智能超声扫查与细胞学筛查
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产科超声检查和妇科细胞学检查是妇产科常用的检查技术。其中,产前超声诊断的关键任务是获取感兴趣解剖结构的标准切面图像和进行相应的生物学测量,然而,这两个任务的完成质量依赖于超声医师的技巧和经验;宫颈细胞学筛查需细胞学技师使用显微镜从整张涂片中人工搜寻异常细胞,计算机辅助细胞检测系统(CCT)则能自动挑选出异常细胞,然而,目前的CCT尚未在临床上广泛使用。
     为降低产前超声诊断结果的用户依赖性,本论文提出“智能超声扫查”理念,旨在基于图像分析方法实现早孕囊标准切面(SPGS)定位及生物学测量的自动化;为推进CCT的临床应用,本论文提出对手工液基细胞学(MLBC)制片结合苏木素-伊红(H&E)染色的涂片进行“智能细胞学筛查”,旨在表明该系统的筛查性能与针对自动液基细胞学制片(ALBC)结合专用染色的CCT具有可比性。
     本论文设计的智能超声扫查算法框架分三步:首先,按由粗到精的检测策略,用两个级连AdaBoost分类器从超声序列图像中快速准确地定位出候选孕囊;然后利用序列图像中解剖结构之间的相对位置关系,排除假阳性检测结果,并选出SPGS;最后,提出一种数据库引导的多尺度标准割算法,用于获取孕囊的初始轮廓,并基于此,使用改进的蛇模型修正孕囊轮廓,进而得到测量结果。上述算法测试于来自31位孕妇的31段超声视频,结果显示,系统和超声医师在SPGS选择、长径测量、前后径测量等三个方面的差异分别为:7.5%±5.0%、5.5%±5.2%、6.5%±4.6%。进一步的验证表明,智能超声扫查的精度在医生间的差异范围内。因此,本论文认为,对二维超声影像中的早孕囊进行智能扫查,是一项可行的、可重复的和可靠的方法。此外,本论文提出的智能超声扫查算法框架经扩展后,有望应用到其他胎儿解剖结构的扫查任务中。
     本论文对智能细胞学筛查系统的研究工作主要集中在自动细胞分割和分类两个方面。在分割方面:1)提出结合A*通道与混合多类分割的方法,能准确分割H&E染色图像中的细胞质;2)提出适用于异常细胞核分割的局部自适应图割算法;3)联合两种基于凹点对的分离算法有效分离粘连细胞核。在分类方面:1)设计了一个基于监督学习的宫颈细胞分类框架;2)新加入的粗糙度索引和局部二值模式(LBP)均值等特征能有效排除杂质和正常细胞;3)采用特征预处理技术提高分类器识别异常细胞的敏感性;4)利用细胞核面积上下文信息和近似的细胞质特征提高识别正常细胞的特异性。细胞病理学家使用智能细胞学筛查系统对43张涂片(21例异常,22例正常)做初筛,取得88.1%的敏感性和100%的特异性。初学者使用智能细胞学筛查系统做复筛,能找出8.3%的疑似异常涂片,这其中有25%为假阴性。参考商业CCT的性能可知,智能细胞学筛查系统具有高敏感性和高特异性,这说明对H&E染色的MLBC涂片进行智能筛查是可行的,此结论有望使CCT获得更广泛的应用。
Obstetrics ultrasound examination and gynecology cytology examination are common used examination techniques in obstetrics and gynecology. Among them, the key task of prenatal ultrasound diagnosis is to obtain the image of standard plane of interested anatomies and to perform biometric measurements. However, the accom-plishments of these tasks mainly depend on the experiences and skils of the radiolo-gist. The standard for screening cervical cytology is for a cytoscreener to manually search across an entire smear for abnormal cells using a conventional microscope. The computer-assisted cytological test (CCT) can automatically select abnormal cells, which allows targeted reading by cytoscreeners. However, the CCT has not been used widly in clinic at present.
     To reduce the user dependency of prenatal ultrasound diagnosis results, we pro-pose an idea of Intelligent Ultrasound Scanning (IUS), which aims at automatically locating of the standard plane of early gestational sac (SPGS) and performing bio-metric measurements based on image analysis methods. To promote the clinical ap-plication of CCT, we propose to perform Intelligent Cytology Screening (ICS) on hematoxylin and eosin (H&E) stained manual liquid-based cytology (MLBC) slides. The aim is to verify the performance of ICS system is comparable to that of CCT with proprietary stained automated LBC (ALBC) slides.
     The proposed intelligent ultrasound scanning (IUS) algorithm framework con-sists of three steps. First, the GS is efficiently and precisely located in each ultrasound frame by exploiting a coarse-to-fine detection scheme based on the training of two cascade AdaBoost classifiers. Next, the SPGS are automatically selected by eliminat-ing false positives. This is accomplished using local context information based on the relative position of anatomies in the image sequence. Finally, a database-guided mul-tiscale normalized cuts algorithm is proposed to generate the initial contour of the GS, based on which the GS is automatically segmented for measurement by a modified snake model. This system was validated on31ultrasound videos involving31preg- nant volunteers. The differences between system performance and radiologist perfor-mance with respect to SPGS selection and length and depth (diameter) measurements are7.5%±5.0%,5.5%±5.2%and6.5%±4.6%, respectively. Additional validations prove that the IUS precision is in the range of inter-observer variability. We conclude that IUS of the GS from2D real-time ultrasound is a practical, reproducible and relia-ble approach. In addition, after some extension, the proposed IUS algorithm frame-work has the potential to be applied to the scanning task of other fetal anatomies.
     Our research on ICS sytem mainly focuses on the automatic cell segmentation and classification. Cell segmentation:1) the proposed method combining the A*channel and the hybrid multi-way cuts can accurately segment the cytoplasm on H&E staining images;2) the proposed Local Adaptive Graph Cuts algorithm can improve the segmentation precision of cell nuclei, especially abnormal cell nuclei; and3) the combination of two concave-based splitting algorithms can effectively split overlap-ping cell nuclei. Cell classification:1) we design a supervised learning-based cyto-logical classification framework;2) the newly incorporated features including rough-ness indexes and local binary pattern (LBP) means can effectively eliminate artifacts and normal cells;3) the sensitivity of classifiers to discriminating abnormal cells is increased by using feature preprocessing technique; and4) the specificity of normal cell recognition is improved by incorporating cell nuclei area context information and by using approximate cytoplasm features to exclude difficult negatives. Cyto-pathologists can get a sensitivity of88.1%and a specificity of100%when using the ICS system for prescreening on43smears (21abnormal and22normal). Moreover, for rescreening, beginner can find out8.3%suspected abnormal smears from those diagnosed as normal by cytopathologists, of which there is25%false negative rate. Clinical trials show that both the sensitivity and the specificity of the ICS system are satisfyingly high, thus proving the feasibility of the ICS for MLBC with H&E stain-ing. Therefore, the current research may lead to wider application of the CCT tech-nique.
引文
[1]丰有吉,沈铿.妇产科学.北京:人民卫生出版社,2012.
    [2]D. K. Edmonds. Dewhurst's Textbook of Obstetrics & Gynaecology. Massachusetts: Blackwell,2007.
    [3]郎景和.中国妇产科学的现状和发展.国际妇产科学杂志,2008,35(1):3-5.
    [4]中华人民共和国卫生部. 中国出生缺陷防治报告(2012)http://www.moh.gov.cn/publicfiles/business/htmlfiles/mohfybjysqwss/s7901/201209/5584 O.htm.2012.
    [5]J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers and D. M. Parkin. Estimates of worldwide burden of cancer in 2008:GLOBOCAN 2008. International Journal of Cancer, 2010,127(12):2893-2917.
    [6]I. Kok. Vaccination and screening for the prevention of cervical cancer:Health effects and cost-effectiveness [PhD dissertation]. Netherlands. Erasmus MC:University Medical Center Rotterdam.2011.
    [7]郭万学.超声医学.北京:人民军医出版社,2011.
    [8]李胜利.中国超声产前诊断的现状与发展展望.中国医疗器械信息,2007,13(3):1-4.
    [9]H. M. Shingleton, R. L. Patrick, W. W. Johnston and R. A. Smith. The current status of the papanicolaou smear. CA-A Cancer Journal for Clinicians,1995,45(5):305-320.
    [10]S. L. Bridal, J. M. Correas, A. Saied, and P. Laugier. Milestones on the road to higher res-olution, quantitative, and functional ultrasonic imaging. Proceedings of the IEEE,2003, 91(10):1543-1561.
    [11]P. Naucler, W. Ryd, S. Tornberg, A. Strand, G. Wadell, K. Elfgren, T. Radberg, B. Strander, B. Johansson, O. Forslund, B. G. Hansson, E. Rylander, and J. Dillner. Human papilloma-virus and papanicolaou tests to screen for cervical cancer. The New England Journal of Medicine,2007,357(16):1589-1597.
    [12]S. T. Elliott. Volume ultrasound:the next big thing? British Journal of Radiology,2008, 81(961):8-9.
    [13]马博文.液基薄层细胞制片技术与宫颈细胞学诊断.诊断病理学杂志,2006,13(1):1-7.
    [14]杨斌.宫颈细胞学之国内外现状与几点意见.中国妇产科临床杂志,2008,9(2):84-86.
    [15]M. E. Sherman, A. T. Lorincz, D. R. Scott, D. R. Scott, S. Wacholder, P. E. Castle, A. G. Glass, I. Mielzynska-Lohnas, B. B. Rush, M. Schiffman. Baseline cytology, human papil-lomavirus testing, and risk for cervical neoplasia:a 10-year cohort analysis. Journal of the National Cancer Institute,2003,95(1):46-52.
    [16]D. Saslow, D. Solomon, H. W. Lawson, M. Killackey, S. L. Kulasingam, J. Cain, F. A. R. Garcia, A. T. Moriarty, A. G. Waxman, D. C. Wilbur, N. Wentzensen, L. S. Downs, M. Spitzer, A. B. Moscicki, E. L. Franco, M. H. Stoler, M. Schiffman, P. E. Castle, E. R. My-ers, and the ACS-ASCCP-ASCP Cervical Cancer Guideline Committee. American cancer society, American society for colposcopy and cervical pathology, and American society for clinical pathology screening guidelines for the prevention and early detection of cer-vical cancer. CA-A Cancer Journal for Clinicians,2012,62(3):147-172.
    [17]郎景和.子宫颈上皮内瘤变的诊断与治疗.中华妇产科杂志,2001,36(5):261-263.
    [18]M. L. Giger, H. P. Chan, and J. Boone. Anniversary paper:History and status of CAD and quantitative image analysis:The role of Medical Physics and AAPM. Medical Physics, 2008,35(12):5799-5820.
    [19]B. van Ginneken, C. M. Schaefer-Prokop, and M. Prokop. Computer-aided diagnosis:how to move from the laboratory to the clinic. Radiology,2011,261 (3):719-732.
    [20]P. Sajda. Machine learning for detection and diagnosis of disease. Annual Review of Bio-medical Engineering,2006,8:537-565.
    [21]G Danuser. Computer vision in cell biology. Cell,2011,147(5):973-978.
    [22]D. Comaniciu. Robust ultrasound image analysis using learning, in IEEE International Symposium on Biomedical Imaging,2010,280-280.
    [23]B. Rahmatullah, A. Papageorghiou, and J. A. Noble. Automated selection of standardized planes from ultrasound volume. Machine Learning in Medical Imaging Series, Lecture Notes in Computer Science,2011,7009:35-42.
    [24]唐盛.超声子宫图像全自动识别研究[博士论文].中国.浙江大学.2008.
    [25]余锦华.超声图像处理新方法及其在产前诊断中的应用[博士论文].中国.复旦大学.2008.
    [26]邓寅晖.妇产科早期诊断中超声图像的分析与处理研究[博士论文].中国.复旦大学.2011.
    [27]丁海艳,孙允高,叶大田.计算机自动识别宫颈细胞涂片技术.国外生物医学工程分册,2000,23(2):85-90.
    [28]H. C. Kitchener, R. Blanks, G. Dunn, L. Gunn, M. Desai, R. Albrow, J. Mather, D. N. Rana, H. Cubie, C. Moore, R. Legood, A. Gray, and S. Moss. Automation-assisted versus manu-al reading of cervical cytology (MAVARIC):a randomised controlled trial. The Lancet Oncology,2011,12(1):56-64.
    [29]J. Jantzen, J. Norup, G. Dounias, and B. Bjerregaard. Pap-smear benchmark data for pat-tem classification, in Proceeding of Nature inspired Smart Information Systems 1 st An-nual Symposium, NISIS,2005,261(3):1-9.
    [30]曾立波,雷峻峰,高细见,刘均堂,吴琼水.一种多光谱细胞涂片自动分析仪及其用于宫颈细胞的分析方法.中国.发明专利,公开号:CN 1553165A,2004.
    [31]范金坪.宫颈细胞图像分割和识别方法研究[博士论文].中国.暨南大学.2010.
    [32]徐永年,黄博琪,黄宇睿,陈永福,詹永宽,简守维.子宫颈细胞分析系统及方法.中国台湾.发明专利,公开号:TW 201025032 A1,2010.
    [33]L. Zhang, S. P. Chen, C. T. Chin, T. F. Wang, and S. L. Li. Intelligent scanning:Automated standard plane selection and biometric measurement of early gestational sac in routine ul-trasound examination. Medical Physics,2012,39(8):5015-5027.
    [34]张灵,陈思平,汪天富,唐盛,李胜利.超声影像中早孕囊标准切面搜索方法研究.中国医学影像技术,2010,26(s1):210-210.
    [35]L. Zhang, S. P. Chen, S. L. Li and T. F. Wang. Automated measurement of early gestational sac diameters from one scan session, in Proceeding of SPIE Medical Imaging,2011,7963: 796342.1-796342.8.
    [36]张灵,唐盛,尹立东,郑双明,李静立.宫颈液基细胞学自动筛查方法和系统.中国.发明专利,公开号:CN102682305A,2012.
    [37]张灵,李静立,陈思平,汪天富,江少锋,刘少雄.异常宫颈细胞核的自适应局部分割方法.中国图象图形学报,已录用.
    [38]L. Zhang, S. P. Chen, T. F. Wang, Y. Chen, S. X. Liu and M. H. Li. A practical segmenta-tion method for automated screening of cervical cytology, in IEEE International confer-ence on Intelligent Computation and Bio-Medical Instrumentation,2011:140-143.
    [39]尹博,张灵,陈思平,鹿昌义,唐盛,秦灿辉.基于敏感部位检测的色情图像识别方法.中国.发明专利,公开号:CN102184419,2011.
    [40]Y. Chen, L. Zhang, Y. Xu, and X. B. Ren. Fighting detection based on optical flow context histogram, in International Conference on Innovations in Bio-inspired computing and Ap-plication,2011.
    [41]毛安寅,张灵,陈思平,江少锋.基于肤色和行为的色情视频检测.计算机工程与应用,已录用.
    [42]L. Zhang, S. P. Chen, T. F. Wang, and Z. Liu. Automatic facial expression recognition based on hybrid features. Energy Procedia,2012,17:1817-1823.
    [43]图片引自:http://en.wikipedia.Org/wiki/File:Uterus.jpg
    [44]图片引自:http://ldvsinger.stjohnsem.edu/THM 544 Marriage/08 Fertility/15 uterine%20transplant .htm
    [45]图片引自:http://218.15.221.62:704/images/shengzhi/nv/7.jpg
    [46]图片引自:http://www.yxsoso.com/infotk.asp?id= 13289
    [47]J. S. Duncan and N. Ayache. Medical image analysis:progress over two decades and the challenges ahead. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000, 22(1):85-108.
    [48]R. Szeliski. Computer Vision:Algorithms and Applications. Cambridge:Springer,2010.
    [49]R. Gonzalez and R. Woods. Digital Image Processing. New Jersey:Prentice Hall,2009.
    [50]M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis and Machine Vision. Wyoming:Nelson Engineering,2007.
    [51]D. A. Forsyth and J. Ponce. Computer Vision:A Modern Approach. New Jersey:Prentice Hall,2012.
    [52]J.S. Lee. Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence,1980, PAMI-2:165-168.
    [53]M. Nagao and T. Matsuyama. Edge preserving smoothing. Computer Graphics and Image Processing,1979,9:394-407.
    [54]D.L. Donoho. De-noising by soft-thresholding, IEEE Transactions on Information,1995, 41:613-627.
    [55]Y.J. Yu and S.T. Acton. Speckle reducing anisotropic diffusion. IEEE Transactions on Im-age Processing,2002,11:1260-1270.
    [56]D. Comaniciu and P. Meer. Mean shift:A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence.2002,24:603-619.
    [57]D. Pham, C. Xu, and J. Prince. Current methods in medical image segmentation. Annual Review of Biomedical Engineering,2000,02:315-337.
    [58]M. Kass, A.Witkin, and D. Terzopoulos. Snakes:Active contour models. International Journal of Computer Vision,1988,1:321-331.
    [59]B. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pat-tern Analysis and Machine Intelligence,2000,22:888-905.
    [60]Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23:1222-1239.
    [61]L. Vincent and P. Soille. Watersheds in digital spaces:An efficient algorithm based on im-mersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13(6):583-596.
    [62]汪天富.超声医学图像分割方法研究[博士论文].中国.四川大学.1997.
    [63]B. Georgescu, X. S. Zhou, D. Comaniciu, and A. Gupta. Database-guided segmentation of anatomical structures with complex appearance, in IEEE Conference on Computer Vision and Pattern Recognition,2005,2:429-436.
    [64]C. Bishop. Pattern Recognition and Machine Learning. Cambridge:Springer,2007.
    [65]T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning:Data mining, inference, and prediction. Cambridge:Springer,2008.
    [66]S. J. Wang and R. M. Summers. Machine learning and radiology. Medical Image Analysis, 2012,16:933-951.
    [67]R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. New York:Wiley,2001.
    [68]I. Wolf, M. Vetter,1. Wegner, T. Bottger, M. Nolden, M. Schobinger, M. Hastenteufel, T. Kunert, H. P. Meinzer. The medical imaging interaction toolkit. Medical Image Analysis, 2005,9(6):594-604.
    [69]P. W. Callen. Ultrasonography in Obstetrics and Gynecology. Philadelphia:Saunders Else-vier,2007.
    [70]李胜利.胎儿畸形产前超声诊断学.北京:人民军医出版社,2004.
    [71]李胜利.产科超声检查.北京:人民军医出版社,2009.
    [72]李治安.临床超声影像学.北京:人民卫生出版社,2003.
    [73]图片引自:http://www.wedo120.com/fk/byby/3659.html
    [74]G. York and Y. Kim. Ultrasound processing and computing:review and future direction. Annual Review of Biomedical Engineering,1999,01:559-588.
    [75]L Weng, A. P. Tirumalia, C. M. Lowery, L. F. Nock, D. E. Gustafson, P. L. Von Behren and J. H. Kim. US extended-field-of-view imaging technology. Radiology,1997,203(3): 877-880.
    [76]N. J. Hangiandreou. Topics in US:B-mode US:Basic concepts and new technology. Ra-dioGraphics,2003,23(4):1019-1033.
    [77]T. C. Poon and R. N. Rohling. Three-dimensional extended field-of-view ultrasound. Ul-trasound in Medicine and Biology,2006,32(3):357-69.
    [78]F. Forsberg. Ultrasonic biomedical technology:marketing versus clinical reality. Ultrason-ics,2004,42(1-9):17-27.
    [79]K. Baba, K. Kobayashi, M. Hayashi, S. Kozuma, S. Takeda and K. Kinoshita. Extended field-of-view ultrasound imaging in obstetrics and gynecology:preliminary experience. Ultrasound in Obstetrics and Gynecology,2000,15(2):157-159.
    [80]A. Fenster and D. B. Downey. Three-dimensional ultrasound imaging. Annual Review of Biomedical Engineering,2000.02:457-475.
    [81]O. V. Solberg, F. Lindseth, H. Torp, R. E. Blake, T. A. Nagelhus Hernes. Freehand 3D ul-trasound reconstruction algorithms-A review. Ultrasound in Medicine and Biology,2007. 33(7):991-1009.
    [82]汪天富,郑昌琼,李德玉,Y. Zheng.超声心脏图像多维重建研究进展.生物医学工程学杂志,2001,18(1):133-137.
    [83]L. W. Chan, T. Y. Fung, T. Y. Leung, D. S. Sahota and T. K. Lau. Volumetric (3D) imaging reduces inter- and intraobserver variation of fetal biometry measurements. Ultrasound in Obstetrics and Gynecology,2009,33(4):447-452.
    [84]J. F. Greenleaf, M. Fatemi, and M. Insana. Selected methods for imaging elastic properties of biological tissues. Annual Review of Biomedical Engineering,2003,05:57-78.
    [85]J. Ophir, I. Cespedes, H. Ponnekanti, Y Yazdi and X Li. Elastography:A quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging,1991,13(2): 111-134.
    [86]罗建文,白净.超声弹性成像的研究进展.中国医疗器械信息,2005,11(5):23-31.
    [87]K. J. Parker, L. S. Taylor, S. Gracewski. A unified view of imaging the elastic properties of tissue. Journal of the Acoustical Society of America,2005,117(5):2705-2712.
    [88]M. Fatemi, J. F. Greenleaf. Ultrasound-stimulated vibro-acoustic spectrography. Science, 1998,280(5360):82-85.
    [89]American Institute of Ultrasound Medicine. AIUM practice guideline for the performance of obstetric ultrasound examinations. Journal of Ultrasound in Medicine,2010,29(1): 157-166.
    [90]李胜利,文华轩.中孕期胎儿系统超声检查切面及临床意义.中华医学超声杂志,2010,7(3):366-381.
    [91]A. Abuhamad. Automated multiplanar imaging:a novel approach to ultrasonography. Journal of Ultrasound in Medicine,2004,23(5):573-576.
    [92]A. Abuhamad. Standardization of 3-dimensional volumes in obstetric sonography:a re-quired step for training and automation. Journal of Ultrasound in Medicine,2005,24(4): 397-401.
    [93]A. Abuhamad, P. Falkensammer, and Y. Zhao. Automated sonography:defining the spatial relationship of standard diagnostic fetal cardiac planes in the second trimester of preg-nancy. Journal of Ultrasound in Medicine,2007,26(4):501-507.
    [94]A. Abuhamad, P. Falkensammer, F. Reichartseder, and Y. Zhao. Automated retrieval of standard diagnostic fetal cardiac ultrasound planes in the second trimester of pregnancy:a prospective evaluation of software. Ultrasound in Obstetrics and Gynecology,2008,31(1): 30-36.
    [95]刘小平,杨新,吴兰平,孙锟.基于模板匹配的心脏三维超声最优切面搜寻方法.生物医学工程学杂志,2008,25(3):491-496.
    [96]J. A. Noble and D. Boukerroui. Ultrasound Image Segmentation:A Survey. IEEE Transac-tions on Medical Imaging,2006,25(8):987-1010.
    [97]J. Zhang. Object Detection and Segmentation using Discriminative Learning [Ph.D. dis-sertation]. USA. University of North Carolina.2009.
    [98]R. I. Ionasec. Patient-specific Modeling and Quantification of the Heart Valves from Mul-timodal Cardiac Images [Ph.D. dissertation]. Germany. Technical University of Munich. 2010.
    [99]E. Mjolsness and D. DeCoste. Machine Learning for Science:State of the Art and Future Prospects. Science,2001,293(5537):2051-2055.
    [100]G. E. Hinton. Reducing the Dimensionality of Data with Neural Networks. Science,2006, 313(5786):504-507.
    [101]G. Carneiro, F. Amat, B. Georgescu, S. Good, and D. Comaniciu. Automatic fetal meas-urement from three-dimensional ultrasound data. Siemens Inc., US patent 20090093717A 1,2009.
    [102]M. Sofka, J. Zhang, S. K. Zhou, and D. Comaniciu. Multiple Object Detection by Se-quential Monte Carlo and Hierarchical Detection Network, in IEEE Conference on Com-puter Vision and Pattern Recognition,2010:1735-1742.
    [103]S. Feng, S. K. Zhou, S. Good, and D. Comaniciu. Automatic Fetal Face Detection from Ultrasound Volumes Via Learning 3D and 2D Information, in IEEE Conference on Com-puter Vision and Pattern Recognition,2009:2488-2495.
    [104]B. Rahmatullah, I. Sarris, A. Papageorghiou, and J. A. Noble. Quality control of fetal ul-trasound images:Detection of abdomen anatomical landmarks using adaboost. in IEEE International Symposium on Biomedical Imaging,2011:6-9.
    [105]B. Rahmatullah, A. Papageorghiou, and J. A. Noble. Multi-scale local phase features for anatomical object detection in fetal ultrasound images, in Proceedings of the Medical Image Understanding and Analysis,2012:199-204.
    [106]M. Yaqub, M. Javaid, C. Cooper, and J. Noble. Improving the classification accuracy of the classic rf method by intelligent feature selection and weighted voting of trees with ap-plication to medical image segmentation, in Machine Learning in Medical Imaging of Lecture Notes in Computer Science,2011,7009:184-192.
    [107]A. Namburete, B. Rahmatullah, and J. A. Noble. Nakagami-based choroid plexus detec-tion in fetal ultrasound images using adaboost. in Proceedings of the Medical Image Un-derstanding and Analysis,2012:31-36.
    [108]M. Yaqub, R. Napolitano, C. Ioannou, A. T. Papageorghiou, and J. A. Noble. Automatic detection of local fetal brain structures in ultrasound images, in IEEE International Sym-posium on Biomedical Imaging,2012:1555-1558.
    [109]P. Viola and M. Jones. Robust real-time face detection. International Journal of Comput-er Vision,2004,57(2):137-154.
    [110]Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences,1997,55(1):119-139.
    [111]Z. Tu. Probabilistic boosting-tree:Learning discriminative models for classification, recognition, and clustering, in International Conference on Computer Vision,2005: 1589-1596.
    [112]L. Breiman. Random forests. Machine Learning,2001,45:5-32.
    [113]Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering and D. Comaniciu. Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Transactions on Medical Imaging,2008,27(11): 1668-1681.
    [114]R. Kwitt, N. Vasconcelos, S. Razzaque, and S. Aylward. Recognition in Ultrasound Vide-os:Where am I? in Proceedings of the Medical Image Computing and Computer Assisted Interventions,2012.
    [115]F. Bernardino, R. Cardoso, N. Montenegro, J. Bernardes, and J. M. de Sa. Semiautomated ultrasonographic measurement of fetal nuchal translucency using a computer software tool. Ultrasound in Medicine and Biology,1998,24:51-54.
    [116]Y. B. Lee, M. J. Kim, M. H. Kim. Robust border enhancement and detection for meas-urement of fetal nuchal translucency in ultrasound images. Medical and Biological Engi-neering and Computing,2007,45:1143-1152.
    [117]Y. H. Deng, Y. Y. Wang, P. Chen, and J. H. Yu. A hierarchical model for automatic nuchal translucency detection from ultrasound images. Computers in Biology and Medicine, 2012,42:706-713.
    [118]J. Thomas, P. Jeanty, R. Peters, and P. Jeanty. Automatic segmentation of ultrasound im-ages using morphological operators. IEEE Transactions on Medical Imaging,1991,10: 180-186.
    [119]V. Chalana, T. Winter, D. Haynor, and Y. Kim. Automatic fetal head measurements from sonographic images. Academic Radiology,1996,3:628-635.
    [120]S. Jardim and M. Figueiredo. Segmentation of fetal ultrasound images. Ultrasound in Medicine and Biology,2005,31:243-250.
    [121]W. Lu, J. Tan, and R. Floyd. Automated fetal head detection and measurement in ultra-sound images by iterative randomized hough transform. Ultrasound in Medicine and Bi-ology,2005,31 (7):929-936.
    [122]J. H. Yu, Y. Y. Wang, P. Chen, and Y. Z. Shen. Fetal abdominal contour extraction and measurement in ultrasound images. Ultrasound in Medicine and Biology,2008,34: 169-182.
    [123]P. Tolay, P. Vajinepalli, P. Bhattacharya, C. Firtion, and R. S. Sisodia. Automated fetal spine detection in ultrasound images, in Proceeding of SPIE Medical Imaging,2009, 7260.
    [124]M. H. Marhaban, R. S. Kaid, and S. B. Mohd Noor. Automatic estimation of gestational age in ultrasound images based on direct least-squares fitting of ellipse. IEEE Transac-tions on Electrical and Electronic Engineering,2010,5(5):569-573.
    [125]G. Carneiro, B. Georgescu, S. Good and D. Comaniciu. Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree. IEEE Transactions on Medical Imaging,2008,27(9):1342-1355.
    [126]V. A. Chakkarwar, M. S. Joshi, and P. S. Revankar. Automated analysis of gestational sac in medical image processing, in IEEE International Advance Computing Conference, 2010,304-309.
    [127]M. Rousian, A. H. J. Koning, W. C. Hop, P. J. van der Spek, N. Exalto, and E. A. P. Stee-gers. Gestational sac fluid volume measurements in virtual reality. Ultrasound in Obstet-rics and Gynecology,2011,38(5):524-529.
    [128]G. Carneiro, B. Georgescu, and S. Good. Knowledge-based Automated Fetal Biometrics Using syngo Auto OB Measurements:ACUSON S2000 Ultrasound System. Siemens Medical Solutions USA, Inc (Whitepaper, WS 0908),2008.
    [129]D. C. Walker, B. H. Brown, A. D. Blackett, J. Tidy and R. H. Smallwood. A study of the morphological parameters of cervical squamous epithelium. Physiological Measurement, 2003,24(1):121-135.
    [130]J. S. Hallinan. Detection of malignancy associated changes in cervical cells using statisti-cal and evolutionary computation techniques [Ph.D. dissertation]. Australia. The Univer-sity of Queensland.1999.
    [131]N. Munoz, F. X. Bosch, S. de Sanjose, R. Herrero,X. Castellsague, K. V. Shah, P. J. Snijders, C. J. Meijer. Epidemiologic classification of human papillomavirus types asso-ciated with cervical cancer. The New England Journal of Medicine,2003,348(6): 518-527.
    [132]A. C. Rodriguez, M. Schiffman, R. Herrero, S. Wacholder, A. Hildesheim, P. E. Castle, D. Solomon, and R. Burk. Rapid clearance of human papillomavirus and implications for clinical focus on persistent infections. Journal of the National Cancer Institute,2008, 100(7):513-517.
    [133]M. R. McCredie, K. J. Sharpies, C. Paul, J. Baranyai, G. Medley, R. W. Jones, and D. C. Skegg. Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3:a retrospective cohort study. The Lancet Oncology, 2008,9(5):425-434.
    [134]乔友林,章文华,李凌,潘秦镜,杨玲,吴令英,戍寿德,李爱玲,张询,任生达,J. Belinson.子宫颈癌筛查方法的横断面比较研究.中国医学科学院学报,2002,24(1):50-53.
    [135]G. N. Papanicolaou. A new procedure for staining vaginal smears. Science,1942, 95(2469):438-439.
    [136]R. Siege, E. Ward, O. Brawley, and A. Jemal. Cancer Statistics,2011:The Impact of Eliminating Socioeconomic and Racial Disparities on Premature Cancer Deaths. CA-A Cancer Journal for Clinicians,2011,61(4):212-236.
    [137]National Institute for Clinical Excellence. Guidance on the use of liquid-based cytology for cervical screening (Technology Appraisal 69). London:National Institute for Clinical Excellence,2003.
    [138]E. Davey, A. Barratt, L. Irwig, S. F. Chan, P. Macaskill, P. Mannes, and A. M. Saville. Effect of study design and quality on unsatisfactory rates, cytology classifications, and accuracy in liquid-based versus conventional cervical cytology:a systematic review. Lancet,2006,367(9505):122-132.
    [139]M. E. Boon. Liquid-based versus conventional cervical cytology. Lancet,2006,367(9521): 1481-1483.
    [140]M. Arbyn, C. Bergeron, P. Klinkhamer, P. Martin-Hirsch, A. G. Siebers, and J. Bulten. Liquid compared with conventional cervical cytology:a systematic review and me-ta-analysis. Obstetrics & Gynecology,2008,111(1):167-177.
    [141]D. Solomon and R. Nayar. The bethesda system for reporting cervical cytology:Defini-tions, criteria, and explanatory notes. New York:Springer,2004.
    [142]马博文.子宫颈细胞病理学诊断图谱.北京:人民军医出版社,2008.
    [143]A. G. Hanselaar, N. Poulin, M. M. Pahlplatz, D. Garner, C. MacAulay, J. Matisic, J. LeRiche, and B. Palcic. DNA-cytometry of progressive and regressive cervical intraepi-thelial neoplasia. Analytical Cellular Pathology,1998,16(1):11-27.
    [144]G. G. Birdsong. Automated screening of cervical cytology specimens. Human Pathology, 1996,27(6):468-481.
    [145]H. Banda-Gamboa, I. Ricketts, A. Cairns, K. Hussein, J. H. Tucker, and N. Husain. Au-tomation in cervical cytology:An overview. Analytical Cellular Pathology,1992, 4(1):25-48.
    [146]P. Bamford and B. Lovell. A water immersion algorithm for cytological image segmenta-tion, in Proceeding of APRS Image Segmentation Workshop,1996:75-79.
    [147]P. Bamford and B. Lovell. Unsupervised cell nucleus segmentation with active contours. Signal Processing,1998,71 (2):203-213.
    [148]R.F. Walker. Adaptive multi-scale texture analysis with application to automated cytology [Ph.D. dissertation]. Australia. The University of Queensland.1997.
    [149]H. S. Wu, J. Barba, and J. Gil. A parametric fitting algorithm for segmentation of cell im-ages. IEEE Transactions on Biomedical Engineering,1998,45(3):400-407.
    [150]S. J. Lee, P. S. Wilhelm, M. G. Meyer, W. R. Bannister, C. L. Kuan, W. E. Ortyn, L. A. Nelson, K. L. Frost, and J. W. Hayenga. Cytological slide scoring apparatus. Neo Path Inc., US Patent 5933519,1999.
    [151]P. S. Wilhelm and S. J. Lee. Apparatus for automated identification of cell groupings on a biological specimen. Neo Path Inc., US Patent 5978498,1999.
    [152]A. Garrido and N. P. de la Blanca. Applying deformable templates for cell image seg-mentation. Pattern Recognition,2000,33(5):821-832.
    [153]O. Lezoray and H. Cardot. Cooperation of color pixel classification schemes and color watershed:A study for microscopic images. IEEE Transactions on Image Processing, 2002,11(7):783-789.
    [154]M. Hu, X. Ping, and Y. Ding. Automated cell nucleus segmentation using improved snake, in International Conference on Image Processing,2004:2737-2740.
    [155]N. A. Mat-Isa. Automated edge detection technique for Pap smear images usingmov-ingK-means clustering and modified seed based region growing algorithm. International Journal of the Computer, the Internet and Management,2005,13(3):45-59.
    [156]M. H. Tsai, Y. K. Chan, Z. Z. Lin, S. F. Yang-Mao, and P. C. Huang, Nucleus and cyto-plasm contour detector of cervical smear image. Pattern Recognition Letters,2008,29(9): 1441-1453.
    [157]S. F. Yang-Mao, Y. K. Chan, and Y. P. Chu. Edge enhancement nucleus and cytoplasm contour detector of cervical smear images. IEEE Transactions on Systems, Man, and Cy-bernetics Part B:Cybernetics,2008,38(2):353-366.
    [158]C. W. Chang, M. Y. Lin, H. J. Harn, Y. C. Harn, C. H. Chen, K. H. Tsai, and C. H. Hwang. Automatic Segmentation of Abnormal Cell Nuclei from Microscopic Image Analysis for Cervical Cancer Screening, in IEEE International Conference on Nano/Molecular Medi-cine and Engineering,2009:18-21.
    [159]C. Jung, C. Kim, S. W. Chae, and S. Oh. Unsupervised segmentation of overlapped nuclei using Bayesian classification. IEEE Transactions on Biomedical Engineering,2010, 55(12):2825-2832.
    [160]C. Jung and C. Kim. Segmenting clustered nuclei using H-minima transform-based mark-er extraction and contour parameterization. IEEE Transactions on Biomedical Engineer-ing,2010,57(10):2600-2604.
    [161]N. M. Harandi, S. Sadri, N. A. Moghaddam, and R. Amirfattahi. An automated method for segmentation of epithelial cervical cells in images of ThinPrep. Journal of Medical Sys-tems,2010,34(6):1043-1058.
    [162]C. Bergmeir, M. G. Silvente, J. E. Lopez-Cuervo, and J. M. Benitez. Segmentation of cer-vical cell images using mean-shift filtering and morphological operators, in Proceeding of SPIE Medical Imaging,2010,7623:76234C.1-76234C.8.
    [163]C. Bergmeir, M. G. Silvente, and J. M. Benitez. Segmentation of cervical cell nuclei in high-resolution microscopic images:A new algorithm and a web-based software frame-work. Computer Methods and Programs in Biomedicine,2012,107(3):497-512.
    [164]M. E. Plissiti, C. Nikou, and A. Charchanti. Automated detection of cell nuclei in Pap smear images using morphological reconstruction and clustering. IEEE Transactions on Information Technology in Biomedicine,2011,15(2):233-241.
    [165]M. E. Plissiti, C. Nikou, and A. Charchanti. Combining shape, texture and intensity fea-tures for cell nuclei extraction in Pap smear images. Pattern Recognition Letters,2011, 32(6):838-853.
    [166]K. Li, Z. Lu, W. Liu, and J. Yin. Cytoplasm and nucleus segmentation in cervical smear images using Radiating GVF snake. Pattern Recognition,2012,45(4):1255-1264.
    [167]A. Genctav, S. Aksoy, and S. Onder. Unsupervised segmentation and classification of cer-vical cell images. Pattern Recognition,2012,45(12):4151-4168.
    [168]M. E. Plissiti and C. Nikou. Overlapping cell nuclei segmentation using a spatially adap-tive active physical model. IEEE Transactions on Image Processing,2012,21(11): 4568-4580.
    [169]T. F. Cootes, C. J. Taylor, and J. Graham. Active shape models:Their training and appli-cation. Computer Vision and Image Understanding,1995,1(1):38-59.
    [170]M. R. Rutenberg and T. L. Hall. Automated cytological specimen classification system and method. AutoCyte North Carolina, US Patent 6327377B1,2001.
    [171]E. Martin. Pap-smear classification [Master thesis]. Denmark. Technical University of Denmark.2003.
    [172]J. Jantzen, J. Norup, G. Dounias, and B. Bjerregaard. Pap-smear benchmark data for pat-tern classification, in Proceedings of the Nature-Inspired Smart Information Systems 1nd Annual Symposium, NISIS,2005.
    [173]J. Jantzen and G. Dounias. Analysis of Pap-smear image data, in Proceedings of the Na-ture-Inspired Smart Information Systems 2nd Annual Symposium, NISIS,2006.
    [174]Y. Marinakis, G Dounias, J. Jantzen. Pap smear diagnosis using a hybrid intelligent scheme focusing on genetic algorithm based feature selection and nearest neighbour clas-sification. Computers in Biology and Medicine,2009,39(1):69-78.
    [175]J. A. W. M. van der Laak, A. G. Siebers, V. M. J. I. Cuijpers, M. M. M. Pahlplatz, P. C. M. de Wilde, and A. G. J. M. Hanselaar. Automated identification of diploid reference cells in cervical smears using image analysis. Cytometry,2002,47(4):256-264.
    [176]J. Zhang and Y. Liu. Cervical cancer detection using svm based feature screening, in In-ternational Conference on Medical Image Computing and Computer Assisted Interven-tions,2004,2:873-880.
    [177]P. C. Huang, Y. K. Chan, P. C. Chan, Y. F. Chen, R. C. Chen, and Y. R. Huang. Quantita-tive assessment of pap smear cells by pc-based cytopathologic image analysis system and support vector machine. Medical Biometrics, Lecture Notes in Computer Science,490): 192-199.
    [178]N. A. Mat-Isa, M. Y. Mashor, and N. H. Othman. An automated cervical pre-cancerous diagnostic system. Artificial Intelligence in Medicine,2008,42(1):1-11.
    [179]Y. Marinakis, M. Marinaki, and G Dounias. Particle swarm optimization for pap-smear diagnosis. Expert Systems with Applications,2008,35(4):1645-1656.
    [180]L. Nanni, A. Lumini, and S. Brahnam. Local binary patterns variants as texture de-scriptors for medical image analysis. Artificial Intelligence in Medicine,2010,49(2): 117-125.
    [181]T. Ojala, M. Pietikainen and T. Maenpaa. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.
    [182]B. Sokouti, S. Haghipour, and A. D. Tabrizi. A pilot study on image analysis techniques for extracting early uterine cervix cancer cell features. Journal of Medical Systems,2012, 36(3):1901-1907.
    [183]M. E. Plissiti and C. Nikou. Cervical cell classification based exclusively on nucleus fea- tures. in International Conference on Image Analysis and Recognition,2012,7325: 483-490.
    [184]B. Scholkopf, A. Smola, and K. R. Muller. Nonlinear component analysis as a kernel ei-genvalue problem. Neural Computation,1998,10(5):1299-1319.
    [185]S. F. Patten, J. S. J. Lee, and A. C. Nelson. Neopath autopap 300 automatic pap screening system. Acta Cytologica,1996,40(1):45-52.
    [186]L. J. Mango. Neuromedical Systems, Inc. Acta Cytologica,1996,40(1):53-59.
    [187]J. W. Bishop, R. H. Kaufman, and D. A. Taylor. Multicenter comparison of manual and automated screening of autocyte gynaecological preparations. Acta Cytologica,1999, 43(1):34-48.
    [188]C. V. Biscotti, A. E. Dawson, B. Dziura, L. Galup, T. Darragh, A. Rahemtulla, and L. Wills-Frank. Assisted primary screening using the automated thinprep imaging system. American Journal of Clinical Pathology,2005,123(2):281-287.
    [189]D. C. Wilbur, W. S. Black-Schaffer, R. D. Luff, K. P. Abraham, C. Kemper, J. T. Molina, and W. D. Tench. The becton dickinson focalpoint gs imaging system. American Journal of Clinical Pathology,2009,132(5):767-775.
    [190]M. Desai. Role of automation in cervical cytology. Diagnostic Histopathology,2009, 15(7):323-329.
    [191]H. C. Kitchener, R. Blanks, H. Cubie, M. Desai, G. Dunn, R. Legood, A. Gray, Z. Sadique and S. Moss. MAVARIC:A comparison of automation-assisted and manual cervical screening:a randomized controlled trial. Health Technology Assessment,2011,15(3): 1-170.
    [192]T. J. Palmer, S. M. Nicoll, M. E. McKean, A. J. Park, D. Bishop, L. Baker and J. E. A. Imrie. Prospective parallel randomized trial of the MultiCyte ThinPrep imaging system: the Scottish experience. Cytopathology,2012,00982:1-11.
    [193]J. P. Neilson. Ultrasound for fetal assessment in early pregnancy. Cochrane Database of Systematic Reviews,1998,2:1-22.
    [194]W. Lee, R. L. Deter, B. Mcnie, M. Powell, and M. Balasubramaniam. Quantitative and morphological assessment of early gestational sacs using three-dimensional ultrasonog-raphy. Ultrasound in Obstetrics and Gynecology,2006,28(3):255-260.
    [195]R. L. Deter, J. Li, W. Lee, S. Liu, and R. Romero. Quantitative assessment of gestational sac shape:the gestational sac shape score. Ultrasound in Obstetrics and Gynecology,2007, 29(5):574-582.
    [196]O. Falcon, P. Wegrzyn, C. Faro, C. F. A. Peralta, and K. H. Nicolaides. Gestational sac volume measured by three-dimensional ultrasound at 11 to 13+6 weeks of gestation:re-lation to chromosomal defects. Ultrasound in Obstetrics and Gynecology,2005,25(6): 546-550.
    [197]X. G. Lu, B. Georgescu, Y. F. Zheng, J. Otsuki, and D. Comaniciu. AUTOMPR:auto-matic detection of standard planes in 3D echocardiography. in Proceeding of IEEE In-ternational Symposium on Biomedical Imaging,2008:1279-1282.
    [198]N. Archip, R. Rohling, P. Cooperberg, and H. Tahmasebpour. Ultrasound image seg-mentation using spectral clustering. Ultrasound in Medicine and Biology,2005,31(11): 1485-1497.
    [199]M. Borenstein, G. Azumendi Perez, F. Molina Garcia, M. Romero, and J. R. Anderica. Gestational sac volume:comparison between SonoAVC and VOCAL measurements at 11+0 to 13+6 weeks of gestation. Ultrasound in Obstetrics and Gynecology,2009,34(5): 510-514.
    [200]G. Acharya and H. Morgan. First-trimester, three-dimensional transvaginal ultrasound volumetry in normal pregnancies and spontaneous miscarriages. Ultrasound in Obstet-rics and Gynecology,2002,19(6):575-579.
    [201]T. Muller, M. Sutterlin, U. Pohls, and J. Dietl. Transvaginal volumetry of first trimester gestational sac:a comparison of conventional with three-dimensional ultrasound. Jour-nal of Perinatal Medicine,2000,28(3):214-220.
    [202]M. Eckhardt, I. Fasel, and J. Movellan. Towards practical facial feature detection. Inter-national Journal of Pattern Recognition and Artificial Intelligence,2009,23(3): 379-400.
    [203]R. Lienhart, A. Kuranov, and V. Pisarevsky. Empirical analysis of detection cascade of boosted classifiers for rapid object detection. Technical Report Microprocessor Research Lab, Intel Labs,2002.
    [204]S. H. Huang, Y. H. Chu, S. H. Lai, and C. L. Novak. Learning-based vertebra detection and iterative normalized-cut segmentation for spinal MRI. IEEE Transactions on Medi-cal Imaging,2009,28(10):1595-1605.
    [205]T. Karavides, K. Y. E. Leung, P. Paclik, E. A. Hendriks, and J. G. Bosch. Database guid-ed detection of anatomical landmark points in 3D images of the heart, in Proceeding of SPIE Medical Imaging,2010,7623:76234Q.1-76234Q.8.
    [206]T. Cour, F. Benezit, and J. B. Shi. Spectral segmentation with multiscale graph decom-position, in IEEE Conference on Computer Vision and Pattern Recognition,2005: 1124-1131.
    [207]T. Chen, W. Zhang, S. Good, K. S. Zhou, and D. Comaniciu. Automatic follicle quanti-fication from 3D ultrasound data using global/local context with database guided seg-mentation, in International Conference on Computer Vision,2009:795-802.
    [208]C. P. Papageorgiou, M. Oren, and T. Poggio. A general framework for object detection, in International Conference on Computer Vision,1998:555-562.
    [209]L. G. Valiant. A theory of the learnable. Communications of the ACM,1984,27(11): 1134-1142.
    [210]H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(1):22-38.
    [211]A. Oliva and A. Torralba. The role of context in object recognition. Trends in Cognitive Sciences,2007,11(12):520-527.
    [212]W. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004,13(4):600-612.
    [213]彭韵.基于活动轮廓模型的超声医学图像分割[硕士论文].中国.四川大学.2006.
    [214]C. P. Loizou, C. S. Pattichis, C. I. Christodoulou, R. S. H. Istepanian, M. Pantziaris and A. Nicolaides. Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2005,52(10):1653-1669.
    [215]R. Wang, J. L. Lin, D. Y. Li and T. F. Wang. Edge enhancement and filtering of medical ultrasonic images using a hybrid method, in International Conference on Bioinformatics and Biomedical Engineering,2007:876-879.
    [216]S. X. Yu and J. Shi. Grouping with bias. Advances in Neural Information Processing Systems,2001,14:1327-1334.
    [217]A. Madabhushi and D. N. Metaxas. Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions. IEEE Transactions on Medical Imaging,2003,22(2):155-169.
    [218]G. Bradsky and A. Kaehler. Learning OpenCV:Computer Vision with the OpenCV Li-brary. California:O'Reilly,2008.
    [219]V. Chalana and Y. Kim. A methodology for evaluation of boundary detection algorithms on medical images. IEEE Transactions on Medical Imaging,1997,16(5):642-652.
    [220]M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL visual object classes (VOC) challenge. International Journal of Computer Vision,2010, 88(2):303-338.
    [221]Y. Wang, S. Jiang, H. Wang, Y. H. Guo, B. Liu, Y. Hou, H. Cheng, and J. Tian. CAD algorithms for solid breast masses discrimination:Evaluation of the accuracy and in-terobserver variability. Ultrasound in Medicine and Biology,2010,36(8):1273-1281.
    [222]H. Kong, M. Gurcan, and K. Belkacem-Boussaid. Partitioning histopathological images: an integrated framework for supervised color-texture segmentation and cell splitting. IEEE Transactions on Medical Imaging,2011,30(9):1661-1677.
    [223]P. H. Tsui, Y. Y. Liao, C. C. Chang, W. H. Kuo, K. J. Chang, and C. K. Yeh. Classifica-tion of benign and malignant breast tumors by 2-d analysis based on contour description and scatterer characterization. IEEE Transactions on Medical Imaging,2010,29(2): 513-522.
    [224]N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer. SMOTE:Synthetic mi-nority over-sampling technique. Journal of Artificial Intelligence Research,2002,16(1): 321-357.
    [225]姜志国,韩冬兵,袁天云,赵宇,谢凤英,陈进.基于全自动控制显微镜的自动聚焦算法研究.中国图象图形学报,2004,9(4):396-401.
    [226]X. Y. Liu, W. H. Wang, and Y. Sun. Dynamic evaluation of autofocusing for automated microscopic analysis of blood smear and pap smear. Journal of Microscopy,2007, 227(Pt 1):15-23.
    [227]R. Redondo, G. Bueno, J. C. Valdiviezo, R. Nava, G. Cristobal, O. Deniz, M. Gar-cia-Rojo, J. Salido, M. M. Fernandez, and J. Vidal. Escalante-Ramirez B. Autofocus evaluation for brightfield microscopy pathology. Journal of Biomedical Optics,2012, 17(3):036008.1-036008.8.
    [228]N. A. Otsu. Threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics,1979,9(1):62-66.
    [229]P. S. Liao, T. S. Chen, and P. C. Chung. A fast algorithm for multilevel thresholding. Journal of Information Science and Engineering,2001,17(5):713-727.
    [230]Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-fiow algo-rithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(9):1124-1137.
    [231]P. K. Sahoo, S. Soltani, A. K. C. Wong, and Y. Chen. A survey of thresholding tech-niques. Computer Vision Graphics Image Processing,1988,41(2):233-260.
    [232]J. Sauvola and M. Pietikainen. Adaptive document binarization. Pattern Recognition, 2000,33(2):225-236.
    [233]Y. Boykov and G. Funka-Lea. Graph cuts and efficient n-d image segmentation. Interna-tional Journal of Computer Vision,2006,70(2):109-131.
    [234]J. H. Tucker, K. Rodenacker, U. Juetting, P. Nickolls, K. Watts, and G. Burger. Inter-val-coded texture features for artifact rejection in automated cervical cytology. Cytome-try,1988,9(5):418-425.
    [235]B. D. Trier and A. K. Jain. Goal-directed evaluation of binarization methods. IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(12):1191-1201.
    [236]B. Nielsen, F. Albregtsen, and H. E. Danielsen. Automatic segmentation of cell nuclei in Feulgen-stained histological sections of prostate cancer and quantitative evaluation of segmentation results. Cytometry Part A,2012,81(7):588-601.
    [237]F. Shafait, D. Keysers, and T. M. Breuel. Efficient implementation of local adaptive thresholding techniques using integral images, in Proceeding of SPIE, Document Recognition and Retrieval XV,2008,6815:681510-681515.
    [238]Y. Al-Kofahi, W. Lassoued, W. Lee, and B. Roysam. Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Transactions on Biomedical Engineering,2009,57(4):841-852.
    [239]T. F. Chan and L. A. Vese. Active contours without edges. IEEE Transactions on Image Processing,2001,10(2):266-277.
    [240]G. Loy and A. Zelinsky. Fast radial symmetry for detecting points of interest. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(8):959-973.
    [241]王筱艳.细胞图像的分割与计数.[硕士论文].中国.四川大学.2007.
    [242]X. Bai, C. Sun, and F. Zhou. Splitting touching cells based on concave points and ellipse fitting. Pattern Recognition,2009,42(11):2434-2446.
    [243]A. W. Fitzgibbon, M. Pilu, and R. B. Fischer. Direct least square fitting of ellipses. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(5):476-480.
    [244]D. Zink, A. H. Fischer, and J. A. Nickerson. Nuclear structure in cancer cells. Nature Reviews Cancer,2004,4(9):677-687.
    [245]K. Rodenacker and E. Bengtsson. A feature set for cytometry on digitized microscopic images. Analytical Cellular Pathology,2003,25(1):1-36.
    [246]W. Wang, J. Ozolek, and G. Rohde. Detection and classification of thyroid follicular le-sions based on nuclear structure from histopathology images. Cytometry Part A,2010, 77(5):485-494.
    [247]刘清团.肝脏占位性病变超声图像识别方法研究.[硕士论文].中国.四川大学.2007.
    [248]K. Torkkola. Feature extraction by non-parametric mutual information maximization. Journal of Machine Learning Research,2003,3(24):1514-1438.
    [249]S. Ali and A. Madabhushi A. An integrated region, boundary, shape based active contour for multiple object overlap resolution in histological imagery. IEEE Transactions on Medical Imaging,2012,31(7):1448-1460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700