模糊时滞系统稳定条件保守性减小研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为控制领域重要研究问题之一的模糊控制理论在近年来得到了广泛的关注,同时它在工程实践方面也获得了巨大的发展。众所周知,时滞现象大量存在于各种工程系统中,时滞的存在常常导致系统不稳定或性能恶化。因此,对模糊时滞控制系统的研究具有重要的理论意义与应用价值。如何进一步获得保守性更小的稳定条件一直是时滞系统研究的难点问题。本文利用线性矩阵不等式技术和积分不等式方法,针对T-S模糊时滞系统的稳定问题,研究了获得保守性更小的时滞相关稳定条件的方法。
     为了研究常时滞模糊系统的稳定条件的保守性减小问题,将积分不等式引入常时滞模糊系统的稳定性分析以及保成本控制问题中,得到基于线性矩阵不等式的稳定条件。从理论上证明本文得到的保成本控制条件可以将现有保成本结果包括为其特殊情形,充分显示了积分不等式方法的优越性。为了进一步减小T-S模糊常时滞系统的稳定性条件的保守性,将增广矩阵引入Lyapunov- Krasovskii泛函,并同时构造了新的积分不等式,然后将这一方法延伸到保成本控制问题上,给出了新的求解模糊保成本控制器的线性矩阵不等式条件。对比现存的方法,本文的方法得到结果不仅具有较小的保守性,同时还具有较少的矩阵变量,从而减少了计算量。
     对于具有区间变时滞的模糊系统,为了避免了现有文献所使用的缩小积分域的方法导致的保守性,针对变时滞的特点而构造了改进型积分不等式。利用改进型积分不等式获得了模糊系统时滞相关的稳定条件,并将其推广到对时滞微分没有限制的时滞相关而时滞变化率无关的情况。由于在推导过程中,没有对积分域进行缩放,因此所得结果减少了保守性。同时对增广型Lyapunov- Krasovskii泛函情况,构造了新的积分不等式。数值仿真表明本章所获得的结果较现有成果可以得到更大的时滞上界。
     研究了同时具有输入时滞和状态时滞的不确定模糊时滞系统的鲁棒镇定问题,利用并行分布补偿方法设计变时滞模糊时滞系统的状态反馈控制器。通过构造了—个新的Lyapunov-Krasovskii函数,应用积分不等式技术,获得了一些全新的时滞相关鲁棒稳定性准则,得到了时滞相关镇定的控制器设计的方法。所得到的时滞相关条件较现存文献中所得到的时滞相关条件能够获得更大的时滞上界,因此具有更小的保守性。
     为了减小公共Lyapunov-Krasovskii函数所带来的保守性,基于模糊Lyapunov-Krasovskii函数讨论了区间变时滞模糊时滞系统的H∞控制问题,并且隶属度函数被引入到改进型积分不等式中。由于模糊Lyapunov- Krasovskii函数和积分不等式都考虑了隶属度函数的影响,所得时滞相关条件可将基于公共Lyapunov-Krasovskii函数所得条件包含为其特殊形式,这显示了该方法的优越性,模糊时滞系统的H∞控制条件的保守性得到了进一步减小。
     将改进型积分不等式方法推广到离散情形,构造了一个基于二次型项的有限和不等式,讨论了离散模糊时滞系统的时滞相关H∞控制问题。利用二次型项的有限和不等式获得了系统在无记忆控制器作用下的保守性更小的H∞稳定条件。同时采用迭代算法和参数调整法获得无记忆控制器参数。
As an important research field, fuzzy control theory has attracted considerable attention from scientists recently. It has made a great progress in practical control technology. Since time delays are frequently encountered in a variety of engineering systems and are often sources of instability and degradation of control performance in control systems, the study on fuzzy control systems with delays is important in both theory and practice. This dissertation utilizes linear matrix inequality method and integral inequality approach for various stabilization problems of T-S fuzzy systems with time delays to obtain less conservative delay-dependent criteria.
     To study conservativeness reducing problem of stabilization condition of fuzzy delay system, some integral inequalities are first introduced to analyze the stability criteria of fuzzy systems with constant time delays. The existence condition for guaranteed cost control of the fuzzy systems is obtained, and it is proved theoretically to encompass an established result in the literature as a special case, which shows well the advantages of the integral inequality approach. Moreover, some augmented matrices are introduced into Lyapunov-Krasovskii functional and new integral inequalities are constructed to further reduce conservativeness in the stability for T-S fuzzy systems with time delay. The new method is extended into guaranteed cost problem, and linear matrix inequalities based criterion for obtaining guaranteed cost controller is given. Illustrative examples show that compared with the existing results, the results obtained from the integral inequality method possess less conservativeness, and it also reduces the amount of computation with less matrix variables.
     For fuzzy systems with interval time-varying delays, improved integral inequalities, constructed for the time-varying issue, are employed to avoid the conservativeness caused by integral area reducing method used in the literature. The delay-dependent stability condition is obtained based on the improved integral inequalities. Moreover, the criteria is extended into the delay-dependent/rate- independent stability condition. Without any integral area reduction, some conservativeness is reduced in the obtained results. Further more, new integral inequalities are constructed for augmented Lyapunov-Krasovskii functional. An illustrative example shows that the methods of this dissertation can lead to much larger upper of delay than the existing results.
     Robust control for uncertain fuzzy systems with state delay and input delay is investigated. State feedback controller for the fuzzy systems is provided via parallel distributed compensation. A new delay dependent robust stabilization criteria is obtained based on newly constructed Lyapunov-Krasovskii functional and integral inequalities. A method of designing a delay-dependent fuzzy controller based on parameter tuning is described. The numerical example shows the effectiveness of the given method.
     To reduce the conservativeness exists with common Lyapunov-Krasovskii functional, fuzzy Lyapunov-Krasovskii functional is introduced to consider the delay-dependent H∞control of fuzzy systems with interval time-varying delays. Membership function is introduced into improved integral inqequlities. Since membership function is considered in fuzzy Lyapunov-Krasovskii functional and integral inequalities, some conservativeness is further reduced in stabilization condition of fuzzy delay system. The obtained results encompass the common Lyapunov-Krasovskii functional based results as a special case, which shows well the advantage of the proposed method.
     The improved integral inequalities are extended into discrete-time case and finite-sum inequalities for quadratic terms are established, the delay- dependent H∞control of fuzzy discrete-time systems with state delays is analyzed. The finite-sum inequalities for quadratic terms are used in combination with memory-less state feedback to derive delay-dependent conditions that guarantee that the resulting closed-loop system has a given H∞performance. Two methods of designing memoryless controller, one based on an iterative algorithm and the other based on parameter tuning, are described.
引文
[1]胡寿松.自动控制原理.北京:国防工业出版社. 1994.
    [2]陈际达.线性控制系统.长沙:中南工业大学. 1990.
    [3] Zadeh, L.A. Fuzzy Sets. Information and Control. 1965, 8:338-353.
    [4] Zadeh, L.A. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transaction on Systems, Man and Cybernetics. 1973, 3(1):28-44.
    [5] Mamdani, E.H. Applications of fuzzy algorithms for Control of simple dynamic plant. Proceedings of the Institution of Electrical Engineers. 1974, 121 (12): 1585-1588.
    [6] Mamdani, E.H., Assilian, S. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies. 1974, 7(1):1-13.
    [7] Holmblad, L.P. Ostergaard, J.J. Control of a Cement Kiln by Fuzzy logic. Fuzzy Information and Decision Processes. NewYork: North-Holland. 1982, 389-399.
    [8] Sugeno, M., Nishida, M. Fuzzy control of model car. Fuzzy Sets Systems. 1985, 16(2):103-113.
    [9] Sugeno, M. Industrial Applications of Fuzzy Control. NewYork: North-Holland. 1985.
    [10] Cao, Y.Y., Frank, P. M. Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi-Sugeno fuzzy models. Fuzzy Sets and Systems.2001, 124:213–229.
    [11]诸静.模糊控制原理与应用.北京:机械工业出版社. 1995.
    [12] Takagi, T., Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics. 1985, 15(1):116-132.
    [13] Chen C.L., Chen P.C., Chen C.K. Analysis and design of fuzzy control systems. Fuzzy Sets and Systems. 1993, 57(2):125-140.
    [14] Tanaka, K., Sano, M. A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer. IEEE Transactions on Fuzzy Systems. 1994, 2(2):119-134.
    [15] Kim, W.C., Ahn, S.C., Kwon, W.H. Stability analysis and stabilization of fuzzy state space models. Fuzzy Sets and Systems. 1995, 71(1):131-142.
    [16] Kim, E., Lee, H. New approach to relaxed quadratic stability condition of fuzzy control systems. IEEE Transactions on Fuzzy Systems. 2000, 8(5):523-534.
    [17] Wang, L.X. Fuzzy systems as universal approximators. IEEE Intnternational Conference on Fuzzy Systems. San Diego, USA. 1992, 1163-1170.
    [18] Sun, C.T. Rule-based structure identification in adaptive-network-based fuzzy inference system.IEEE Transactions on Fuzzy Systems. 1994, 2(1):64-73.
    [19] Wang L.X., Mendel, J.M. Generating fuzzy rules by learning from examples. IEEE Transctions on Systems, Man and Cybernetics. 1992, 22(6):1414-1427.
    [20] Chang, X.Q., Li, W., Farrell, J. A C-means clustering-based fuzzy modeling method. The Ninth IEEE International Conference on Fuzzy Systems. San Antonio, TX, USA. 2000, 2:937-940.
    [21] Sugeno, M., Yasukawa, T. A fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems. 1993, 1(1):7-31.
    [22] Yager, R.R., Filev, D.P. Approximation clustering via the mountain method. IEEE Transactions on Systems, Man and Cybernetics. 1994, 24(8):1279-1284.
    [24] Chiu, S.L. Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems. 1994, 2(3):267-278.
    [25] Linkens, D.A., Chen, M.Y. Inputs election and partition validation for fuzzy modeling using neural network. Fuzzy Sets and Systems. 1999, 107(3):299-308.
    [25] Iyatomi, H., Hagiwara, M. Adaptive fuzzy inference neural network. Pattern Recognition. 2004, 37(10):2049-2057.
    [26] Casllas, J., Cordon, O., Del Jesus, M.J., Herrer, F. Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction. IEEE Transcations on Fuzzy Systems. 2005, 13(1):13-29.
    [27] Sugeno, M., Kang, G.T. Structure identification of fuzzy model. Fuzzy Sets and Systems. 1988, 28:15-33.
    [28] Vapnik, V.N. The nature of statistical learning theory. New York: Springer-Verlag. 1995.
    [29]刘福才.非线性系统的模糊模型辨识及其应用.北京:国防工业出版社. 2006:13~17.
    [30]张化光,何希勤等.模糊自适应控制理论及其应用.北京航空航天大学出版社. 2002.
    [31] Wang, L.X. Fuzzy systems as universal approximators. IEEE Int.Conf. Fuzzy Systems. San Diego, USA. 1992, 1163-1170.
    [32] Tanaka, K., Sugeno, M. Stability analysis and design of fuzzy control systems. Fuzzy Sets and Systems. 1992, 45(2):135-156.
    [33] Tanaka, K., Ikeda, T., Wang, H.O. Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H∞control theory, and linear matrix inequalities. IEEE Transactions on Fuzzy Systems. 1996, 4(1):1-13.
    [34] Tanaka, K., Ikeda, T., Wang, H.O. Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Transactions on Fuzzy Systems. 1998, 6(2):250-265.
    [35] Wang, H.O., Tanaka, K., Griffin, M. Approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Transactions on Fuzzy Systems. 1996, 4(1):14-23.
    [36] Tanaka, K., Wang, H.O. Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. NewYork: John Wiley&Sons, Inc.. 2001.
    [37] Cao, S.G., Rees, N.W., Feng, G. Quadratic stability analysis and design of continuous-time fuzzy control systems. International Journal of Systems Science. 1996, 27(2):193-203.
    [38] Cao, S.G., Rees, N.W., Feng, G. Lyapunov-like stability theorems for continuous-time fuzzy control systems. International Journal of Control. 1998, 69(1):49-64.
    [39] Can, S.G., Rees, N.W., Feng, G. Analysis and design of fuzzy control systems using dynamic fuzzy-state space models. IEEE Transactions on Fuzzy Systems. 1999, 7(2):192-200.
    [40] Job, J., Chen, YH., Langari, R. On the stability issues of linear Takagi-Sugeno fuzzy models. IEEET ransactions on Fuzzy Systems. 1998, 6(3):402-410.
    [41] Ying, H. Analytical study on structure, stability and design of general nonlinear Takagi-Sugeno fuzzy control systems. Automatica. 1998, 34(12):1617-1623.
    [42]丁永生,应浩,任立红等.解析模糊控制理论:模糊控制系统的结构和稳定性分析.控制与决策. 2000, 15(2):129~135.
    [43]李承家,王磊,戴冠中.连续T-S模糊控制器的稳定性分析与设计.西北大学学报. 2000, 30(4):392~395.
    [44]王华,李竞. Takagai-Sugeno模糊模型的并行分布补偿:新的稳定条件和动态反馈设计自动化学报. 2001, 27(4):460~476.
    [45]马克茂,王子才.基于T-S模型的模糊系统的二次镇定.信息与控制. 2001, 30(4):310~312.
    [46]刘晓东,张庆灵,王岩.关于T-S模糊系统的稳定性.东北大学学报. 2002, 23(6):531~534.
    [47] Matia, F., Al-Hadithi, B., Jiménez. A generalization of stability criterion for Takagi-Sugeno continuous fuzzy model. Fuzzy Sets and Systems. 2002, 129(3):295-309.
    [48]刘华平,孙富春,何克忠等.模糊奇异摄动系统及其稳定性分析与综合.自动化学报. 2003, 29(4):494~500.
    [49]张友刚,刘志刚,肖建.基于LMI的仿射型模糊控制系统的稳定性研究.控制与决策. 2003, 18(6):690~693.
    [50]巩长忠.基于T-S模糊模型的控制方法及稳定性分析[博士学位论文].沈阳:东北大学. 2003.
    [51]王岩,张庆灵,孙增沂等.离散模糊系统分析与设计的模糊Lyapunov方法.自动化学报. 2004, 30(2):255~260.
    [52] Xiu, Z.H., Ren, G.. Stability analysis and systematic design of Takagi-Sugeno fuzzy control systems. Fuzzy Setsand Systems. 2005, 151(1):119-138.
    [53] Tanaka, K., Ikede, T., Wang, H.T. Fuzzy regulators and fuzzy observers: relaxed stability conditionsand LMI-based designs. IEEE Transactions on Fuzzy Systems. 1998, 6(2):250-265.
    [54] Liu, X.D., Zhang, Q.L. approaches to quadratic stability conditions and H∞control designs for T-S fuzzy systems. IEEE Transactions on Fuzzy Systems. 2003, 11(6):830-839.
    [55] Fang, C.H., Liu, Y.S., Kau, S.W. et al. A new LMI based approach to relaxed quadratic stabilization of T-S fuzzy control systems. IEEE Transactions on Fuzzy Systems. 2006, 14(3):386-397.
    [56]孙增圻.基于模糊状态模型的连续系统控制器涉及和稳定性分析.自动化学报. 1998 24(2):212~216.
    [57]肖晓明,蔡自兴.基于动态全局模型的模糊控制系统稳定性分析.中南工业大学学报. 2001 32(2):200~203.
    [58] Cao, S., Rees, N., Feng, G. Stability analysis of fuzzy control systems. IEEE Transactions on Fuzzy Systems, Man and Cybernetics. 1996, 26(1): 201-204.
    [59] Johansson, M., Rantzer, A., Arzen, K.E. Piecewise quadratic stability of fuzzy systems. IEEE Transactions on Fuzzy Systems. 1999, 7(6):713-722.
    [60] Feng, G., Chen, C.L., Sun, D. et al. H∞controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions and bilinear matrix inequalities. IEEE Transactions on Fuzzy Systems. 2005, 13(1):94-103.
    [61] Feng, G., Sun, D. Generalized H∞controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Trans. On Circuits and Systems I: Fundamental Theory and Applications. 2002, 49(12):1843-1850.
    [62] Feng, M., Harris, C.J. Piecewise Lyapunov stability conditions of fuzzy systems. IEEE Transactions on Fuzzy Systems, Man and Cybernetics, Part B-Cybernetics. 2001, 31(2):259-262.
    [63] Feng, G. Controller synthesis of fuzzy dynamic systems based on pieceswise Lyapunov functions. IEEE Transactions on Fuzzy Systems. 2003,11(5):605-612.
    [64] Zhang, H., Li, C.G., Liao, X.F. Stability analysis and H∞controller design of fuzzy large-scale systems based on piecewise Lyapunov functions. IEEE Transactions on Systems, Man and Cybernetics, Part B-Cybernetics. 2006, 36(3):685-698.
    [65] Hori, T., Tanaba, K., Wang, H. A piecewise Takagi-Sugeno fuzzy model construction and realization of stability conditions. International Proceedings of the 41st Decision and Control. 2002, 2(2):2149-2150.
    [66] Zhang, J.M., Li, R.H., Zhang, P.A. Stability analysis and systematic design of fuzzy control systems. Fuzzy Sets and Systems. 2001, 120(1):65-72.
    [67]张金明,李仁厚.模糊控制的系统化设计和稳定性分析.自动化学报. 1999 25(4):493~497.
    [68]修智宏,任光.T-S模糊控制系统的稳定性分析及系统化设计.自动化学报. 2004 30(5):731~741.
    [69] Cheng, C.M., Rees, N.W. Stability analysis of fuzzy multivariable systems: Vector Lyapunov function approach. IEEE Proceedings-Control Theory and Applications. 1997, 144(5):403-412.
    [70]孙衢,李人厚.基于向量Lyapunov函数方法的模糊控制系统稳定性分析和设计.控制理论与应用. 2001, 28(4):555~558.
    [71] Tanaka, K., Hori, T., Wang, H. A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Transactions on Fuzzy Systems. 2003, 11(4):582-589.
    [72] Castillo, O., Cazarez, N., Melin, P. Design of stable type-2 fuzzy logic controllers based on a fuzzy Lyapunov approach. Fuzzy Systems, 2006 IEEE International Conference on. 2006, 2331-2336.
    [73] Chen, C.W., Chiang, W.L., Tsai, C.H. et al. Fuzzy Lyapunov method for stability condidtions of nonlinear systems. International Journal on Articial Intelligence Tools. 2006, 15(2):163-171.
    [74] Liu, C.H., Hwang, J.D., Tsai, Z.R. et al. An LMI-based stable T-S fuzzy model with parametric uncertainties using multiple Lyapunov function approach. In Proc. Of IEEE Conf. on Cybernetics and Intelligent Systems. 2004, 1:514-519.
    [75] Margaliot, M., Langholz, G. Fuzzy Lyapunov-based approach to the design of fuzzy controllers. Fuzzy Sets And Systems. 1999, 106(1):49-59.
    [76] Rhee, B.J, Won, S. A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design. Fuzzy Sets And Systems. 2006, 157(9):1211-1228.
    [77] Tanaka, K., Hori, T., Wang, H. A fuzzy Lyapunov approach to fuzzy control system design. International Proceedings of American Control Conference. 2001, 6:4790-4795.
    [78] Tanaka, K., Hori, T., Wang, H. New parallel distributed compensation using time derivative of membership function: a fuzzy Lyapunov approach. International Proceedings of IEEE Conference on Decision and Control. 2001, 4:3942-3947.
    [79] Tanaka, K., Nebuya, T., Ohtake, H. et al. Fuzzy control system designs using redundancy of descriptor representation: a fuzzy Lyapunov function approach. International Proceedings of the 2005 American Control Conference. Portland, OR, USA. 2005:1096-1101.
    [80] Tanaka, K., Ohtake, H., Wang, H.O. A descriptor system approach to fuzzy control system designs using fuzzy Lyapunov function. International Proceedings of the 2006 American Control Conference. Minneapolis, Minnesota, USA. 2006, 4367-4372.
    [81] Zhou, C., Yang, Y. Design of fuzzy controller using fuzzy Lyapunov synthesis with constrained fuzzy arithmetic. Internationl Proceedings of IEEE Conference on Fuzzy Systems. 2001, 3:1471-1474.
    [82] Gahinet, P., Nemirovski, A., Lanb, A.J., Chilali, M. LMI Control Toolbox, for use with MATLAB. The Mathworks Inc, 1995.
    [83] Hale, J.K., Verduyn, L. Introduction to functional differential equations. Applied Mathematical Sciences. New York: Springer-Verlag. 1993,99.
    [84] Gu, K., Niculescu, S.I. Additional dynamics in transformed time delay systems. IEEE Transactions on Automatic Control. 2000, 45(3):572-575.
    [85] Gu, K., Niculescu, S.I. Further remarks on additional dynamics in various mode transformations of linear delay systems. IEEE Transactions on Automatic Control. 2001, 46(3):497-500.
    [86] Fridman, E. New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Systems & Control Letters. 2001, 43(4):309-319.
    [87] Fridman, E., Shaked, U., Anew, H. A filter design for linear time delay systems. IEEE Transactionsons on Signal Processing. 2001, 49(11):2839-2843.
    [88] Fridman, E., Shaked, U. New bounded real lemma representations for time-delay systems and their applications. IEEE Transactions on Automatic Control. 2001, 46(12):1973-1979.
    [89] Xie, L., Fridman, E., Shaked, U. Robust H∞control of distributed delay systems with application to combustion control. IEEE Transactions on Automatic Control. 2001, 46(12):1930-1935.
    [90] Fridman, E., Shaked, U. An improved stabilization method for linear time-delay systems. IEEE Transactions on Automatic Control. 2002, 47(11):1931-1937.
    [91] Gao, H., Wang, C. Comments and further results on“A descriptor system approach to H∞control of linear time-delay systems”. IEEE Transactions on Automatic Control. 2003, 48(3):520-525.
    [92] Park, P. A delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE Transactions on Automatic Control. 1999, 44(4):876-877.
    [93] Moon, Y.S., Park, P., Kwon, W.H. Delay-dependent robust stabilization of uncertain state-delayed systems. Int.J. Control. 2001, 74(14):1447-1455.
    [94] Wu, M., He,Y. et al. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica. 2004, 40(8):1435-1439.
    [95] He, Y., Wu, M. etal. Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic type uncertainties. IEEE Transactions on Automatic Control. 2004, 49(5):828-832.
    [96]何勇.基于自由权矩阵的时滞相关鲁棒稳定与镇定[博士学位论文].长沙:中南大学. 2004.
    [97]何勇.吴敏.多时变状态和控制时滞系统的绝对稳定性.控制理论与应用. 2004 21(4):595~598.
    [98]何勇.吴敏.多时变时滞系统的鲁棒稳定及有界实引理的时滞相关条件.控制理论与应用. 2004 2l(5):735~741.
    [99] He, Y., Wu, M. Delay-dependent robust stability for neutral systems with mixed discrete-and-neutral-delays. Journal of Control theory and applications 2004, 4:386-394.
    [100] He, Y., Wang, Q.G., Xie., L., Lin, C. Further improvement of free-weighting matrices techniquefor systems with time-varying delay. IEEE Transactions on Automatic Control. 2007, 52(2):293-299.
    [101] Sun, J. Ma, B.P., Zhu, X.M. Robust Control for Uncertain System with State and Input Delay. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics. Guangzhou, China. IEEE Press. 2005, 1202-1207.
    [102] Yue, D. Han, Q.L. Delayed Feedback Control of Uncertain Systems with Time Varying Input Delay. Automatica. 2005, 41(2):233-240.
    [103] Zhang, X.M., Wu, M., She, J.H., He, Y. Delay-dependent stabilization of linear systems with time-varying state and input delays. Automatica. 2005, 41(8)1405-412.
    [104] Cao, Y.Y., Frank, P.M. Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Transactions on Fuzzy Systems. 2000, 8(2):200-211.
    [105] Cao, Y.Y., Frank, P.M. Stability analysis and synthesis of nonlinear time-delay systems vialinear Takagi-Sugeno fuzzy models. Fuzzy Sets and Systems. 2001, 124(2):213-229.
    [106] Hu, S.S., Liu, Y. Robust H∞control of multiple time-delay uncertain nonlinear system using fuzzy model and adaptive neural network. Fuzzy Sets and Systems. 2004, 146(3):403-420.
    [107] Xu, S.Y., Lam, J. Robus H∞control for uncertain discrete-time-delay fuzzy systems via output feedback controllers. IEEE Transactions on Fuzzy Systems. 2005, 13(1):82-93.
    [108] Yoneyama, J. Design of H∞control for fuzzy time-delay systems. Fuzzy Setsand Systems. 2005, 151(1):167-190.
    [109] Shi, Z., Ma, G.F., Lin, Y.Q. Fuzzy guaranteed cost control for a class of time-delay systems with uncertain parameters. International Conference on Machine Learning and Cybernetics. 2003, 13(2):741-745.
    [110]陈彩莲,关新平等.不确定时滞系统的模糊保成本控制.控制与决策. 2002 17(2):178~182.
    [111] Chen, B., Liu, X.P. Fuzzy guaranteed cost control for nonlinear systems with time-varying delay. IEEE Transactions on Fuzzy Systems. 2005, 13(2):238-249.
    [112] Chiang, T.S., Chiu, C.S., Liu, P. Output regulation for discrete-time nonlinear time-varying delay systems: An LMI approach. IEEE International Conference on Fuzzy Systems. 2004, 3:1269-1273.
    [113]韩安太,王树青.基于LMI的一类非线性时滞关联大系统的分散模糊控制.控制与决策. 2004 19(14):416~419.
    [114] Guan, X.P., Chen, C.L. Delay-dependent guaranteed cost control for T-S fuzzy systems with time delays. IEEE Transactions on Fuzzy Systems. 2004, 12(2):236-249.
    [115] Li, C.Q., Wang, H.J., Liao, X.F. Delay-dependent robust stability of uncertain fuzzy systems with time-varying delays. IEE Proceedings: Control Theory and Applications. 2004, 151(4):417-421.
    [116] Jeung, E.T., Oh, D.C., Park, H.B. Delay-dependent control for time-delayed T-S fuzzy systems using descriptor representation. International Journal of Control. Automation and Systems. 2004, 2(2):182-188.
    [117] Chen, B., Liu, X.P. Delay-dependent robust H∞control for T-S fuzzy systems with time delay. IEEE Transactions on Fuzzy Systems. 2005, 13(4):544-556.
    [118] Chen, B., Liu, X., Tong, S.C. Delay-dependent stability analysis and control synthesis of fuzzy dynamic systems with time delay. Fuzzy Sets and Systems. 2006, 157:2224-2240.
    [119] Yoneyama, J. Generalized stability conditions for Takagi-Sugeno fuzzy time-delay systems. 2004 IEEE Conference on Cybernetics and Intelligent Systems. 2004, 1:491-496.
    [120] Yoneyama, J. New Generalized Stability Conditions for Takagi-Sugeno Fuzzy Time-Delay Systems. The 2005 IEEE International Conference on Fuzzy Systems. 2005:957-962.
    [121] Yoneyama, J. New delay-dependent approach to robust stability and stabilization for Takagi-Sugeno fuzzy time-delay systems. Fuzzy Sets and Systems. 2007, 158: 2225-2237.
    [122] Chen, B., Liu, X.P., Tong, S.C., Chong, L.N. Guaranteed cost control of T-S fuzzy systems with state and input delays. Fuzzy Sets and Systems. 2007, 158(20):2251-2267.
    [123] Chen, B., Liu, X.P., Tong, S.C. Guaranteed cost control of T-S fuzzy systems with input delay. International Journal of Robust and Nonlinear Control. 2008, 18(12):1230-1256.
    [124] Tian, E., Peng, C. Delay-dependent stability analysis and synthesis of uncertain T-S fuzzy systems with time-varying delay. Fuzzy Sets and Systems. 2006, 157(44):544-559.
    [125] Jiang, X., Han, Q.L. Delay-dependent H∞filter design for linear systems with interval time-varying delay. IET Control Theory Application. 2007, 1(4):1131-1140.
    [126] Lien, C.H., Yu, K.W., Chen, W.D., Wan, Z.L., Chung, Y.J. Stability criteria for uncertain Takagi-Sugeno fuzzy systems with interval time-varying delay. IET Control Theory Application. 2007, 1(3):764-769.
    [127] Lin, C., Wang, Q.G., Lee, T.H. Delay-dependent LMI conditions for stability and stabilization of T-S fuzzy systems with bounded time-delay. Fuzzy Sets and Systems. 2006, 157(99):1229-1247.
    [128] Jiang, X.F., Han, Q.L. Robust H∞Control for Uncertain Takagi-Sugeno Fuzzy Systems With Interval Time-Varying Delay. IEEE Transactions on Fuzzy Systems. 2007, 15(2):331-321.
    [129] Wu, H.N., Li, H.X. New Approach to Delay-Dependent Stability Analysis and Stabilization for Continuous-Time Fuzzy Systems With Time-Varying Delay. IEEE Transactions on Fuzzy Systems. 2007, 3(15):482-493.
    [130] Chen, B., Liu, X.P. Fuzzy Guaranteed Cost Control for Nonlinear Systems With Time-Varying Delay. IEEE Transactions on Fuzzy Systems. 2005, 2(13): 238-249
    [131] Chen,B., Liu, X.P., Tong, S.C. New delay-dependent stabilization conditions of T-S fuzzy systems with constant delay. Fuzzy Sets and Systems. 2007, 158(20):2209-2224.
    [132] Yoneyama, J. Robust stability and stabilization for uncertain Takagi-Sugeno fuzzy time-delay systems. Fuzzy Sets and Systems. 2007, 158(2):115-134.
    [133] Li, T., Guo, L., Lin, C. A new criterion of delay-dependent stability for uncertain time-delay systems. IET Control Theory Application. 2007, 1(3):611-616.
    [134] Zuo, Z., Wang, Y. Robust stability and stabilization for nonlinear uncertain time-delay systems via fuzzy control approach. IET Control Theory Application. 2007, 1(1):422-429.
    [135] Peng, C., Tian, Y.C., Tian, E. Improved delay-dependent robust stabilization conditions of uncertain T-S fuzzy systems with time-varying delay. Fuzzy Sets and Systems. 2008, 159(20):2713-2729.
    [136] Chang, S., Peng, T. Adaptive guaranteed cost control of systems with uncertain parameters. IEEE Transactions on Automatic Control 1972, 17(4):474-483.
    [137] Yu, L. An LMI approach to reliable guaranteed cost control of discrete-time systems with actuator failure. Applied Mathematics and computation. 2005, 162(3):1325-1331.
    [138]谢立.传感器失效下不确定离散时滞系统的静态输出反馈鲁棒可靠保成本控制.传感技术学报. 2005, 18(3):449~459.
    [139]张刚,王执铨,杨云林.线性不确定时滞系统的可靠保成本控制.控制工程. 2005, 12(4):361~364.
    [140] Gahinet, P., Apkarian, P. A linear matrix inequality aproach to H∞Control. International Journal of Robust & Nonlinear Control. 1994, 4(4): 421-428.
    [141]Yue D, Han QL, Peng C, State feedback controller design of networked control systems, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2004, 51(11):640-644.
    [142]陈学敏,张国山.具有输入与状态时滞的非线性系统的模糊保性能控制.辽宁工学院学报. 2006, 26(1): 34~39.
    [143] Zames G. Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverse. IEEE Transactions on Automatic Control, 1981, 26(2):301-320.
    [144]常晓恒,井元伟,高曦莹,刘晓平. T-S模糊系统H∞跟踪控制设计,控制与决策, 2008 23(3):329~332.
    [145]纪志成,朱芸,王艳.基于分段模糊Lyapunov法的T-S糊系统H∞控制,控制与决策. 2007 22(12):1357~1362.
    [146]陈志盛,孙克辉,张泰山,李勇刚.基于LMI的不确定离散模糊时滞系统鲁棒控制. 2006 21(3):352~360.
    [147]Zhou, S.S., Li, T. Robust stabilization for delayed discrete-time fuzzy systems via basis- dependent Lyapunov–Krasovskii function. Fuzzy Sets and Systems. 2005, 151: 139-153.
    [148] Cao, Y.Y., Frank, P.M. Robust H∞disturbance attenuation for a class of uncertain discrete-time fuzzy systems. IEEE Transations on Fuzzy Systems. 2000, 8: 406-415.
    [149] Choi, D.J., Park, P.G., H∞State-Feedback Controller Design for Discrete-Time Fuzzy Systems Using Fuzzy Weighting-Dependent Lyapunov Functions. IEEE Transations on Fuzzy Systems. 2003, 11(2): 271-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700