模糊参数优化在液压系统污染控制中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
控制液压系统污染的关键问题之一是合理地设计和维护过滤系统,降低各关键点的污染度,但势必会增加系统成本。通过引入优化的思想,达到系统性能和成本之间的折衷,从而制定最优决策是非常必要的。由于在优化建模中存在许多模糊、不确定的参数,采用模糊的不确定性优化理论和方法对过滤器进行优化配置研究具有十分重要的意义。
     本文首先总结了国内外液压系统污染控制和模糊优化方法方面的研究成果,阐述了采用优化思想和模糊优化方法对过滤器进行配置的必要性。其次,以典型单回路液压系统为研究对象,在考虑诸多模糊参数的情况下,建立了基于模糊参数的整数线性规划(FPILP)方法的液压系统过滤器配置决策模型,并将FPILP方法所求得的结果与确定性及区间参数规划方法进行了对比和分析。
     本文将诸多不确定性参数表示成区间模糊数的形式,建立了基于区间模糊整数线性规划(IFILP)和区间模糊二次整数线性规划(IFQILP)方法的液压系统过滤器配置决策模型。将FPILP、IFILP和IFQILP方法分别求得的最优解从理论上进行了对比和分析研究。研究结果表明(a)在污染物侵入/产生率水平为重度时模糊优化能够有效降低系统成本最优值;(b)同时设置吸油路和回油路过滤器能够以最低的成本降低系统污染度,但当污染物侵入/产生率水平为重度时有较大的风险性;相比较而言,此时同时设置吸油路和压力油路过滤器能够有效降低液压系统污染度,取得更好的过滤效果;(c)虽然IFILP方法使系统成本最优值较低,但区间模糊因子为1,即各过滤器的纳垢容量约束为紧约束,故IFILP方法的经济性是以牺牲设计风险为代价的;虽然IFQILP方法增大了系统成本最优值,缩短了过滤器滤芯更换周期,但各关键点区间模糊因子均为零,即在系统成本和设计风险间达到了良好的折衷。
     最后,考虑到实际问题的需要,设计了一套典型单回路液压污染采样测试主系统、液压污染采样测试系统采样设备和液压污染采样测试注入系统,并制定了液压污染采样测试系统的试验步骤和方法。该系统能够达到有效控制液压系统内部污染循环、测定液压系统污染度的要求。
One of the key problems of hydraulic contamination control is to design and maintain filtration system reasonably reducing the contamination level of key points as low as possible. However, those measures also will increase the system cost at the same time. It is essential that optimization theory should be employed to help making a compromise between system performance and cost, and then the optimum decision will be obtained. Owing to the existence of fuzzy, uncertain parameters in optimization model, it is of importance that planning research would be conducted on the allocation of system filters by means of advanced fuzzy optimization theory and method under uncertainty.
     Firstly, the latest research on contamination control for hydraulic system and fuzzy optimization are summarized and the necessity of adopting optimum ideas and fuzzy optimization theory to allocate filters is expounded. Secondly, considering lots of fuzzy factors in representative single-circuit hydraulic system,optimum decision-making model for allocation of the filters is established including lots of fuzzy factors by fuzzy-parameter integer linear programming (FPILP). Furthermore, comparison results are made among fuzzy, certain and interval methods.
     Considering many interval fuzzy parameters,optimum decision-making model for allocation of the filters is established by interval-fuzzy integer linear programming(IFILP)and interval-fuzzy quadratic integer linear programming(IFQILP), and comparisons for the optimized solutions are made among FPILP, IFILP and IFQILP. The results show that (a) fuzzy optimization method can reduce the total design and operation cost of filtration system effectively when contaminants intruded/generated rate is high; (b) Allocating both suction and replace filters can reduce contamination level with the lowest cost, however, may take more risk when contaminants intruded/generated rate is high; Instead, allocating both suction and pressure filters can reduce contamination level and take favorable filtration effect; (c) Although IFILP reduces the total design and operation cost of filtration system, but interval fuzzy factor amount to one, in other words, each filter’s contaminant retaining capacity constraint is tight, so good economy performance of IFILP is at the expense of high failure risk; correspondingly, although IFQILP increases the total design and operation cost of filtration system, shortens the replacing periods of filters, but interval fuzzy factor in each key position amount to mothing, in other words, IFQILP can make a satisfying balance between the system cost and risk.
     Finally, considering the demand for real-world problems, a main sampling examination system, sampling device and contamination injecting system for contamination control in the typical single-circuit hydraulic system are designed, and examination step and criterion are also constituted. And this system can be employed to control the contamination level in the inner circulation of the hydraulic system and helps to measure the value of the contamination level accurately.
引文
[1]夏志新,张虎.液压系统污染控制技术现状与发展.液压气动与密封,2000(1): 32~39
    [2]贾瑞清,王炉平.液压污染控制技术的研究现状及重点展望.液压气动与密封,2004(1): 15~17
    [3]李越.液压系统污染问题的探讨.机床与液压,2004(1): 153~154
    [4]张剑慈.液压系统工作介质的污染分析与控制污染的措施.工业安全与防尘,2000(7): 14~17
    [5] E. C. Fitch. A new theory for the contaminant sensitivity of fluid power pumps. The BFPR Journal, 1976
    [6] R. K. Tessmann, E. C. Fitch. Field contaminants ingression rates– how much? Proc. of 7th Annual Fluid Power Research Conference. 1974, 187~193
    [7] Hong I. T., Fitch E. C. Evaluation of hydraulic cylinder contaminant sensitivity. Proc. of the National Conference on Fluid Power. 1984(38): 393
    [8] W. Backe. Investigation of the Contamination sensitivity of Hydraulic Pump. Proc. of Intl.conf.on Fluid Power. 1984
    [9] W. Backe. Wear sensitivity of hydraulic displacement units to solid contaminants. Olhydraulik und pneumatic, 1989, 33 (6): 29~38
    [10] D. E. Bowns. Contamination control fluid power at Bath. Report No.711, 1983
    [11] M. Robert. Contamination control-for increased production. Proc. of 47th National conf. on Fluid Power. 1996, I96-12.6
    [12]楼井滕也.液压泵的污染敏感度试验.油压与空气压(日),1983(11)
    [13]小林靖夫.斜盘式轴向往塞泵的污染敏感度试验.油压技术(日),1984(2)
    [14] P. Multanen, J. Rinkinen, H. Kangasniemi et al. Filtration efficiency under variable flow conditions– test series with different flow amplitudes. IFPE 2000. Chicago, USA, 2000, April, 4-6, 233~239
    [15] C. Liu, J.S. Stecki and P. Dransfield. Dynamic contamination control model for fluid contamination, Proc. of Intl. Conf. on Fluid Power Control and Robotics. Chengdu, China, 1990, 342~347
    [16] C. Liu and J.S. Stecki. Intelligent expert system for contamination control in hydraulic control system, Proc. of 6th intl. Conf. on industrial and engineering applications ofartificial intelligence and expert system. Edinburgh, 1993, June, 538~543
    [17]夏志新.液压系统污染控制.北京:机械工业出版社,1992
    [18]赵大庆.液压泵污染磨损与控制.北京:煤炭工业出版社,1993
    [19]吴勇.液压系统中油液污染控制方程的研究.煤炭学报,1995, 20(6):647~652
    [20]夏志新.液压和润滑系统的主动预防性维护.液压与气动,1993, (6):7~13
    [21]贾瑞清,郭建曾,吴雪平.液压系统颗粒污染和过滤状态的关系.机床与液压,2000(1): 72~74
    [22]赵大庆,周士瑜.液压系统固体污染物尺寸特性的定量分析.机床与液压,1991(2): 26~29
    [23]周士瑜,赵大庆,乔石.斜轴式轴向柱塞泵污染磨损与控制的研究.全国流体传动与控制学术年会,1987
    [24]宋雪丽,吴勇,卢敬东等.数字信号处理器TMS320LF2407在油液污染检测中的应用.液压与气动,2004(9):40~42
    [25]赵连利,罗富生,姚贵友.污染传递框图及其应用.东北大学学报(自然科学版)1997, 18(5): 528~531
    [26]涂群章,龚烈航,王强等.液压污染控制系统建模.中国机械工程,2001, 12(6): 629~631
    [27]顾冰芳,龚烈航,高久好.液压系统油液污染度评估的加权灰关联分析方法.润滑与密封,2004 (2): 68~70
    [28]刘金国.煤矿机械液压系统油液污染控制模型的研究.煤炭学报,1999,24(1):89~93
    [29]员创治,陈彩萍,赵彤涌.小油箱和零油箱洁净液压系统及其净化性能分析.煤炭学报,2002,27(2): 216~219
    [30]刘混举,曹惠斌.油箱容积对液压系统油液污染度影响的分析研究.佳木斯大学学报(自然科学版),1999, 17(4): 412~416
    [31]童伟,刘树道.油液污染对节流调速回路速度刚度的影响.华南理工大学学报(自然科学版),2000, 28(6): 95~99
    [32]张奕.中俄典型液压系统污染度等级标准研究.航空标准化与质量,2002(1): 21~24
    [33]彭有云.液压污染控制领域内的国际标准和国内标准简介.昌河科技,2002 (2): 15~18
    [34]战兴群,吴盛林,赵克定等.基于人工智能的液压系统故障诊断方法的研究.机床与液压,1997 (6): 6~8
    [35]王益群,高英杰.液压传动及控制系统故障诊断技术的新进展.燕山大学学报(自然科学版),1998, 22(1): 1~3
    [36]黄志坚,裘丽华.液压故障模糊神经网络诊断模型探讨.冶金设备,2001 (4): 33~36
    [37]陈章位,路甬祥,傅周东.液压设备状态监测与故障诊断技术.液压与气动,1995 (2):3~7
    [38]黄安雅,陈兆能,朱继梅.模糊信息处理技术在故障诊断中的应用.传动技术,1999 (1): 10~17
    [39]周新聪,刘东风,程海明等.主动维修策略与油液分析技术.液压与气动,2004 (6):78~80
    [40]晏小伟,杨曙东等.海水泵污染磨损机理的初步研究.液压与气动,2004(5):62~64
    [41]石学园.区间参数优化在液压系统污染控制中的应用研究:[华中科技大学硕士论文],2007
    [42]聂松林,石学园,李永平,朱玉泉.液压系统污染状态模拟与过滤器优化配置.华中科技大学学报(自然科学版).2008, 36 (1): 71~74 (EI源刊)
    [43] Nie Songlin, Shi Xueyuan, Hu Bin and Li Yongping.Simulation on status of hydraulic contamination and optimum collocation of hydraulic filters in hydraulic system, Proc. of the 5th Intl. Symp. on Fluid Power Transmission and Control. Beidaihe, 2007, June (6-8), 1053~1056
    [44] L.A.Zadeh. Fuzzy Set.Information and Control, 1965, Aug: 338~353
    [45] R.E.Bellman, L.A.Zadeh.Decision Making in a Fuzzy Environment Management, Sci, 1970, v17 (4): 41~164
    [46] J.Dombi.Membership Function as an Evaluation.Fuzzy Sets and Systems,1990, v35: 1~21
    [47] S.S.Rao. Optimum Design of Structures in a Fuzzy Environment. AIAA, 1987, v25(12) : 1633-163
    [48] K.L.Wood, E.K.Antonson. Computations with Imprecise Parameters in Engineering Design, Background and Theory. Journal of Mechanisms, Transmissions, and Automation in Design Transactions oft he ASME, 1989 (11): 616~625
    [49]王彩华,宋连天.模糊论方法学.中国建筑工业出版社, 1988(1)
    [50]王光远,王文泉.结构模糊优化设计.计算结构力学及应用, 1984, 1(2):67~73
    [51]徐昌文.结构模糊优化设计的限界搜索法.计算结构力学及应用, 1987, 4(2):55~60
    [52]王彩华,朱煜东.多目标优化的模糊解法中目标权重的处理方法.重庆大学学报, 1992, 5(6):92~97
    [53] Fang S C, Li G.Solving Fuzzy relation equations with a linear objective function.Fuzzy Sets and Systems, 1999(103): 107~113
    [54]张洪涛,董晓梅,任咏红.具有关系不等式约束的规划问题.辽宁师范大学学报(自然科学版), 2003, 26(3):231~233
    [55] G.H. Huang, B.W. Baetz and G.G. Patry. A grey fuzzy linear programming approach for municipal solid waste management planning under uncertainty.Civil Eng. Syst., 1993(10): 123~146
    [56] G.H. Huang, B.W. Baetz and G.G. Patry. A grey linear programming approach for municipal solid waste management planning under uncertainty, Civil Eng. Syst., 1992(9): 319~335,
    [57] G.H. Huang and R.D. Moore. Grey linear programming, its solving approach, and its application to water pollution control, Int. J. Syst. Sci., 1993 (24): 159~172
    [58] G.H. Huang, B.W. Baetz and G.G. Patry. Waste flow allocation planning through a grey fuzzy quadratic programming approach, Civil Eng. Syst., 1994(11): 209~243
    [59] G.H. Huang, B.W. Baetz and G.G. Patry. An interval linear programming approach for municipal solid waste management planning under uncertainty, Civil Engineering Systems, 1992 (9): 319~335
    [60] G.H. Huang, B.W. Baetz and G.G. Patry. Grey fuzzy integer programming: an application to regional waste management planning under uncertainty. Socio-Economic Planning Science, 1994 (29): 17~38
    [61] G.H. Huang. IPWM: An interval parameter water quality management model. Engineering Optimization, 1996 (26): 79~103
    [62] Cui, W. and Blockley. Decision making with fuzzy quadratic programming. Civil Engineering Systems, 1990 (7): 140~146
    [63] Tellier. Survey of Contamination in Rocket Propullsion Fluid System. Technical Report AFRPL, TR-67-200, 1967
    [64]小原正三.计量泵.通用机械研究所译, 1973

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700