基于影响线二次差值的桥梁损伤识别方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对桥梁结构进行有效地损伤识别是目前的研究热点之一。本论文针对梁式桥,参照处理反问题的通用途径,以“尽量有效地增加有用信息量以减小损伤识别的空间尺度”为指导思想展开了研究。论文通过分析桥梁上可能出现的各种损伤类型及其特征明确了理想损伤识别指标的标准,从局部性指标(静力应变)、半局部性指标(静力差分曲率)到整体性指标进行分步寻求,经过对静力应变指标和差分曲率指标的研究后发现,“整体性指标加荷载移动”的模式是构建理想损伤识别指标的有效途径。
     进而,论文基于影响线二次差值的思想,对支座反力和局部点位移两个整体性指标做进一步的挖掘,分别建立起基于竖向支座反力测量的“反力影响线差值指标DIILSR(Difference Index of Influence Lines for Support Reaction)”基于跨中点位移测量的“跨中位移影响线差值指标DIILMSD(Difference Index of Influence Lines for Mid-span Displacement )”和基于两对称点位移测量的“对称点位移影响线差值指标DIILDSP(Difference Index of Influence Lines for Displacement at Symmetrical Points)”。这些新方法利用了“虚拟分割”的概念来将结构划分成多个小区段,假定损伤区域的长度等于这些小区段的长度,这样能在计算上减少待求未知量的数目,同时能做到较好的损伤定位和定量。新方法通过“让荷载移动起来”的方式,建立了指标与结构局部损伤位置之间的关系,不再需要利用测点位置来定位损伤,消除了对测点数量的依赖性。
     论文提出的新方法计算过程稳定,应用效果可以通过增加加载值和虚拟分割长度的取值来进行调节:加载值越大、虚拟分割的长度值越小,则方法的效果越好。在实际应用时,新方法所需的测量简单、加载容易、成本低。因此待测桥梁的尺寸越大、所能配置的测量装置越少,采用本方法的优势就越明显。更重要的是,新方法立足于“差值”,对实际桥梁的材料性质和截面尺寸参数不均匀、边界条件的不明确不敏感。
     此外,围绕损伤识别的需要,作者还针对埋入式应变传感器的耐用性、高精度位移数据的获取等问题设计了实用的新型装置并获得国家专利授权,有关细节也在论文中做了介绍。
     为了进一步说明新方法的应用价值,本文最后建议了一套完整的针对梁式桥的损伤识别方案,可具有成本低、效果好、通用性强等优势。
At present, the damage detection of bridges is one of the research focuses in structural engineering. Focusing on beam bridges and considering the general approach in inverse problems,‘Make every effort to increase the useful information effectively and reduce the dimensions of damage detection’is treated as guidance in the present study. At first, the types and characteristics of damages which may occur on bridges are analyzed. The criterions of ideal damage detection index are then proposed. Research is carried out step by step from local index (static strain), semi-local index (static difference curvature) to global index. The static strain and difference curvature indices are studied in detail and then it is found that‘global index plus mobile load’can be treated as an effective pattern for establishing more proper damage detection index.
     Further, based on two global indices (support reaction and local point displacement), the idea of‘influence line second order difference’is introduced. Three novel indices termed as‘Difference Index of Influence Lines for Support Reaction, DIILSR’,‘Difference Index of Influence Lines for Mid-span Displacement, DIILMSD’and‘Difference Index of Influence Lines for Displacement at Symmetrical Points, DIILDSP’are then developed, respectively. The philosophy of these new methods is different from the existing damage detection methods. They use the concept of“virtual mashing”to divide the whole bridge into a number of segments with the same length. Therefore, not determining the exact damage location but detecting which segments contain damage is the work needed to be done. The number of unknown parameters which have to be solved is decreased. With the help of this concept, the localization and quantitative analysis of damage can be achieved more effectively. Besides, mobile load is employed to relate the local location of bridge with index values. Therefore, the number of measurement points will not affect the effect of these methods.
     The algorithm of these new methods is stable and their effect can be adjusted freely by changing the load value and the segment length. Better effect can be achieved with the increase of load value and the decrease of segment length. During the application process, simple measurement, convenient loading and low cost are advantages of new methods. These advantages are further highlighted when the bridge size increases and the number of offered sensors decreases. Moreover, based on the‘difference value’concept, these new methods can be applied to the actual bridges with non-homogeneous material/section parameters and unclearly defined support conditions.
     In addition, in order to satisfy the requirements of damage detection, innovative devices have also been designed to improve the durability of embedded optical fiber strain sensors and the acquisition of displacement data with high precision etc., which are all introduced in detail in the present thesis. These devices have been patented by National Intellectual Property Bureau.
     Finally, an integrated bridge damage detection scheme which has low cost and well effect for beam bridges is proposed to show the application value of this study.
引文
[1] Andersen, E.Y., Pedersen, L. Structural monitoring of the Great Belt East Bridge [C]. Strait crossings, 1994; Rotterdam: Balkema: 189-195.
    [2] Cheung, M.S., Naumoski, N. The first smart long-span bridge in Canada—health monitoring of the Confederation Bridge [C]. Proceedings of the 1st international workshop on structural health monitoring of innovative civil engineering structures, 2002; Winnipeg: ISIS Canada Corporation: 31-44.
    [3] Cheung, M.S., Tadros, G.S., Brown, T., Dilger, W.H., etc. Field monitoring and research on performance of the Confederation Bridge [J]. Canadian Journal of Civil Engineering, 1997, 24(6): 951-962.
    [4] Sumitro, S., Matsui, Y., Kono, M., Okamoto, T., Fujii, K. Long span bridge health monitoring system in Japan [C]. Health monitoring and management of civil infrastructure systems, Bellingham (WA): The International Society for Optical Engineering. 2001, 517-524.
    [5] Kim, S., Chang, S.P., Lee, J. Autonomous on-line health monitoring system for a cable-stayed bridge [C]. Proceedings of the 1st European workshop on structural health monitoring, 2002, Lancaster (PA): DEStech: 1254-1261.
    [6] Lau, C.K., Mak, W.P.N., Wong, K.Y., Chan, W.Y.K., Man, K.L.D. Structural health monitoring of three cable-supported bridges in Hong Kong [J]. Structural Health Monitoring, 1999, Lancaster (PA): Technomic: 450-460.
    [7]张敏,杨志芳,朱利明.东海大桥桥梁结构健康监测系统研究与设计.桥梁建设. 2006(2):67~70.
    [8]符欲梅,朱永,陈伟民,黄尚廉.大佛寺长江大桥远程状态监测系统开发及实现.公路. 2005(12):105~110.
    [9]李爱群,缪长青,李兆霞.润扬长江大桥结构健康监测系统研究.东南大学学报(自然科学版). 2003, 33(5):544~548.
    [10]董学武,张宇峰,徐宏,倪一清.苏通大桥结构健康监测及安全评价系统简介.桥梁建设. 2006(4):71~74.
    [11]严斌,杨孚衡,苏木标.芜湖长江大桥长期健康监测系统.铁道建筑. 2005(6):29~31.
    [12]谭永朝,郑翰献,俞菊虎等.钱江四桥桥梁实时健康监测系统开发研究.公路交通科技. 2004(11):43~46.
    [13]张少锦,刘文峰,张太科,刘刚.珠江黄埔大桥结构健康与安全监测系统测点与测试方法设计.桥梁建设. 2008(1):73~76.
    [14]韩之江,杨建红.桥梁健康监测技术的研究与实施.公路. 2008(3):51~56.
    [15]王真之,王晓东,周宇,徐铁峰.一种新型的桥梁结构健康远程监控系统.计算机应用研究. 2008(2):637~640.
    [16]郭瑞.城市桥梁管理系统关键问题研究[硕士论文].上海:同济大学. 2004.
    [17]季云峰.桥梁管理系统的研究[硕士论文].上海:同济大学. 2003.
    [18]欧智菁.简介丹麦桥梁管理系统.福建建筑高等专业科学校学报. 2001(3):47~49.
    [19] Sanayei M., Scampoli S.F.Structural element stiffness detection from static test data [J]. Journal of Engineering Mechanics, 1991, 117(5):1021-1036.
    [20] Sanayei M., Onipede O. Assessment of structures using static test data [J]. AIAA Journal, 1991, 29(7):1156-1179.
    [21]冯新.土木工程中的损伤识别方法研究[博士论文].大连:大连理工大学. 2002
    [22] Banan M.R., Hjelmstad K.D. Parameter estimation of structures from static response, 1: computational aspects [J]. Journal of Structural Engineering, 1994, 120(11): 3243-3258.
    [23] Banan M.R., Hjelmstad K.D. Parameter estimation of structures from static respon se, ll: numericals imulations tudies [J]. Journal of Structural Engineering, 1994, 120(11): 3259-3283.
    [24] Yeo I. Shin S, et al. Statistical damage assessment of framed structures from static responses [J]. Journal of Engineering Mechanics, 2000, 126 (4): 414-420.
    [25] Jang J.H., Yeo I, et al. Experimental investigation of system-detection-based damage assessment on structures [J]. Journal of Structural Engineering, 2002, 128(5): 673-682.
    [26]张清华,李乔,唐亮.斜拉桥结构损伤识别的概率可靠度法.铁道学报. 2005, 27(3):70~75.
    [27] García, O., Vehi J., Matos J.C. et al., Structural assessment under uncertain parameters via interval analysis, Journal of Computation and Appllied Mathematics, 2008, 218(1): 43-52.
    [28] Caddemi, S., Morassi, A. Crack detection in elastic beams by static measurements [J], International Journla of Solids and Structures, 2007, 44(16): 5301-5315.
    [29] Caddemi, S., Morassi, A. A procedure for multiple damage detection in elastic beams [C], 6th World Congress of Structural and Multidisciplinary Optimization, 2005, Rio de Janeiro, Brazil.
    [30]陈孝珍.基于静态测量数据的桥梁结构损伤识别研究[博士论文].武汉:华中科技大学. 2005
    [31]赵进忠.简支梁损伤识别曲率法研究.甘肃科学学报. 2008(2):71~74.
    [32] Narkis, Y., Detection of crack location in vibrating simply supported beams [J], Journal of Sound and Vibration, 1994, 172(4): 549-558.
    [33] Stubbs, N., Osegueda, R. Global nondestructive damage evaluation in solid [J]. International Journal of Analytical and Experimental Modal analysis, 1990, 5(2): 67-79.
    [34]谢峻,韩大建.一种改进的基于频率测量的结构损伤识别方法.工程力学. 2004, 21(1):21~25.
    [35] Yuen, M.M.F. A numerical study of eigenparameters of a damaged cantilever, Journal of Sound and Vibration, 1985, 103: 301-310.
    [36]李涛.几种基于环境激励的结构损伤识别方法的比较[硕士论文].大庆:大庆石油学院. 2007.
    [37] Huth, O., Feltrin, G., Maeck, J., Kilic, N., Motavalli, M., Damage detection using modal data: experiences on a prestressed concrete bridge, Journal of Structural Engineering, 2005, 12: 1898-1919.
    [38]杨树高.基于不完备实测信息的结构损伤识别研究[硕士论文].南京:河海大学. 2007.
    [39]秦仙蓉,张令弥,顾明等.改进的基于模态参数的结构计算模型修正算法.同济大学学报. 2002, 30(11):1295~1299.
    [40]刘晖,瞿伟廉,袁润章.一种适用于结构损伤识别的模态扩阶法.武汉理工大学学报. 2004, 26(8):48~51.
    [41] Kammer D.C. Test-analysis. model development using an exact modal reduction [J]. The International Journal of Analytical and experimental Modal Analysis. 1987, 10: 174-179.
    [42]袁旭东.基于不完备信息土木工程结构损伤识别方法研究[博士论文].大连:大连理工大学. 2005.
    [43] Andersen P., Brincker R., Kirkegaard P.H. Theory of covariance equivalent ARMAV models of civil engineering structures [A]. Proceedings of IMAC14, the 14th international modal analysis conference [C], 1996, 518-524.
    [44] Kristensson M., Jansson M. Ottersten B. Modified IQML and weighted subspace fitting without eigendecomposition [J]. Signal Processing, 1999, 79(1): 29-44.
    [45]徐士代.环境激励下工程结构模态参数识别[博士论文].南京:东南大学. 2006.
    [46]刘雨青.桥梁结构模态参数识别与应用研究[博士论文].武汉:武汉理工大学. 2005.
    [47]王登刚.区间计算与区间反演理论研究[博士后论文].上海:同济大学. 2003
    [48] Guo, H.Y., Li, Z.L., A two-stage method to identify structural damage sites and extents by using evidence theory and micro-search genetic algorithm [J], Mechanical Systems and Signal Processing, 2009, 23: 769-782.
    [49] Chen, H.P. Application of regularization methods to damage detection in large scale plane frame structures using incomplete noisy modal data [J]. Engineering Structures. 2008 (30): 3219-3227.
    [50]王建有.测试信息不完备下结构物理参数识别方法研究[博士论文].大连:大连理工大学. 2005.
    [51] Djoudi, M.S., Bahai, H., Esat, I.I. An inverse eigenvalue formulation for optimizing the dynamic behaviour of pin-jointed structures [J]. Journal of Sound and Vibration. 2002, 253 (5): 1039-1050.
    [52] Kim, K.O., Cho, J.Y., Choi, Y.J., Direct approach in inverse problems for dynamic systems [J]. AIAAJournal, 2004, 42 (8): 1698-1704.
    [53] Park, N.G., Park, Y.S. Detection of damage on a substructure with measured frequency response functions [J]. Journal of Mechanical Science and Technology. 2005, 19 (10): 1891-1901.
    [54]李德葆,陆海秋.实验模态分析及其应用.北京:科学出版社. 2001:121
    [55]杨海峰.基于加速度频响函数的结构损伤检测方法研究[硕士论文].西安:西北工业大学. 2007.
    [56] Furukawa A., Otsuka, H., Kiyono, J. Structural damage detection method using uncertain frequency response functions [J]. Computer-Aided Civil and Infrastructure Engineering. 2006, 21 (4): 292-305.
    [57] Pandey, A.K., Biswas, M., Samman, M. M. Damage detection from changes in curvature mode shapes [J]. Journal of Sound and Vibration. 1991, 145: 312-332.
    [58] Wahab, M.M.A., Roeck, G.D. Damage detection in bridges using modal curvatures: application to a real damage scenario [J]. Journal of Sound and Vibration. 1999, 226(2): 217-235.
    [59] Ratcliffe, C.P., Bagaria, W.J. Vibration technique for locating delamination in a composite beam [J]. AIAA Journal. 1998, 36 (6): 1074-1077.
    [60] Dutta, A., Talukdar, S. Damage detection in bridges using accurate modal parameters. Finite Element Analysis and Design. 2004, 40: 287-304.
    [61] Unger, J., Teughels, A., De Roeck, G. Damage detection of a prestressed concrete beam using modal strains. Journal of Structural Engineering, 2005, 131(9): 1456-1463.
    [62] Reynders, E., Roeck, G.D., Bakir, P.G., et al. Damage detection on the Tilff Bridge by vibration monitoring using optical fiber strain sensors. Journal of Engineering Mechanics, 2007, 2: 185-193.
    [63] Tomaszewska, A. Influence of statistical errors on damage detection based on structural flexibility and mode shape curvature. Computer and Structures. 2010, 88(3-4): 154-164.
    [64] Chandrashekhar, M., Ganguli, R. Damage assessment of structures with uncertainty by using mode-shape curvatures and fuzzy logic. Journal of Sound and Vibration, 2009, 326: 939-957.
    [65]鞠进.大跨斜拉桥主梁损伤识别方法研究[硕士论文].南京:南京工业大学. 2006
    [66]周先雁,沈蒲生.用应变模态对混凝土结构进行损伤识别的研究.湖南大学学报. 1997, 24(5):69~74.
    [67]任权,李洪升,郭杏林.基于应变模态变化率的压力管道无损检测.大连理工大学学报. 2001, 41(6):648~652.
    [68] Li, Y.Y., Cheng, L., Yam, L.H., Wong, W.O. Detection of damage locations for plate-like structures using damage sensitive indices: strain modal approach [J]. Computer and structures. 2002, 80:1881-1894.
    [69]顾培英,陈厚群,李同春,邓昌.基于应变模态差分原理的直接定位损伤指标法.振动与冲击. 2006, 25(3):13~18.
    [70]顾培英.基于应变模态技术的结构损伤诊断直接指标法研究[博士论文].南京:河海大学. 2006.
    [71]顾培英,陈厚群,李同春,邓昌.用应变模态技术诊断梁结构的损伤.地震工程与工程振动. 2005, 25(4):50~53.
    [72] Pandey, A.K., Biswas, M. Damage Detection in structures Using Changes in Flexibility [J], Journal of Sound and Vibration.1994, 169(1):3-17.
    [73]汤凯,刘济科.考虑不确定因素的结构损伤定位方法.固体力学学报. 2007, 28(2):189~194.
    [74]瞿伟廉,陈超,魏文辉.基于应变模态的钢结构构件焊缝损伤定位方法的研究.世界地震工程. 2002, 18(2):1~8.
    [75]瞿伟廉,陈伟.多层及高层框架结构地震损伤诊断的神经网络方法.地震工程与工程振动. 2002, 22(1):43~48.
    [76]瞿伟廉,黄东梅.高耸塔架结构节点损伤基于神经网络的两步诊断法.地震工程与工程振动. 2003, 23(2):143~149.
    [77]董聪,丁辉,高高.结构损伤识别和定位的基本原理与方法.中国铁道科学. 1999, 20(3):89~94.
    [78]姜雪峰.基于应变模态的城市桥梁损伤识别的定量化研究[硕士论文].北京:北京工业大学. 2006.
    [79] Aimin Y., Jean-Claude G. Structural damage localization by combining flexibility and stiffness methods [J]. Engineering Structures. 2005, 27: 1752-1761.
    [80]冯新,周晶,陈健云,李昕.基于观测柔度阵的结构参数识别.世界地震工程.2002, 1: 51~55.
    [81] Farar, C.R., Jauregui D. Damage detection algorithms applied to experimental and numerical modal data from the I-40 bridge[R].LosAlamos National Laboratory Report LA-13074-MS, 1996.
    [82] Scott, W.D., Francois, M. H., Lee, D. P., et al. Improved location accuracy using strain energy-based mode selection criteria [J]. AIAA Journal. 1997, 35(4): 693-699.
    [83] Hu, H.W., Wu, C.B. Development of scanning damage index for the damage detection of plate structures using modal strain energy method [J]. Mechanical System and Signal Processing. 2009, 23(2): 274-287.
    [84]史治宇,吕令毅.由模态应变能法诊断结构破损的实验研究.东南大学学报. 1999, 29(2):134~138.
    [85]史治宇,罗绍湘,张令弥.结构破损定位的单元模态应变能变化率法.振动工程学报. 1998, 11(3):356~360.
    [86]王志华,程载斌,张向东,马宏伟.对结构多位置损伤定位分析方法的探讨.太原理工大学学报. 2004 (3):289~293.
    [87]袁明,贺国京.基于模态应变能的结构损伤检测方法研究.铁道学报. 2002, 24(2):92~94.
    [88]袁明,贺国京.大跨度桥梁损伤诊断研究.铁道工程学报. 2003, 80(4):81~85.
    [89]肖调生,阳勇.结构损伤识别的柔度差值曲率法.吉首大学学报(自然科学版). 2006, 27(2):74~76.
    [90]腾海文,霍达,姜雪封等.结构损伤位置识别的组合指标法.北京工业大学学报. 2007, 33(5):493~497.
    [91] Sahin, M., Shenoi, R.A. Quantification and localization of damage in beam-like structures by using artificial neural networks with experimental validation [J]. Engineering Structures. 2003, 25: 1785-1802.
    [92] Ko, J.M., Sun, Z.G., Ni, Y.Q. Multi-stage detection scheme for detecting damage in cablestayed Kap Shui Mun Bridge [J]. Engineering Structures. 2002, 24: 857-868.
    [93] Jong, J.L., Chung, B.Y. Damage diagnosis of steel girder bridges using ambient vibration data [J]. Engineering Structures. 2006, 28: 912-925.
    [94]黄天立.结构系统和损伤识别的若干方法研究[博士论文].上海:同济大学. 2007.
    [95]袁颖,林皋,周爱红,闫东明.一种结构损伤评估的两阶段法研究.机械强度. 2005, 27(2):257~261.
    [96] Taha, M.M.R., Lucero, J. Damage detection for structural health monitoring using fuzzy pattern recognition [J]. Engineering Structures. 2005, 27: 1774-1783.
    [97]吉洪诺夫,阿尔先宁著,王秉忱译.不适定问题的解法.北京:地质出版社. 1979:25-30.
    [98]赵占山.结构故障诊断的几种识别方法[硕士论文].哈尔滨:哈尔滨工业大学. 2006.
    [99] Zhou, G, Sim, L.M. Damage detection and assessment in fiber-reinforced composite structures with embedded fiber optic sensors-review [J]. Smart Material and Structures. 2002, 11: 925-939.
    [100] Casanova N., Inaudi D., Structural monitoring with embedded and surface mounted fiber optic sensors [A]. ISMES, International colloquium seriate [C].1997,325-332.
    [101] Kuang, K.S.C., Kenny, R., Whelan, M.P., Cantwell, W.J. Embedded fiber Bragg grating sensors in advanced composite materials [J]. Composites Science and Technology, 2001, 61: 1379-1387.
    [102]李宏男,李东升,赵柏东.光纤光栅健康监测方法在土木工程中的研究与应用进展.地震工程与工程振动. 2002, 22(6):76~83.
    [103] Moyo, P., Brownjohn, J.M.W., Suresh, R., Tjin, S.C. Development of fiber Bragg grating sensors for monitoring civil infrastructure [J]. Engineering Structures. 2005, 27: 1828-1834.
    [104] Botsis, J., Humbert, L., Colpo, F., Giaccari, P. Embedded fiber Bragg grating sensor for internal strain measurements in polymeric materials [J]. Optics and Lasers in Engineering. 2005, 43: 491-510.
    [105]吴金生,杨瀛海,俞本立,黄伟同.影响光纤光栅温度传感器应用的两个主要因素.功能材料.1999(4):425~427.
    [106]郭风珍,于长泰.光纤光栅传感技术与应用.杭州:浙江大学出版社. 1992:54.
    [107]刘迎春.传感器原理、设计与应用.长沙:国防科技大学出版社. 1988:32-37.
    [108]何爱勇,程华.光纤光栅传感技术在结构工程检测中的应用.重庆工业高等专科学校学报. 2002, 17(2):1~3.
    [109]赵雪峰,田石柱,周智等.基于封装光纤光栅Bragg光栅传感器的混凝土应变监测试验研究.光学技术. 2003, 29(4):423~426.
    [110] Majumder, L., Manohar, C.S. A time-domain approachfor damage detection in beam structures using vibration data with a moving oscillator as an excitation source [J]. Journal of Sound and Vibration. 2003, 268: 699-716.
    [111]刘云帅.基于挠度差值影响线的简支梁桥损伤识别研究[硕士论文].兰州:兰州理工大学. 2009.
    [112]魏建东,王利.美国既有桥梁的高科技检测.世界桥梁. 2004, 3:35~38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700