产品CAD模型与CT切片模型的配准研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用三维CT设备对工业产品进行无损检测时,不可避免地会存在定位偏差问题,从而要进行CT切片模型到CAD模型之间的配准。配准问题是图形图像处理领域研究的重要内容之一。目前国内大部分的研究是针对二维配准的研究,在工业方面针对三维配准的研究还不是很多。本论文针对模型的配准问题,分别从灰度信息和图像轮廓两个方面考虑,提出了基于灰度残差平方和的配准方法和基于惯量椭圆的配准方法。本论文在Microsoft Visual C++以及VTK环境下,进行程序的开发,通过仿真实验验证了两种算法的正确性和可行性,并把求得的配准参数同理论值进行比较,取得了比较满意的结果。主要完成的研究内容如下:
     ·匹配过程中的空间变换和重新采样。在三维模型匹配的过程中,不可避免地要做空间变换及重新采样,通过平移矩阵和旋转矩阵来建立起倾斜的CT切片模型到CAD模型之间的变换关系。在模型匹配过程中,为了得到变换后的CT切片,需要对图像进行重新采样。本论文采用二线性插值与三线性插值相结合的方法来进行重新采样。
     ·基于灰度残差平方和的匹配算法。此方法首先通过图像模型的一阶矩,进行灰度重心匹配;然后将产品的图像模型与其CAD理论模型之间的残差平方和定义为优化目标函数,采用黄金分割方法搜索其极小值;同时利用产品上的结构特征,求出空间变换的位置匹配参数和角度匹配参数,最后根据匹配参数精确地建立起从产品CT切片模型到其CAD理论模型的空间变换。
     ·利用椭圆匹配法和灰度重心相结合来进行匹配。此方法首先对CT切片图像提取轮廓点,然后把提取出的轮廓作为目标,接着借助转动惯量计算目标的惯量椭圆,并进一步对惯量椭圆匹配以获得所需的空间变换的参数,从而实现产品CT模型与理论模型之间的配准。
     ·通过仿真实验验证上述两种算法。针对三维模型的配准问题,在Microsoft Visual C++以及VTK环境下,进行程序设计开发,实现上述匹配算法。并把配准后的三维CT模型同CAD理论模型的XY方向截面和YZ方向截面进行比较,验证算法的正确性和可行性。
There are some position and orientation problems when a 3D CT equipment undertakes nondestructive testing to industrial products. So product's CT slice model and its CAD model should be registered. Registration is an important problem in the field of graph and image processing. Now in our country a large amount of study is about planar registration study, three-dimensional registration study is few in industry field. For the registration of model, this paper takes into account gray information and image contour respectively. Registration method based on gray's deviation square sum and registration method based on inertia ellipse are put forward. In Microsoft Visual C++ and VTK's environment, the programming verifies the two algorithms by simulation experiment. Then evaluating registration parameters and theory values are compared, satisfactory results are received. The detail research works are as follows:
    · spatial transformation and re-sampling in registration. Spatial transform and re-sampling are carried out in three-dimensional model registration. Spatial transformation from skew CT slice model to its CAD model is established by transfer matrix and rotation matrix. In model's registration, image should re-sample to get transformed CT slice. This paper adopts bilinear interpolation and tri-linear interpolation to re-sample.
    · algorithm based on gray's deviation square sum. First the method proceeds to match gray centroid using one-order moment of image model. Then deviation square sum between product's image model and CAD model is defined as optimized object function. We search the minimum by the golden section method and make use of specified structure character to get the position and orientation registration parameters of spatial transformation. Finally spatial transformation from product's CT slice model to its CAD model is established according to registration parameters.
    · registration by ellipse matching and gray centroid. First this method extracts the contour points of CT slice images, then chooses extracted contour points as object. We can build up the inertia ellipses with the help of the moment of inertia and match these ellipses to obtain the parameters of the required spatial transformation. Thus registration between product's CT model and theory model is realized.
    · verifying two kinds of algorithms above by simulation experiments. For the registration of three-dimensional model, the programming realizes the two algorithms above in the environment of Microsoft Visual C++ and VTK. Then XY section image and YZ section image between registered three-dimensional CT model and CAD model are compared to verify validity and feasibility of algorithms.
引文
[1] 蔡青、高光焘,CAD/CAM系统的可视化、集成化、智能化、网络化,西北工业大学出版社,1996.11
    [2] 管伟光,体视化技术及其应用,电子工业出版社,1998.04
    [3] 章毓晋,图像处理和分析,清华大学出版社,2000.8
    [4] 唐泽圣、周嘉玉、李新友,计算机图形学基础,清华大学出版社,1995.12
    [5] Kenneth.R.Castlema著,朱志刚、林学言、石定机等译,数字图像处理,电子工业出版社,1998.9
    [6] 钱汉臣,计算机实用图形学与CAD,西南师范大学出版社,1996.5
    [7] Alexander Flisch, Joachim Wirth et al. Industrial Computed Tomography in Reverse Engineering Applications, Computerized Tompgraphy for Industrial Applications and Image Processing in Radiology, March 15-17,1999, Berlin, Germany
    [8] Friston K J, Ashburner J, Frith C D et al. Spatial registration and normalization of images, Human Brain Mapping, 1995,3.
    [9] Kwong K K. Functional magnetic resonance imaging with echo planar imaging. Mang Resort Quart, 1995,11:1
    [10] Hanjnal J V, Saeed N, Soar E Jet al. Spatial registration and normalization of images, Human Brain Mapping, 1995,3:165~189
    [11] Woods R P, Cherry S R, Mazziotta J C. Rapid automated algorithm for aligning and reslicing PET images. J.Comput.Assist.Tomog. 1992,16:620~633
    [12] 赵书俊,时间序列脑功能成象中的图像配准,中国图像图形学报,2000.5
    [13] 章毓晋,椭圆匹配法及其在序列细胞图像3-D配准中的应用,中国图像图形学报,1997.5
    
    
    [14] 吴东流,复合材料CT检测的原理和应用,宇航材料工艺,2001.1
    [15] 阮秋琦,数字图像处理学,2001.1
    [16] 崔屹,数字图像处理技术与应用,电子工业出版社,1997.3
    [17] 章毓晋,图像理解与计算机视觉,清华大学出版社,2000.8
    [18] 孙文焕.计算机辅助设计和制造技术,西北工业大学出版社,1994
    [19] 李建平,计算机图形学原理教程,电子科技大学出版社,1998.5
    [20] 王静,产品层析图像轮廓匹配技术研究,西北工业大学硕士论文,2001.3
    [21] David J.Kruglinski著,潘爱民、王国印译,Visual C++技术内幕(第四版),清华大学出版社,1999.1
    [22] 刘卫东、沈官林,数据结构C++语言描述,清华大学出版社,1998.11
    [23] 马建、腾弘飞、孙治国、杨宏宇,图形匹配问题,2001.4
    [24] 丁险峰、吴洪、张宏江、马颂德,形状匹配综述,自动化学报,2001.5
    [25] 赵荣椿,数字图像处理导论,西北工业大学出版社,1999.7
    [26] 李燕、谭鸥、段会龙,三维医学图像可视化技术综述,中国图像图形学报,2001.2
    [27] 谢红,基于ICT的CAD建模技术研究,西北工业大学博士论文,1997.5
    [28] 同济大学数学教研室,高等数学(第三版),上册,高等教育出版社,1988.4
    [29] 钱焕延,计算方法,上海交大出版社,1988.1
    [30] 洪泉、陈德强、黄文浩,一种基于图像内部信息的轮廓匹配和切片对齐新方法,中国图像图形学报,2001.2
    [31] 丁险峰、吴洪、张宏江、马颂德,形状匹配综述,自动化学报,2001.5
    [32] 王燕,面向对象的理论与C++实践,清华大学出版社,1997.2
    [33] 陈昱,张远林,医学图像配准的研究方法纵览,北京生物医学工程 2000.2
    [34] 刘哲星、李树祥,基于联合直方图区域计数的时间序列图像自动配准方法,
    
    中国图像图形学报,2002.5
    [35] 吴锋等,基于轮廓的力矩主轴法在医学图像配准中的应用,第四军医大学学报,2001,22(6)
    [36] 许智钦、孙长库,3D逆向工程技术,中国计量出版社,2002.4
    [37] 徐士良,计算机常用算法,清华大学出版社,1989.11
    [38] 角仕云、刘丽娅,实用科学与工程计算方法,科学出版社,2000.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700