.
    [118] Viktorovitch, Moron P, Thouverez F and Jezequel L. A stochastic approach ofthe enrgy analysis for one-dimensional structures[J]. Journal of Sound andVibration,1998,216(3):361-378.
    [119] Viktorovitch, Moron and Jezequel L. A stochastic reformulation of the powerflow equations for membranes and plates[J]. Journal of Sound and Vibration,1998,211(5):910-917.
    [120] Soize C. Stochastic modeling of uncertainties in computational structuraldynamics-Recent theoretical advances[J]. Journal of Sound andVibration,2013,332(10):2379-2395.
    [121] Wigner E. On a class of nalytic functions from the quantum theory ofcollisions[J]. Annals of Mathematics,1951,53:36-67.
    [122] Wigner E. On the distribution of the roots of certain symmetric matrices[J].Annals of Mathematics,1958,67:325-326.
    [123] Schroeder M R. Measurement of sound diffusion in reverberation chambers[J].Journal of Acoustical Society of America,1959,31(11):1407-1414.
    [124] Schroeder M R. Frequency-correlation functions of frequency responses inrooms[J]. Journal of Acoustical Society of America,1962,34(12):1819-1823.
    [125] Schroeder M R. Effect of frequency and space averaging on the transmissionresponses of multimode media[J]. Journal of Acoustical Society of America,1969,46(2A):277-283.
    [126] Schroeder M R. Spatial averaging in a diffuse sound field and the equivalentnumber of independent measurements[J]. Journal of Acoustical Society ofAmerica,1969,46(3A):534.
    [127] Lyon R H. Statistical analysis of power injection and response in structuresand rooms[J]. Journal of Acoustical Society of America,1969,45(3):545-565.
    [128] Weaver R L. Spectral statistics in elastodynamics[J]. Journal of AcousticalSociety of America,1969,85(3):1005-1013.
    [129] Langley R S and Brown A W M. The ensemble statistics of the band-averagedenergy of a random system[J]. Journal of Sound and Vibration.2004,275(3-5):847-857.
    [130] Langley R S and Brown A W M. The ensemble statistics of the energy of arandom system subjected to harmonic excitation[J]. Journal of Sound andVibration,2004,275(3-5):823-836.
    [131] Langley R S and Cotoni V. The ensemble statistics of the vibration energydensity of a random system subjected to single point harmonic excitation[J].Journal of Acoustical Society of America,2005,118(5):3064-3076.
    [132] Choi W, Langley R S. Woodhouse J. Boundary effects on the vibrationstatistics of a random plate[J]. Journal of Sound and Vibration,2013,332(4):850-886.
    [133] Cicirello A and Langley R S. The vibro-acoustic analysis of built-up systemsusing a hybrid method with parametric and non-parametric uncertainties[J].Journal of Sound and Vibration,2013,332(9):2165-2178.
    [134] Shannon C E. A mathematical theory of communication[J]. Bell SystemTechnology Journal,1984,27(14):379-423.
    [135] Jaynes E T. Information theory and statistical mechanics[J]. Physical Review,1957,108(2):171-190.
    [136] Soize C. A nonparametric model of random uncertainties for reduced matrixmodels in structural dynamics[J]. Probabilistic Engineering Mechanics,2000,15(3):277-294.
    [137] Soize C. Maximum entropy approach for modeling random uncertainties intransient elastodynamics[J]. Journal of Acoustical Society of America,2001,109(5):1979-1996.
    [138] Mignolet M P and Soize C. Nonparametric stochastic modeling of linearsystems with prescribed variance of several natural frequencies[J].Probabilistic Engineering Mechanics,2008,23(2-3):267-278.
    [139] Soize C. Construction of probability distributions in high dimension using themaximum entropy principle. Applications to stochastic process random fieldsand random matrices[J]. International Journal for Numerical Methods inEngineering,2008,76(10):1583-1611.
    [140] Desceliers C, Soize C Grimal Q. Talmant M. Naili S. Determination of therandom anisotropic elasticity layer using transient wave propagation in afluid-solid multilayer: model and experiments[J]. Journal of the AcousticalSociety of America,2009,125(4):2027-2034.
    [141] Kassem M, Soize C. Gagliardini. Structural partitioning of complex structuresin the medium-frequency range. An application to automotive vehicle[J].Journal of Sound and Vibration,2011,330(5):937-946.
    [142] Batou A. Soize C. Experimental identification of turbulent fluid forces appliedto fuel assemblies using an uncertain model and fretting-wear estimation[J].Mechanical Systems and Signal Processing,2009,23(7):2141-2153.
    [143] Ritto T G, Soize C. Sampaio R. Robust optimization of the rate of penetrationof a drill-string using a stochastic nonlinear dynamical model[J].Computational Mechanics,2010,45(5):415-427.
    [144]王光远,欧进萍.多自由度滞变体系在地震作用下的模糊随机振动[J].地震工程与工程振动,1986,6(3):1-11.
    [145]王光远,欧进萍.含模糊参数的随机振动[J].固体力学学报,1991,12(3):208-217.
    [146]王光远,欧进萍.结构模糊随机振动的理论和应用[J].地震工程与工程振动,1992,12(3):16-25.
    [147] Soize C. A model and numerical method in the medium frequency range forvibroacousti predictions using the theory of structural fuzzy[J]. Journal ofAcoustical Society of America,1993,94(2):849-865.
    [148] Pierce A D, Sparrow V W and Russel D A. Fundamental structural acousticidealizations for structures with fuzzy internals[J]. Joural of Vibration andAcoustics,1995,117(3A):339-348.
    [149] Russel D A. The theory of fuzzy structures and its application to waves inplates and shells[D]. Pennsylvania: Pennsylvania State University,1995.
    [150] Moore R E. Interval analysis[M]. New York: Prentice-Hall,1966.
    [151] Ben-Haim Y and Elishakoff I. Non-probabilistic models of uncertainty in thenonlinear buckling of shells with general imperfections: theoretical estimatesof the knockdown factor[J]. Journal of Applied Mechanics,1989,56(2):403-410.
    [152] Elishakoff I, Ben-Haim Y. Dynamics of a thin cylindrical shell under impactwith limitation deterministic information on its initial imperfections[J].Structural Safety,1990,8(1-4):103-112.
    [153]邱志平.不确定参数结构静力响应和特征值问题的区间方法[M].长春:吉林工业大学博士学位论文,1994.
    [154] Koyluoglu H U. Cakmak A S and Nielsen S R. Interval algebra to deal withpattern loading and structural uncertainties[J]. Journal of EngineeringMechanics,1995,121(11):1149-1157.
    [155] Rao S S and Berke L. Analysis of uncertain structural systems using intervalanalysis[J]. AIAA Journal,1997,35(4):727-735.
    [156]郭书祥,吕震宙.区间运算与静力区间有限元[J].应用数学和力学,2001,22(12):1249-1254.
    [157]杨晓伟,陈塑寰,滕绍勇.基于单元的静力区间有限元法[J].计算力学学报,2002,19(2):179-183.
    [158]夏育颖,邱志平.结构静力响应区间的一种计算方法及工程应用[J].北京航空航天大学学报,2008,24(2):175-178.
    [159] Qiu Z P, Chen S H and Na J X. The Rayleigh quotient method for computingeigenvalue bounds of vibrational systems with interval parameters[J]. ActaMechanics Solid Sinica,1993,6,:309-318.
    [160] Qiu Z P, Chen S H and Jia H B. the Rayleigh quotient iteration method forcomputing eigenvalue bounds of structures with bounded uncertainparameters[J]. Computers and Structures,1995,55(2):221-227.
    [161] Chen S H, Lian H D and Yang X W. interval eigenvalue analysis for structureswith interval parameters. Finite Element in Analysis and Design[J].2003,39(5-6):419-431.
    [162] Chen S H, Guo R, Meng G W. Second-order sensitivity of eigenpairs inmultiple parameter structures[J]. Applied Mathematics and Mechanics(English Edition).2009,30(12):1475-1487.
    [163]邱志平,王晓军.不确定性结构力学问题的几何理论凸方法[J].北京:科学出版社,2007.
    [164] Lase Y, Ichchou M N and Jezequel L. Energy flow analysis of bars and beams:theoretical formulations[J]. Journal of Sound and Vibraion,1996,192(1):281-305.
    [165] Weinberger, H F. A first course in partial differential equations. New York:John Wiley&Sons,1965.
    [166] Cremer L, Heckl M and Petersson B A T. Structure-Borne Sound: Structurevibrations and sound radiation at audio frequencies[M]. Berlin: Springer,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700