几类动力系统的稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,动力系统中不可避免地存在时间滞后现象。时滞是影响系统稳定的重要因素之一,甚至带来振荡、分叉以及混沌等动力学行为。此外,动力系统的稳定性容易受到不可避免的系统误差,外部扰动,系统参数振动,系统信息不全等诸多不确定性因素的影响。因此,研究时滞以及不确定性对动力系统稳定性的影响就显得非常重要。在很多实际的系统中,如在物理电路、生物系统、化学反应过程中,随机因素的干扰在动力系统中起着非常重要的作用。因此,动力系统稳定性还需考虑随机因素的影响。近年来,动力系统的稳定性研究吸引了大量的研究人员的浓厚兴趣,并取得了丰富的结果。
     本论文主要致力于几类动力系统的渐近稳定性和鲁棒稳定性的分析,获取了一些有意义的成果。其主要内容和创新之处可概述如下:
     ①具有两个累加时变时滞的不确定系统的鲁棒稳定性研究
     在诸如网络控制系统等实际系统中,信号从系统的一个结点向另一个结点的传输过程中,要经历网络的几个组成部分。由于网络传输条件的变化,可能产生几个连续的、具有不同属性的时滞。本节基于一个新的具有几个连续累加时滞的系统模型,研究了不确定时滞系统的稳定性。我们仔细考虑了系统状态向量带有两个累加时滞的情况,得到了带两个连续时滞的不确定系统稳定的一些新的充分条件。其思想可以很容易的推广到带多个连续时滞的线性系统中。
     ②时变时滞神经网络与时滞区间相关的稳定性分析
     对于许多具有实际意义的系统,时滞的下界并不一定为0,即时滞包含在一个有界的区间[τ,τ]内,其中τ> 0是区间的下界。由此,我们研究了一类时变时滞神经网络平衡点的时滞区间相关的稳定性。得到了几个与时滞区间相关和与时滞导数无关/相关的神经网络平衡点全局渐近稳定和鲁棒稳定的判定准则。
     ③基于时滞分段方法的静态递归神经网络的稳定性分析
     利用时滞分段方法,研究了一类静态递归神经网络的全局渐近稳定性问题。得到了几个与时滞相关的静态时滞递归神经网络渐近稳定性的充分条件,该条件与已有结论相比不仅形式简单,而且具有更少的保守性。实验结果也表明,时滞分段技术对扩大时滞的上界是有效的。
     ④基于LMI方法的带区间变时滞基因调控网络的稳定性分析
     研究了带区间变时滞的参数不确定基因调控网络的全局渐近稳定性和鲁棒稳定性问题。利用自由权值矩阵和LMI方法,首先得到了几个时滞区间相关和时滞导数相关/无关的时滞基因调控网络的全局渐近稳定判定条件。然后研究了基因调控网络的鲁棒稳定性问题。所得到稳定性条件克服了时变时滞导数必须小于1的限制,使得其适用范围更宽。由于采用了LMI方法,使得这些结果更易于验证。
     ⑤随机噪声对时滞基因调控网络的稳定性影响
     由于细胞中的分子事件受到热力学波动和噪声过程的支配,基因表达可视作一个随机过程。特别是在分子数目较少或反应速率较慢时,这种影响的作用将更加显著。因此,基因调控网络较精确的模型应该包括随机噪声。本节研究带随机噪声干扰和区间时滞的不确定基因调控网络的全局渐近稳定性和鲁棒稳定性。得到了几个判断基因调控网络在均方意义下渐近稳定和鲁棒稳定的充分条件,这些条件刻画了随机噪声和时滞对基因调控网络稳定性的影响。
It is well known that time delay is unavoidable in dynamical systems. Time delays may affect the stability of the system, even lead to instability, oscillation or chaos phenomena. Furthermore, in the applications and designs of networks, some unavoidable uncertainties which result from using an approximate system model for simplicity, external perturbations, parameter fluctuations, and data errors, etc, must be integrated into the system model. Such time delays, parametric uncertainties may significantly influence on the overall behavior of a dynamical system. Hence, it is significant and of prime importance to consider the effect of time delay and parametric uncertainties on the stability property of dynamical systems. In many practical systems, such as in the physical circuits, biological systems, chemical reaction process, stochastic disturbances in dynamical systems play a very important role. Therefore, the stability of dynamical system must take into account their effect. Recently, the stability analysis of dynamical systems has attracted a large number of researchers, and a series of significant results have been established.
     This dissertation focuses on the asymptotical and robust stability for several dynamical systems. The main contributions and originality contained in this dissertation are as follows:
     ①Robust stability analysis of uncertain systems with two additive time-varying delay components
     Sometimes in practical situations, for example, in networked control system, however, signals transmitted from one point to another may experience a few segments of networks, which can possibly induce successive delays with different properties due to the variable network transmission conditions. The problem of stability analysis for uncertain systems is concerned. The systems are based on a new time-delay model proposed recently, which contains multiple successive delay components in the state. We consider the case where only two successive delay components appear in the state. As a result, some less conservative stability criteria are established for systems with two successive delay components and parameter uncertainties. And the idea behind the proposed results can be easily extended to systems with multiple successive delay components.
     ②Delay-range dependent stability of uncertain neural networks with interval time-varying delays
     In practical engineering systems, time-varying delay is a time delay that varies in an intervalτ≤τ(t )≤τ, in which the lower boundτis not restricted to be 0. In this thesis, the stability analysis for neural networks with interval time-varying delays and parameter uncertainties is addressed and some delay-derivative-independent stability criteria are established in term of linear matrix inequality (LMI).
     ③Asymptotical stability analysis for static recurrent neural networks with time delay: delay fractioning approach
     The asymptotical stability analysis for static recurrent neural networks with time delay is studied by means of a delay fractioning approach. Some delay-dependent asymptotical stability criteria for static recurrent neural networks with time delay are established. The obtained criteria not only have the advantage of simple form but also are less conservative than some existing ones in the literature. Experimental results also show that the delay fractioning approach is effective to expand the upper bound of time delay.
     ④Stability analysis for genetic regulatory networks with interval time-varying delays: an LMI approach
     The asymptotical and robust stability of genetic regulatory networks with interval time-varying delays and parameter uncertainties is investigated. First, by employing some free-weighting matrices and linear matrix inequalities, new delay-range-dependent and delay-derivative-dependent/independent stability criteria are derived. Then, the robust stability of genetic regulatory networks with interval time-varying delays and parameter uncertainties is addressed. Furthermore, the rigorous requirement of other literatures that the time derivatives of time-varying delays must be smaller than one is abandoned in the proposed scheme. As a result, the new criteria have wider range of applications and are applicable to both fast and slow time-varying delays. Since the criteria are obtained by LMIs, the results are easily verified
     ⑤Stabilizing effects of stochastic noises in genetic regulatory networks with interval time-varying delays
     As molecular events in cells dominated by the thermal fluctuations and noise, gene expression can be regarded as a random process. Especially in low copy number of molecules, or a slower reaction rate, the role of this effect will be more prominent. Therefore, gene regulatory network should be described by more accurate models which include random noise. The stabilizing effects of stochastic noises in genetic regulatory networks with interval time-varying delays are concerned amd some new stability criteria are established to guarantee the delayed genetic regulatory networks to be robustly asymptotically stable in the mean square. The obtained criteria characterize the aggregated effects of the stochastic noises and time-varying delays on the stability of the considered genetic regulatory networks.
引文
[1] Y. Kuang. Delay differential equations with applications in population dynamics[M]. Academic Press, Boston, 1993.
    [2] N. MacDonald. Biological delay systems: linear stability theory[M]. Cambridge University Press, Cambridge, 1989.
    [3] S. I. Niculescu. Delay effects on stability: A robust control approach[M]. Springer, Berlin, 2001.
    [4]张冬梅,俞立.线性时滞系统稳定性分析综述[J].控制与决策, 2008,23(8):841-848.
    [5] S.S. Wang, B.S. Chen, T.P. Lin. Robust stability of uncertain time-delay systems[J]. International Journal of Control, 1987,46(3):963-976.
    [6] S.I. Niculescu, A.T. Neto, J.M. Dion, L .Dugard. Delay dependent stability of linear systems with delayed state: an LMI approach[J]. Proc. 34th IEEE Conf. Decision and Control, 1995:1495-1496.
    [7] X. Li , C. E. De Souza. Criteria for robust stability and stabilization of uncertain linear systems with state delay[J]. Automatica, 1997, 9(33)1657-1662.
    [8] J. Chen. On computing the maximal delay intervals for stability of linear delay systems[J]. IEEE Transactions on Automatic Control 1995, 6(40)1087-1093.
    [9] G.. Gu,E. B. Lee. Stability testing of time delay systems[J]. Automatica 1989, 5(35)777-780.
    [10] J. P. Richard. Time-delay systems: an overview of some recent advances and open problems[J]. Automatica ,2003,39(10):1667–1694.
    [11] C. Peng,Y. Tian. Delay-dependent robust stability criteria for uncertain systems with interval time-varying delay[J]. Journal of Computational and Applied Mathematics, 2008, 214(2):480-494.
    [12] C. Peng,Y. Tian. Networked H∞control of linear systems with state quantization[J]. Information Sciences, 2007,177(24):5763-5774.
    [13] E. Fridman, U. Shaked. An improved stabilization method for linear time-delay systems[J]. IEEE Transactions on Automatic Control, 2002,47(11):1931-1937.
    [14] E. Fridman, U. Shaked. Delay-dependent stability and H∞control: constant and time-varying delays[J]. International Journal of Control, 2003,76(1):48-60.
    [15] P. Gahinet,A. Nemirovskii,A. Laub,M. Chilali. LMI control Toolbox user’s guide[M]. The Math. Works Inc., Natick, MA, 1995.
    [16] H. Gao, T. Chen, J. Lam. A new delay system approach to network-based control[J].Automatica, 2008,44(1):39-52.
    [17] K. Gu, V. L. Kharitonov,J. Chen. Stability of time-delay systems[M]. Boston: Birkh?user 2003.
    [18] J. K. Hale, S. M. Verduyn Lunel. Introduction of functional differential equations[M]. New York: Springer 1993.
    [19] Y. He, Q.Wang, C. Lin, M. Wu. Delay-range-dependent stability for systems with time-varying delay[J]. Automatica, 2007,43(2):371-376.
    [20] Y. He, Q.Wang, L. Xie , C. Lin. Further improvement of free-weighting matrices technique for systems with time-varying delay[J]. IEEE Transactions on Automatic Control, 2007,52(2):293-299.
    [21] Y. He, M. Wu, J. She, G. Liu. Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties[J]. IEEE Transactions on Automatic Control, 2004, 49(5):828-832.
    [22] Y. He, G. Liu, D. Rees, M. Wu. Stability analysis for neural networks with time-varying interval delay[J]. IEEE Transactions on Neural Networks, 2007,18(6):1850-1854.
    [23] X. Jing, D. Tan,Y. Wang. An LMI approach to stability of systems with severe time-delay[J]. IEEE Transactions on Automatic Control, 2004,49(7):1192-1195.
    [24] J. Kim. Delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty[J]. IEEE Transactions on Automatic Control, 2001,46(5):789-792.
    [25] J. Lam, H. Gao,C Wang. Stability analysis for continuous systems with two additive time-varying delay components[J]. Systems Control Letters, 2007,56(1):16-24.
    [26] Y. Lee, Y. Moon,W. Kwon,K. Lee. Delay-dependent robust H∞control for uncertain systems with time-varying state-delay[J]. In Proceedings of the 40th conference on decision control, 2001,4:3208-3213.
    [27] C. Lin,Q. Wang,T. Lee. A less conservative robust stability test for linear uncertain time-delay systems[J]. IEEE Transactions on Automatic Control, 2006,51(1):87-91.
    [28] S. Xu,J. Lam. Improved delay-dependent stability criteria for time-delay systems[J]. IEEE Transactions on Automatic Control, 2005,50(3):384-387.
    [29] Y. Moon, P. Park,W. Kwon,Y. Lee. Delay-dependent robust stabilization of uncertain state-delayed systems[J]. International Journal of Control, 2001,74(14):1447-1455.
    [30] M. Wu,Y. He, J. She,G. Liu. Delay-dependent criteria for robust stability of time-varying delay systems[J]. Automatica, 2004,40(8):1435-1439.
    [31] H. Yan, X. Huang,H. Zhang ,M. Wang. Delay-dependent robust stability criteria of uncertain stochastic systems with time-varying delay[J]. Chaos, Solitons & Fractals,2009,40(4):1668-1679.
    [32] Z. Zhang, C. Li, X. Liao. Delay-dependent robust stability analysis for interval linear time-variant systems with delays and application to delayed neural networks[J]. Neurocomputing, 2007,70(16-18):2980-2995.
    [33] M. Corless. Guaranteed rates of exponential convergence for exponential convergence for uncertain system[J]. Journal of Optimization Theory and Applications, 1990,67(3):481-494.
    [34] H.R. Karimi. Robust dynamic parameter-dependent output feedback control of uncertain parameter-dependent state-delayed systems[J]. Nonlinear Dynamics and Systems Theory, 2006,6(2):143-158.
    [35] X. Lou, B.Cui. Robust stability for nonlinear uncertain neural networks with delay[J]. Nonlinear Dynamics and Systems Theory, 2007,7(4):369-378.
    [36] O.A. Ladyzhenskaya. Boundary value problems of mathematical physics[M]. Moscow: Nauka 1973. English transl. The boundary value problems of mathematical physics, New York: Springer 1985.
    [37] V. S. Borkar, K.Soumyanatha, An analog scheme for fixed point computation--Part I: theory[J]. IEEE Transactions on Circuits and Systems I, 1997,44:351-355.
    [38] L. O. Chua, L.Yang, Cellular neural networks: applications[J]. IEEE Transactions on Circuits and Systems, 1988,35:1273-1290.
    [39] A. Cichocki, R.Unbehauen. Neural networks for optimization and signal processing[M]. Wiley, Chichester, 1993.
    [40] A. N. Michel, D.Liu. Qualitative analysis and synthesis of recurrent neural networks[M]. Marcel Dekker, NewYork, 2002.
    [41] Y. H. Chen ,S. C. Fang, Neurocomputing with time delay analysis for solving convex quadratic programming problems[J]. IEEE Transactions on Neural Networks, 2000,11(1):230-239.
    [42] X. Liao, J. Yu. Qualitative analysis of bi-directional associative memory with time delay[J]. International Journal of Circuits Theory and Applications, 1998,26(4):219-229.
    [43] X. Liao, J. Yu. Robust stability of interval hopfield neural network with time delay[J]. IEEE Transactions on Neural Networks, 1998,9(5):1042-1045.
    [44] X.Liao, Kwok-wo Wong, Wu Zhongfu. Novel stability conditions for cellular neural networks with time delay[J]. International Journal of Bifurcation and Chaos, 2001,11(7):1853-1864.
    [45] X. Liao, K.W. Wong, Z. Wu, G. Chen. Novel robust stability criteria for interval delayed hopfield neural networks[J]. IEEE Transactions on Circuits and Systems I,2001,48(11):1355-1359.
    [46] X. Liao, Z. Wu, J. Yu. Stability analyses of cellular neural networks with continuous time delay[J]. Journal of Computational and Applied Mathematics, 2002,143(4):29-47.
    [47] X. Liao, J. Yu,G. Chen. Novel stability criteria for bi-directional associative memory neural networks with time delays[J]. International Journal of Circuits Theory and Applications, 2002,30(5):519-546.
    [48] X. Liao,G. Chen, E.N. Sanchez. Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach[J]. Neural Networks, 2002,15(2):855-866.
    [49] X. Liao,G. Chen, E. N. Sanchez. LMI-based approach for asymptotically stability analysis of delayed neural networks[J]. IEEE Transactions on Circuits and Systems I, 2002,49(7):1033-1039.
    [50] X. Liao, K.W. Wong, Z. Wu. Asymptotic stability criteria for a two-neuron network with different time delays[J]. IEEE Transactions on Neural Networks, 2003,14(1):222-227.
    [51] X. Liao, K.W. Wong. Global exponential stability of hybrid bidirectional associative memory neural networks with discrete delays[J]. Physical Review E, 2003,67,042901.
    [52] X. Liao, J. Wang, J. Cao. Global and robust stability of interval hopfield neural networks with time-varying delays[J]. International Journal of Neural Systems, 2003,13(3):171-182.
    [53] C. Li, X. Liao, R. Zhang. New algebraic conditions for global exponential stability of delayed recurrent neural networks[J]. Neurocomputing, 2005,64:319-333.
    [54] X. Liao, K.W. Wong, S. Yang. Convergence dynamics of hybrid bi-directional associtative memory neural networks with distributed delays[J]. Physics Letters A, 2003,316(12):55-64.
    [55] J. Cao, J. Wang, X. Liao. Novel stability criteria for delayed cellualr neural networks[J]. International Journal of Neural Systems, 2003, 13(5):367-375.
    [56] X. Liao, K.W. Wong. Robust stability of interval bi-directional associative memory neural networks with time delays[J]. IEEE Transactions on Systems, Man, and Cybernetics-B, 2004,34(2):1141-1154.
    [57] X. Liao, K.W. Wong. Global exponential stability for a class of retarded functional differential equations with applications in neural networks[J]. Journal of Mathematical Analysis and Applications, 2004,293(1):125-148.
    [58] X. Liao, K.W. Wong, C. Li. Global exponential stability for a class of generalized neural networks with distributed delays[J]. Nonlinear Analysis: Real World Applications, 2004,5(3):527-547.
    [59] X. Liao, K.W. Wong, C, Leunga, Z. Wu. Hopf bifurcation and chaos in a single delayed neuron equation with nonmonotonic activation function[J]. Chaos, Solitons & Fractals,
    [60] X. Liao, C. Li. Global attractivity of Cohen-Grossberg model with finite and infinite delays [J]. Journal of Mathematical Analysis and Applications, 2006, 315:244-262.
    [61] C. Li, X. Liao. Global robust stability criteria for interval delayed neural networks via an LMI approach[J]. IEEE Transactions on Circuits and Systems II, 2006,53(9):901-905
    [62] J. Cao, J. Wang . Global asymptotic stability of a general class of recurrent neural networks with time-varying delays[J]. IEEE Transactions on Circuits and Systems I, 2003,50(1):34-44.
    [63] T. Liao, F. Wang. Global stability condition for cellular neural networks with time delay[J]. IEE Electronics Letters ,1999,35(16):1347-1349.
    [64] T. Liao, F. Wang. Global stability for cellular neural networks with time delay[J]. IEEE Transactions on Neural Networks, 2000,11(6):1481-1484.
    [65] X. Liao, K.W. Wong, S. Yang. Stability analysis for delayed cellular neural networks based on linear matrix inequality approach[J]. International Journal of Bifurcation and Chaos, 2004,14(9):3377-3384.
    [66] J. Cao. Global stability conditions for delayed CNNs[J]. IEEE Transactions on Circuits and Systems I, 2001,48(11):1330-1333.
    [67] S.Arik,V. Tavsanoglu. On the global asymptotic stability of delayed cellular neural networks[J]. IEEE Transactions on Circuits and Systems I, 2000,47(4):571-574.
    [68] S.Arik. An analysis of global asymptotic stability of delayed cellular neural networks[J]. IEEE Transactions on Neural Networks, 2002,13(5):1239-1242.
    [69] F.Tu, X.. Liao. Harmless delays for global asymtotic stability of cohen-grossberg neural networks [J]. Choas, Solitions & Fractals, 2005, 26(3): 927-933.
    [70] J.K. Hale,S.M.V. Lunel. Introduction to the theory of functional differential Equations[J]. Applied mathematical sciences, Vol. 99, New York: Springer, 1999.
    [71] X. Liao, W. Mu,J. Yu.Stability analysis of bi-directional association memory with axonal signal transmission delay[J]. Proceedings of the third International Conference on Signal Processing, 1996,2:1457-1460.
    [72] C. Li, X. Liao. Global robust asymptotical stability of multi-delayed interval neural networks: An LMI Approach[J]. Physics Letters A, 2004,328(3):452-462.
    [73] A.N. Michel,J.A. Farrell, W. Porod. Qualitative analysis of neural networks[J]. IEEE Transactions on Circuits Systems I, 1989,36:229-243.
    [74] K. Gopalsamy,X. He. Delay-dependent stability in bi-directional associative memory networks[J]. IEEE transaction on Neural Networks, 1994,5:998-1002.
    [75] S. Arik .Stability analysis of delayed neural networks[J]. IEEE Transaction on Circuits and Systems, 2000,47(7):1089-1092.
    [76] J.Cao. Periodic oscillation and exponential stability of delayed CNN[J]. Physics Letters A 2000,270: 157-163.
    [77] K.Gopalsamy, X. Z. He. Stability in asymmetric Hopfield networks with transmission delays[J]. Physica D, 1994,76: 344-358.
    [78] C. Li, X. Liao, Y. Chen. On the robust stability of bidirectional associative memory neural networks with constant delays[J]. Lecture Notes in Computer Science, 2004,3173:102-107.
    [79] M.Joy. On the global convergence of a class of functional differential equations with application in neural network theory[J]. Journal of Mathematical Analysis and Applications, 1999,232: 61-81.
    [80] M.Joy. Results concerning the absolute stability of delayed neural networks[J]. Neural Networks, 2000,13:613-616.
    [81] Y. Zhang. Global exponential stability and periodic results of delay Hopfield neural networks[J]. International Journal of System Sciences, 1996,27:227-231.
    [82] E.N. Sanchez, J.P. Perez. Input-to-state stability analysis for dynamic NN[J]. IEEE Transactions on Circuits Systems, 1999,46:1395-1398.
    [83] Y. Nesterov, A. Nemirovsky. Interior point polynomial methods in convex Programming[J]. Studies in applied mathematics: Philadephia PA 1994.
    [84] C. Li, X. Liao, R. Zhang. Delay-dependent exponential stability Analysis of BAM NNs: an LMI approach[J]. Chaos, Solitons & Fractals, 2005,24(4):1119-1134.
    [85] X. Liao, J. Wang. Algebraic criteria for global exponential stability of cellular neural networks with multiple time delays[J]. IEEE Transactions on Circuits and Systems I, 2003,50(2):268-274.
    [86] S. Arik. Global robust stability of delayed neural networks[J]. IEEE Transactions on Circuits and Systems I, 2003,50(1):156-160.
    [87] H. Ye, N. Micheal, K. Wang. Robust stability of nonlinear time-delay systems with applications to neural networks[J]. IEEE Transactions on Circuits and Systems I, 1996,43(7): 532-543.
    [88] J. Suykens, B.D. Moor, J. Vandewalle. Robust local stability of multilayer recurrent neural networks[J]. IEEE Transactions on Neural networks, 2000,11(1):222-229.
    [89] T. Chen, L. Rong. Robust global exponential stability of Cohen-Grossberg neural networks with time delays[J]. IEEE Transactions on Neural networks, 2004,15(1):203-206.
    [90] S. I. Niculescu. Delay effects on stability: A robust Control approach[M]. Springer, Berlin,2001.
    [91] J.Cao,K. Yuan,H. Li. Global asymptotical stability of recurrent neural networks with multiple discrete delays and distributed delays[J]. IEEE Transactions on Neural Networks, 2006,17(6): 1646-1651.
    [92] J.Cao,J. Wang. Global exponential stability and periodicity of recurrent neural networks with time delays[J]. IEEE Transactions on Circuits Systems I, 2005,52(5):920-931.
    [93] C. Li, J.Chen,T. Huang. A new criterion for global robust stability of interval neural networks with discrete time delays[J]. Chaos, Solitons and Fractals, 2007,31(3):561-570.
    [94] C. Li, X. Liao, K.W. Wong. Delay-dependent and delay-independent stability criteria for cellular neural networks with delays[J].International Journal of Bifurcation and Chaos, 2006,16(11):3323-3340.
    [95] Z. Wang, H. Shu, J. Fang, X. Liu. Robust stability for stochastic Hopfield neural networks with time delays[J]. Nonlinear Analysis: Real World Applications, 2006,7(5):1119-1128.
    [96] Z. Wang, Y. Liu, K. Fraser, X. Liu. Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays[J]. Physics Letters A, 2006,354,(4):288-297.
    [97] T.Liao ,J. Yan,C. Cheng ,C. Hwang. Global exponential stability condition of a class of neural networks with time-varying delays[J]. Physics Letters A, 2005,339(3-5):333-342.
    [98] S. Xu, J. Lam. A new approach to exponential stability analysis of neural networks with time-varying delays[J]. Neural Networks, 2006,19(1):76-83.
    [99] J. Peng, H. Qiao,Z. Xu. A new approach to stability of neural networks with time-varying delays[J]. Neural Networks, 2002,15(1):95-103.
    [100] Q. Song. Exponential stability of recurrent neural networks with both time-varying delays and general activation functions via LMI approach[J]. Neurocomputing, 2008,71(13-15):2823-2830.
    [101] H. Huang, G. Feng. Delay-dependent stability for uncertain stochastic neural networks with time-varying delay[J]. Physica A: Statistical Mechanics and its Applications, 2007,381(15):93-103.
    [102] F. Ren, J. Cao. LMI-based criteria for stability of high-order neural networks with time-varying delay[J]. Nonlinear Analysis:Real World Applications, 2006,7(5):967-979.
    [103] X. Zhu, Y. Wang, G. Yang. New delay-dependent stability results for discrete-time recurrent neural networks with time-varying delay[J]. Neurocomputing, 2009,72(13-15):3376-3383.
    [104] J. Zhang, P. Shi, J. Qiu. Novel robust stability criteria for uncertain stochastic Hopfield neural networks with time-varying delays[J]. Nonlinear Analysis: Real World Applications, 2007,8(4):1349-1357.
    [105] T. Li, L. Guo, C. Sun. Robust stability for neural networks with time-varying delays and linear fractional uncertainties[J]. Neurocomputing, 2007,71(1-3):421-427.
    [106] J. Qiu, J. Zhang, J. Wang, Y. Xia, P. Shi. A new global robust stability criteria for uncertain neural networks with fast time-varying delays[J]. Chaos, Solitons & Fractals, 2008,37(2):360-368.
    [107] H. Yang ,T. Chu, C.Zhang. Exponential stability of neural networks with variable delays via LMI approach[J]. Chaos, Solitons and Fractals, 2006,30(1):133-139.
    [108] C. Peng, Y. Tian. Delay-dependent robust stability criteria for uncertain systems with interval time-varying delay[J]. Journal of Computational and Applied Mathematics, 2008,214(2):480-494.
    [109] L. Hu, H. Gao, W.Zheng. Novel stability of cellular neural networks with interval time-varying delay[J]. Neural Networks, 2008,21(10):1458-1463.
    [110] X. Jiang, Q. Han. Delay-dependent robust stability for uncertain linear systems with interval time-varying delay[J]. Automatica, 2006,42(6):1059-1065.
    [111] X. Jiang, Q. Han. New stability criteria for linear systems with interval time-varying delay[J]. Automatica, 2008,44(10):2680-2685.
    [112] O.M. Kwon, J. H. Park. Exponential stability analysis for uncertain neural networks with interval time-varying delays[J]. Applied Mathematics and Computation, 2009,212(2):530-541.
    [113] J. Qiu, H. Yang, J.Zhang., Z. Gao. New robust stability criteria for uncertain neural networks with interval time-varying delays[J]. Chaos, Solitons & Fractals, 2009,39(2):579-585.
    [114] W. Feng, S. X. Yang, W. Fu, H. Wu.Robust stability analysis of uncertain stochastic neural networks with interval time-varying delay[J].Chaos, Solitons & Fractals, 2009,41(1):414-424.
    [115] W.Feng, S. X. Yang, H. Wu. On robust stability of uncertain stochastic neural networks with distributed and interval time-varying delays[J]. Chaos, Solitons & Fractals, 2009,42(4)2095-2104.
    [116] J.Park. An analysis of global robust stability of uncertain cellular neural networks with discrete and distributed delays[J]. Chaos, Solitons and Fractals, 2007,32(2):800-807.
    [117] V. Singh. Robust stability of cellular neural networks with delay: linear matrix inequality approach[J]. IEE Proceedings Control Theory and Applications, 2004,151(1):125-129.
    [118] H. Zhang ,C. Li ,X. Liao. A note on the robust stability of neural networks with time delay[J]. Chaos, Solitons and Fractals, 2005,25(2):357-360.
    [119] S. Boyd, L. Ghaoui, E. EI Feron, V. Balakrishnan. Linear matrix inequalities in system and control theory[M]. Philadephia: SIAM, 1994.
    [120] S. Haykin. NeuralNetwork s: AComprehensive Foundation[M]. New York:Macmillan, 1994.
    [121] J. A. Hertz, A. Krogh, R. G. Palmer. Introduction to Theory of Neural Computation[M]. Reading,MA:Addison2W esley, 1994.
    [122] Z. Xu, H. Qiao, J. Peng, B. Zhang. A comparative study on two modeling approaches in neural networks[J]. Neural Netwo rks, 2004,17(1):73-85.
    [123] S. Hu, J. Wang. Global stability of a class of continuous-time recurrent neural networks[J]. IEEE Transactions on Circuits and Systems I, 2002,49(9):1334-1347.
    [124] S. Xu, J. Lam, D. W. C. Ho, Y. Zou.Global robust exponential stability analysis for interval recurrent neural networks[J]. Physics Letters A, 2004,325:124-133.
    [125] J. Liang, J. Cao. A based-on LMI stability criterion for delayed recurrent neural networks[J]. Chaos Solitons Fractals, 2006,28:154-160.
    [126] H. Shao. Delay-Dependent Stability For Recurrent Neural Networks With Time-Varying Delays[J]. IEEE Transactions on Neural Networks, 2008,19(9):1647-1651.
    [127] C. Zheng, H. Zhang, Z. Wang. Delay-Dependent Globally Exponential Stability Criteria for Static Neural Networks: An LMI Approach[J]. IEEE Transactions On Circuits and Systems II, 2009,56(7):605-609.
    [128] H. Shao. Delay-dependent approaches to globally exponential stability for recurrent neural networks[J]. IEEE Transactions on Circuits and Systems II, 2008,55(6):591-595.
    [129] S. Mou, H. Gao, J. Lam, W. Qiang. A new criterion of delay-dependent asymptotic stability for hopfield neural networks with time delay[J]. IEEE Transactions on Neural Networks, 2008,19(3):532-535.
    [130] J. M. Bower, H. Bolouri. Computational modelling of geneticand biochemical networks[M]. MITPress, Cambridge, MA, 2001.
    [131] E. Davidson. Genomic regulatory systems[M]. Academic Press, San Diego, CA, 2001.
    [132] H. Kitano. Foundations of systems biology[M]. MITPress, Cambridge, MA, 2001.
    [133] L. Hood, D. Galas. The digital code of DNA[J]. Nature, 2003,421(6921):444–448.
    [134] N. Friedman, M. Linial, I. Nachman, D. Pe’er. Using Bayesian networks to analyze expression data[J]. Journal of Computational Biology, 2000,7(3-4):601-620.
    [135] A.J. Hartemink, D.K. Gifford, T.S. Jaakkola, R.A. Young. Bayesian methods for elucidating genetic regulatory networks[J]. IEEE Intelligent Systems, 2002,17(2):37-43.
    [136] C. Chaouiya, E. Remy, P. Ruet, D. Thieffry. Petri net modelling of biological regulatorynetworks[J]. Journal of Discrete Algorithms, 2008,6(2):165-177.
    [137] S. Hardy, P.N. Robillard. Modelling and simulation of molecular biology systems using Petri nets: modelling goals of various approaches[J]. Journal of Bioinformatics and Computational Biology, 2004,2(4):595-613.
    [138] R. Somogyi, C. Sniegoski. Modeling the complexity of genetic networks: understanding multigenic and pleiotropic regulation[J]. Complexity, 1996,1(6):45-63.
    [139] D.C Weaver, C.T. Workman, G.D. Storm. Modeling regulatory networks with weight matrices[J]. Proceedings of the Pacific Symposium on Biocomputing, 1999,4:113-123.
    [140] H. Bolouri, E.H. Davidson. Modelling transcriptional regulatory networks[J]. BioEssays, 2002,24(12):1118-1129.
    [141] L. Chen, K. Aihara. Stability of genetic regulatory networks with time delay[J]. IEEE Transactions on Circuits and Systems I, 2002,49(5):602-608.
    [142] H.D. Jong. Modelling and simulation of genetic regulatory systems: a literature review[J]. Journal of Computational Biology, 2002,9(1):67-103.
    [143] LFA Wessels, EP Van Someren. MJT Reinders. A comparison of genetic network models[J]. In Pacific Symposium on Biocomputing, 2001,6:508-519.
    [144] P. Smolen, D.A. Baxter, J.H. Byrne. Mathematical modeling of gene networks review[J]. Neuron, 2000,26(3):567-580.
    [145] A. Becskei, L. Serrano. Engineering stability in gene networks by autoregulation[J]. Nature, 2000,405:590-593.
    [146] M.B. Elowitz, S. Leibler. A synthetic oscillatory network of transcriptional regulators[J]. Nature, 2000,403(20):335-338.
    [147] T. Gardner, C.R. Cantor, J.J. Collins. Construction of a genetic toggle switch in Escherichia Coli[J]. Nature, 2000,403(20):339-342.
    [148] F.J. Isaacs, J. Hasty, C.R. Cantor, J.J. Collins. Prediction and measurement of an autoregulatory genetic module[J]. Proceedings of the National Academy of Sciences, 2003,100(13):7714-7719.
    [149] J. Cao, F. Ren. Exponential stability of discrete-time genetic regulatory networks with delays[J]. IEEE Transactions on Neural Networks, 2008,19(3):520-523.
    [150] G. Chesi, Y.S. Hung. Stability analysis of uncertain genetic SUM regulatory networks[J]. Automatica, 2008,44:2298-2305.
    [151] W. He, J. Cao. Robust stability of genetic regulatory networks with distributed delay[J]. Cognitive Neurodynamics, 2008,2(4):355-361.
    [152] C. Li, L. Chen, K. Aihara. Stability of genetic networks with SUM regulatory logic: Lur’esystem and LMI approach[J]. IEEE Transactions on Circuits Systems I, 2006,53(11):2451-2458.
    [153] C. Li, L. Chen, K. Aihara. Stochastic stability of genetic networks with disturbance attenuation[J]. IEEE Transactions on Circuits Systems II, 2007,54(10):892-896.
    [154] C. Li, L. Chen, K. Aihara. Synchronization of coupled nonidentical genetic oscillators[J]. Physical Biology, 2006,3(1):37-44.
    [155] F. Ren, J. Cao. Asymptotic and robust stability of genetic regulatory networks with time-varying delays[J]. Neurocomputing, 2008,71(4-6):834-842.
    [156] Z. Wang, H. Gao, J. Cao, X. Liu. On delayed genetic regulatory networks with polytopic uncertainties: robust stability analysis[J]. IEEE Transactions on NanoBioscience, 2008,7(2):154-163.
    [157] T. Tian, K. Burragea, P.M. Burragea, M. Carlettib. Stochastic delay differential equations for genetic regulatory networks[J]. Journal of Computational and Applied Mathematics, 2007,205(2):696-707.
    [158] T. Chen, H. He, G Church. Modeling gene expression with differential equations. In Pacific Symposium on Biocomputing, 1999,4:29-40.
    [159] M. Zou, SD. Conzen. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course micro array data[J]. Bioinformatics, 2005,21(1):71-79.
    [160] P. Smolen, D.A. Baxter, J.H. Byrne. Modeling circadian oscillations with interlocking positive and negative feedback loops[J]. Journal of Neurosci, 2001,21:6644-6656.
    [161] H. Hirata, S. Yoshiura, T. Ohtsuka, Y. Bessho, T. Harada, K. Yoshikawa, R. Kageyama. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop[J]. Science, 2002,298:840-843.
    [162] J. Lewis, Autoinhibition with transcriptional delay: a simple mechanism for the zebra fish somitogenesis oscillator[J]. Current Biology, 2003,13(16):1398-1408.
    [163] S. Kalir, S. Mangan, U. Alon, A coherent feed-forward loop with a SUM input function prolongs flagella expression in Escherichia coli, Molecular Systems Biology 2005,doi:10.1038/msb4100010.
    [164] C.H. Yuh, H. Bolouri, E.H. Davidson, Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene[J]. Science, 1998,279:1896-1902.
    [165] K. Struhl. Fundamentally Different logic of gene regulation in eukaryotes and prokaryotes[J]. Cell, 1999,98(1):1-4.
    [166] Y. Shen, LMI-based stability criteria with auxiliary matrices for delayed recurrent neuralnetworks[J]. IEEE Transactions on Circuits and Systems II, 2008,55(8):811-815.
    [167] Kaern M, Elston T, Blake W J , Collins J J .Stochasticity in gene expression : from theories to Phenotypes[J]. Nature Reviews Genetics, 2005,6(6):451-464.
    [168] Rro C V , Wolf D M, Arkin A P. Control , exploitation and tolerance of intracellular noise [J]. Nature, 2002,420(6612) :231-237.
    [169] J. Paulsson. Summing up the noise in gene networks [J]. Nature, 2004,427(6973) :415-418.
    [170] W. Chen, X. Lu. Mean square exponential stability of uncertain stochastic delayed neural networks[J]. Physics Letters A, 2008,372(7):1061-1069.
    [171] C. Li, X.F. Liao. Robust stability and robust periodicity of delayed recurrent neural networks with noise disturbance[J]. IEEE Transactions on Circuits and Systems I, 2006,53(10):2265-2273.
    [172] L. Arnold. Stochastic differential equations:theory and applications[M], U.K. Wiley, London,1974.
    [173]李涤非.噪声对基因调控网络motif信号处理的影响研究[C].电子科技大学硕士论文, 2008.
    [174]虞慧婷,吴骋,柳伟伟,付旭平,贺佳.基因调控网络模型构建方法[J].第二军医大学学报, 2006,27(7):737-740.
    [175]刘化锋,王文燕.基因转录调控网络模型[J].山东大学学报(理学版), 2006,41(6):103-108.
    [176]王志伟,侯中怀,辛厚文.合成基因网络中的内信号随机共振[J].中国科学, B辑化学, 2005,35(3):189-193.
    [177] K. Murphy, S. Mian. Modelling Gene expression data using dynamic bayesian networks[R]. Technical Report, University of California, Berkeley, 1999.
    [178] J. Hasty, J. Pradines, M. Dolnik, J.J. Collins. Noise-based switches and amplifiers for geneexpression[J]. Proceedings of the National Academy of Sciences, 2000,97:2075-2080.
    [179] D.T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions [J]. Journal of Computational Physics, 1976,22:403-434.
    [180] N.G. Van Kampen. Stochastic processes in physics and chemistry. North-Holland[M]. Amsterdam,1981.
    [181] W. Chen, Z.Guan, X. Lu. Delay-dependent exponential stability of uncertain stochastic systems with multiple delays: an LMI approach[J]. Systems & Control Letters, 2005,54:547-555.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700