微泡介导超声空化对前列腺通透性影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     前列腺常见疾病,包括前列腺炎、前列腺增生、前列腺癌在内,严重影响成年男性生存质量,其发病机制、病理生理学改变尚不十分清楚,治疗效果不理想,但不同的前列腺疾病之间存在着某些发病机制的联系。目前,研究显示前列腺炎症在前列腺增生的病理生理变化和前列腺癌进展中扮演关键性角色。基于前列腺炎症可能为前列腺增生、前列腺癌等其他前列腺疾病的风险因素或病理生理变化的始动机制,其治愈和预防处于最基本和最重要的地位。但是,前列腺炎患病率较高,复发率也较高,包括抗感染在内的药物治疗作为常见的基本治疗措施之一,疗效欠佳。一般认为,前列腺炎对抗生素等药物治疗具有相对耐受性。大部分的药物不能通过前列腺腺上皮从而在前列腺实质内达到有效治疗浓度。这可能与前列腺组织内具有某些特殊结构有关,可能存在实质性的解剖学屏障阻碍了抗生素从血液循环进入前列腺实质和前列腺液中。因此,我们认为血-前列腺屏障可能是由微血管内皮细胞、基底膜、肌纤维间质层、腺上皮细胞等构成,其组织结构和功能有待深入研究。正因其屏障功能,阻挡了某些药物进入前列腺腺体内部形成有效浓度来发挥治疗作用。同时组织炎症可能改变前列腺局部微环境。发生炎症时,前列腺腺体周围组织纤维增生,肌纤维间质层明显增厚,甚至出现脓腔周围组织纤维化,均对药物的屏障作用更为显著。因此,要攻克前列腺外途径给药疗效欠理想的难题,探寻新的治疗方法,如何增强前列腺组织通透性,如何有效开放血-前列腺屏障,将是解决前列腺疾病治疗的主要问题之一。
     超声作为一种无创性的诊断手段虽被广泛地用于临床,但其空化效应在治疗领域的应用研究逐渐增多。近年来,微泡作为造影剂应用于超声造影检查中可以显著提高诊断的准确性,随着对微泡在超声场中产生振荡的特性的深入研究,伴随产生的生物学效应也越来越受到人们的关注。较多的关于超声造影剂的应用基础研究发现,当引入微泡后可以明显增强超声能量的吸收,显著降低超声空化阈值,增强其生物学效应,也正因此超声造影剂微泡由诊断转入治疗领域。在较低声压水平激发稳态空化,微泡通过线性和(或)非线性振荡产生的冲击波、微射流继而引发的剪切力导致声孔效应发生,组织细胞表面出现“可恢复性”小孔,细胞之间紧密连接短暂性开放,可引起组织通透性的增加并随即恢复,这也就为增加局部组织药物浓度和基因或药物靶向传输治疗某些疾病带来了新的希望,本课题也正是基于此展开的。
     微泡作为一种高效的外源性空化核,经静脉注入血液循环后,可以显著提高体内空化核的数量和浓度,明显降低空化阈值,增强超声空化效应。而超声空化产生的显著的生物学效应,即声孔效应,导致细胞膜通透性增高,血管内皮细胞之间紧密连接开放已在较多的实验研究中被证实,但国内、外关于微泡介导超声空化能否增强前列腺通透性,能否有效开放血-前列腺屏障以及主要机制如何,相关报道很少,值得进一步研究。
     目的
     探讨微泡介导超声空化增强前列腺通透性的可行性、有效性、安全性及可恢复性。拟在实验动物水平,经静脉途径将超声造影剂微泡注入动物血液循环,设定能量参数的治疗超声靶向辐照前列腺,激励前列腺局部微循环内的微泡空化,利用超声空化所致的声孔效应开放血管内皮细胞之间紧密连接,继而再灌注的微泡在间歇式发射的超声激励下产生空化效应,进一步开放间质及腺上皮细胞间连接,进而开放整个血-前列腺屏障,增强前列腺组织通透性。旨在提出一种全新的微侵袭性改变前列腺组织通透性的物理方法,尝试解决经血流途径给药前列腺组织内药物浓度较低的难题,为有效增加前列腺间质及腺腔内药物浓度发挥更大的前列腺疾病治疗效应奠定前期的实验基础。
     方法
     1.选用健康、成年雄性新西兰白兔作为实验动物,随机分为5组:微泡联合超声组(MBUS组)、微泡联合超声处理后留观24hr组(MBUS24H组)、空白对照组(BC组)、单纯微泡组(MB组)、单纯超声组(US组),分别给予相应实验处理。
     2.微泡介导超声空化实验仪器和材料:微泡超声空化治疗仪为新桥医院超声科实验室专用,该仪器可以发射脉冲式、非聚焦式超声能量,对微泡空化效率较高。本课题实验中采用频率为831KHz,峰值声压为2.4MPa,平均声强为0.3W/cm2。脂氟显脂质微泡由新桥医院超声科实验室研制,整体外观为乳白色凝乳状。作为空化核,其核心为全氟丙烷气体,平均粒径约为2μm,浓度约为9×1010/ml。本实验中采用的剂量为0.1ml/kg。
     3.通过单位质量前列腺EB含量测定和大体标本EB渗出的观察,探讨微泡联合超声作用对前列腺通透性的影响。EB可作为微血管通透性增强的指示剂。通常情况下,EB在血液循环中与白蛋白稳定结合形成EB-白蛋白复合物,不能透过血管壁而进入血管外。因此可通过测定组织中EB含量,也即EB渗出量来评价组织通透性的变化。EB还可作为生物染色剂,如因通透性增强,EB渗出可致血管外渗出区域被蓝染。此外,HE染色光镜观察各组前列腺组织形态学改变。
     4. EB作为示踪剂,可被激发出明亮的红色荧光,结合不同荧光标记显示前列腺组织微环境,使用激光共聚焦显微镜观测微泡联合超声作用前列腺后EB的渗出,探讨微泡介导超声空化增强前列腺通透性及开放血-前列腺屏障的主要机制。
     5.硝酸镧示踪透射电子显微镜观测微泡联合超声作用于前列腺的超微组织结构改变,观测指示通透性改变的示踪剂-镧颗粒的沉积,进一步证实微泡介导超声空化增强前列腺通透性及开放血-前列腺屏障可行性、有效性和可恢复性,分析其主要机制。
     6. TUNEL细胞原位检测分析BC组、MB组、US组、MBUS组、MBUS24H组细胞凋亡发生情况。通过对各组前列腺上皮细胞凋亡指数的比较,分析不同实验处理对前列腺组织是否造成损伤及损伤程度比较,初步评估微泡联合超声作用于前列腺的安全性。
     7.数据的统计学分析:采用SPSS13.0统计分析软件,各组单位质量前列腺EB含量、凋亡指数均以均数±标准差(x±s)表示。梯度浓度系列EB溶液OD值和对应浓度分析调用线性回归分析程序。单因素方差分析用于各组的单位质量前列腺EB含量、凋亡指数的比较和分析,P<0.05具有统计学差异,P<0.001具有显著的统计学差异。
     结果
     1.在MBUS组中,单位质量前列腺EB含量为11.8876±0.4140μg/g,明显高于BC组、MB组、US组,表明微泡联合超声作用可以增强前列腺组织通透性。BC组、MB组、 US组的单位质量前列腺EB含量分别为4.8664±0.4166μg/g、5.1967±0.2251μg/g、5.0776±0.1761μg/g,组间比较无统计学差异,表明单纯微泡或单纯超声均对前列腺组织通透性无明显影响。MBUS24H组的单位质量前列腺EB含量为5.1773±0.3595μg/g,与BC组比较无统计学差异,而与MBUS组存在显著的统计学差异,表明微泡联合超声作用后24hr,增强的前列腺组织通透性可以复原,这也反映出微泡介导超声空化增强前列腺通透性具有可恢复性。BC组、MB组、US组和MBUS24H组测得的少量的EB含量可能与相同灌注条件下前列腺微循环内EB的少量残留有关,而MBUS组单位质量前列腺EB含量与这些值相比较,明显增多的部分应与EB渗出有关。
     2. MBUS组大体标本整体观察可见前列腺组织明显蓝染,蓝染区分布均匀;横切面观察可见腺实质及包膜等结缔组织蓝染均匀。而BC、MB、US、MBUS24H组大体标本整体观察可见前列腺组织无明显蓝染;横切面显示腺实质均无明显蓝染,包膜等结缔组织部分区域内呈现不均匀的轻微蓝染,均与MBUS组的前列腺组织蓝染存在肉眼可见的差异。
     3. HE染色光镜观察可见微泡联合超声作用后的即刻和24hr,前列腺组织结构未发生明显改变;单独给予微泡或超声作用对前列腺组织结构也无明显影响。
     4.在MBUS组中,明亮的EB红色荧光广泛分布于血管外区域,包括间质组织及腺上皮,并有均匀分布于腺上皮基底侧及腺上皮细胞之间的趋势,甚至出现在腺上皮细胞内,这些与BC、MB、US组存在明显差异。在BC、MB、US组中,前列腺组织血管腔中未见EB红色荧光,这与EB随灌注液离开微循环有关;血管壁、间质组织、腺上皮区域内均未见明亮的EB红色荧光,显示EB未分布于这些部位。而在MBUS24H组中,血管腔、血管壁、间质组织、腺上皮区域内未显示明亮EB红色荧光,与BC、MB、US组相似,而与MBUS组存在明显差异。
     5.在MBUS组中,镧颗粒不仅存在于血管腔内,可见黑色斑点状高电子密度沉积物附着在血管内皮细胞表面,还可以黑色线状沉积于内皮细胞连接之间,并可透过基底膜延伸入间质内;在腺上皮基底侧和腺上皮细胞之间也可见镧颗粒呈黑色线状高电子密度沉积。在BC、MB、US、MBUS24H组中,仅在血管腔内可见镧颗粒存在,血管内皮细胞形态完整,内皮细胞间连接紧密,基底膜完整,间质内、腺上皮基底侧和腺上皮细胞之间均未见镧颗粒沉积。
     6. TUNEL细胞原位检测显示单独给予微泡或超声辐照,不会引起腺上皮细胞凋亡增多;微泡联合超声作用前列腺,腺上皮细胞凋亡增多,但尚未对腺上皮组织造成明显损伤,并在24hr后存在恢复趋势。
     结论
     1.微泡联合超声作用于兔前列腺,可以增强前列腺通透性,经24hr后这种改变可恢复至原有水平,而仅给予微泡静注或超声辐照对前列腺通透性未见明显影响。这可能与微泡介导超声空化所致的声孔效应有关,也即稳态空化致声孔效应可以增强兔前列腺通透性,并且这种通透性的改变具有可恢复性。
     2. EB示踪激光共聚焦显微镜及硝酸镧示踪透射电子显微镜观测证实微泡联合超声作用可以增强兔前列腺组织通透性,有效开放血-前列腺屏障,其主要机制为微泡介导超声空化致声孔效应开放血管内皮细胞及腺上皮细胞之间的紧密连接,导致EB或镧颗粒这类示踪剂可以透过血管壁进入血管外间质组织,并且能够进入腺上皮近基底侧,甚至进入腺上皮细胞之间及细胞内,这种前列腺组织通透性增强的改变存在恢复趋势,并于24hr后逐渐恢复至原有状态,血-前列腺屏障的开放具有可恢复性。微泡联合超声作用于前列腺组织具有相对安全性。
Background
     The prostate is the organ which is prone to male-specific diseases. Common prostatediseases, such as benign prostatic hyperplasia, prostate cancer and prostatitis, seriouslyaffect the survival and quality of life of adult males. At present, the etiology andpathophysiology of these diseases remain poorly understood. It has been reported thatprostatic inflammation plays a pivotal role in the pathophysiology of benign prostatichyperplasia, as well as in the development of prostate cancer. It is important to cureprostatitis and prevent its recurrence. In urologic practice, drugs, including antibiotics, areessential for the treatment of prostatitis syndrome. However, how to improve the efficacyis a difficult medical problem. Historically prostatitis has been relatively resistant toantimicrobial chemotherapy, for most drugs are unable to cross the prostate epithelium toreach effective therapeutic levels within the prostate gland. This may be due to the specialstructure of prostate tissue, where the circulation of antibiotics into tissues and prostatefluids is blocked by substantial anatomic barriers. Therefore, we believe that theblood-prostate barrier could be possibly made up of microvessel endothelial cells,basement membrane, fiber matrix layer, glandular epithelium, etc., its basic functioninvolves blocking of certain components in the blood circulation trafficking into theprostate glandular cavity, and preventing detrimental factors from retrograde spreadinginto stroma to invade male urogenital system via glandular epithelium. In addition to theblocking effect of the blood-prostate barrier, change of the prostate microenvironmentaroused by inflammation can reduce tissue permeability. Coupled with chronicinflammation, scars around the prostate acinar and tissues around the abscess develop intofibrosis, and fiber desmohemoblast is obviously thickened, imposing significant barrieractions on drug passage. As a result, it is crucial to increase the permeability of prostatetissues and maximally increase drug concentration in prostate tissues to achieve more powerful therapeutic effect.
     As a biological effect of ultrasound, acoustic cavitation refers to an action thatmicrobubbles in a liquid, insonated by ultrasound, generate a series of dynamic processes,such as oscillation, expansion, shrinkage, implosion, etc., with multifarious patterns ofenergy release, such as transient high temperature, high pressure, shock wave, discharge,microstreaming. When cavitation takes place at the acoustics interface of tissue, physicalmechanical energy, accompanied by microstreaming, shock wave, etc., can destruct tightjunction between cells, and enhance membrane permeability, namely “sonoporation”,which could be self-healing. In general, the endogenous cavitation nuclei in vivo may beso insufficient, and the threshold of cavitation may be so high that acoustic cavitation cannot be aroused.
     However, as highly effective exogenous cavitation nuclei, the ultrasound contrastagent microbubbles can significantly increase the quantity and concentration of cavitationnuclei in vivo by intravenous injection, consequently decreasing cavitation threshold andincreasing cavatition erosion. In recent years, an increasing number of researches haveutilized ultrasonic sonoporation to improve permeability of cell membranes or vascularendothelial cells in models such as cultured cell in vitro, myocardial tissues in vivo, andblood-brain barrier. However, few researches have investigated whether the ultrasonicsonoporation can open the blood-prostate barrier to enhance prostate permeability.
     Objective
     The aim of the study was to explore the impact of microbubble-enhanced ultrasoundon the prostate permeability and blood-prostate barrier, to investigate the feasibility,effectiveness, safety and recoverability of ultrasonic cavitation enhancing prostatepermeability. To apply the therapeutic ultrasound to irradiate the prostate of sexuallymature male rabbits as experimental animals, set ultrasound energy parameters to arousecavitation in perfusion peak of microbubbles via intravenous injection, It will pave theroad for a brand-new noninvasive physical method to alter prostate tissue permeability,thereby effectively increase drug concentration inside prostate stroma and glandular cavity,and improve therapeutic effect of prostate diseases.
     Methods
     1. Sexually mature male New Zealand white rabbits were randomly assigned into twoexperimental groups and three control groups. In the two experimental groups, theprostates were insonated using the therapeutic transducer with acoustic pressure of2.4MPa in the presence of circulating microbubbles (0.1ml/kg). The microbubbles wereinstantly injected into the ear veins during the insonation. The prostates were thenharvested instantly in one experimental group (MBUS group). In contrast, the prostates ofthe treated rabbits were harvested after24hr in the other experimental group (MBUS24Hgroup). Three other groups served as the controls. The2.4MPa ultrasound was applied tothe ultrasound-only group (US group) with the same dose of saline injection. Themicrobubble-only group (MB group) received sham ultrasound exposure with the sameamount of microbubbles injection. The blank control group (BC group) received shamultrasound exposure with the same dose of saline injection. The abdominal walls of rabbitswere cut to reveal their prostate under intravenous anesthesia. The ultrasound transducercould directly contact the back side of prostate, and irradiate the target region. To punctureaorta abdominalis and indwell the catheter to establish inflow path, and to cut openinferior vena cava as outflow path, we perfused the microcirculation of prostate beforeremoving the prostate specimen.
     2. The therapeutic ultrasound transducer was operated at a frequency of831KHzwith the acoustic pressure output of2.4MPa. The transducer worked in an intermittentmode of6sec on and6sec off. The corresponding acoustic intensity came out to be0.3W/cm2. Lipid-coated microbubble, named Zhifuxian, was used for the nucleation ofcavitation. Zhifuxian was prepared by lyophilization of two lipid suspensions,1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) and1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), and was agitated with perfluoropropane gas using ahigh-speed mechanical amalgamator. The microbubbles had a mean particle diameter of2μm and concentration of9×1010/ml. For the nucleation of cavitation,0.1ml/kgmicrobubbles were injected intravenously. The intravenous injection usually lasted9minfollowed by a3-ml saline flush.
     3. As Evan blue (EB) is the indicator that reflects the alteration of microvascularpermeability, EB content per prostate unit mass was determined. The prostate tissue was submerged in formamide solution to extract EB. The value of optical density (OD) wasdetermined with a DU800UV/visible spectrophotometer. Based on the OD valuecorresponding to concentration gradient of EB solution, we analyzed the results by linearregression statistics to get the linear regression equation: y=0.125+28.181x (x: the value ofOD, y: EB concentration). Based on the OD value of EB extraction liquid and the linearregression equation, we calculated the concentration, and further got EB total contents inextraction liquid, and finally figured out EB content per prostate unit mass on behalf of EBexudation able to be compared in different groups. As an indicator, blue dyeing of EBexudation area may be visible to the naked eye. Experimental grouping and processingwere broadly in line with the determination of EB content, all by intravenous injection of2%EB solution at25mg/kg. After perfusing prostate microcirculation with0.01mol/LPBS, we excised the prostate to observe overall appearance and cross section of generalspecimens. By hematoxylin-eosin (HE) staining, we observed morphological changes ofthe prostate tissue in light microscope.
     4. To explore the mechanism of prostate permeability to be enhanced by microbubblemediated ultrasonic cavitation, we apply laser scanning confocal microscopy (LSCM) toinvestigate EB exudation in the prostate tissue. As the tracer, EB was excited to showbright red fluorescence. Different fluorescence markers displayed the cytomembrane andnucleus of the prostate tissue. A laser scanning confocal microscope was used to surveyexistence and distribution of different fluorescence in frozen sections.
     5. By virtue of transmission electron microscopy (TEM) with Lanthanum NitrateTracing, we investigated the ultrastructure alteration of prostate tissue, and the depositionof lanthanum particles to explore the feasibility, effectiveness, and recoverability ofultrasonic cavitation enhancing prostate permeability, combined with LSCM to explore themechanism of prostate tissue alteration.
     6. To apply in situ cell detection kit for immunohistochemical detection andquantification of apoptosis at single cell level, based on TUNEL (terminal-deoxynucleotidyl transferase mediated nick end labeling) technology. We analysedTUNEL-positive cells, and compared apoptotic index (AI) in the BC, MB, US, MBUS,MBUS24H groups for the safety of microbubble mediated ultrasonic cavitation on prostatetissue.
     7. All data are expressed as the mean±standard deviation values. Linear regressionwas used to analyze EB concentration. One-way analysis of variance was used to comparedifferences between groups. A p valve of0.05was considered statistically significant. Alldata were analyzed using SPSS software (SPSS, Inc., Chicago, IL, USA).
     Results
     1. EB content per unit mass of prostate was11.8876±0.414μg/g in the MBUS group,higher than in the BC, MB, US, and MBUS24H groups, and statistically significantdifferences were observed between the MBUS group and the other four groups. Whereas,no significant difference was found in BC, MB, US, and MBUS24H groups, thus thedatum of EB content in the four groups were possibly related to EB remained in prostatemicrocirculation under the same perfusion conditions, however the higher part of EBcontent in the MBUS group was due to EB exudation from blood vessel.
     2. In MBUS group, the integral view of the prostates still remained obviously bluedyeing that was uniformly distributed in the glandular parenchyma of the cross section. Inthe BC, MB, and US groups, blue dyeing in the integral view greatly faded away, yetslight blue dyeing was located in the tunica or connective fascia, not distributed in theglandular parenchyma of the cross section, thus being consistent with less EB content inthe three groups, due to EB remains. In MBUS24H group, the results were significantlydifferent from those in the MBUS group, but similar to those in the BC group.
     3. At the instant or24hr after insonation of ultrasound mediated by microbubble,prostate tissue, by HE staining, have no significantly morphological alteration under lightmicroscope. The action of microbubble or ultrasound on the prostate did not affectorganization structure.
     4. The location of EB penetration was shown under LSCM. In MBUS group, EB redfluorescence was extensively distributed in the stroma and the base side of glandularepithelium, even in the intercellular space of glandular epithelium. However, in BC, MB,and US groups, EB red fluorescence was not observed in extravascular locations, such asstroma, glandular epithelium. In the MBUS24H group, no EB red fluorescence was alsoobserved in extravascular locations.
     5. Since the deposition of La particles is shown as electron-dense in TEM. In the MBUS group, electron-dense of La particles appeared in both linear distribution betweenvascular endothelial cells and patchy remains in the vessel lumens, and even distributed inextravascular stroma and the intercellular space of glandular epithelium with the form ofblack lineament. Furthermore, in BC, MB and US groups, there was no linearelectron-dense to show distribution of La particles in stroma and the intercellular space ofglandular epithelium. No linear electron-dense was found in the extravascular locations ofthe MBUS24H group. In general, the results of TEM were consistent with those of LSCM.
     6. TUNEL apoptosis detection suggested that apoptotic cells slightly increased inglandular epithelium after microbubble mediated ultrasound had irradiated the prostate,however, obvious injury of prostate tissue was not indicated. The action of microbubble orultrasound on the prostate did not promote apoptosis of prostate tissue.
     Conclusion
     1. Prostate permeability could be enhanced by microbubble-mediated ultrasoundirradiation, due to acoustic cavitation, rather than microbubble or ultrasound alone.Enhanced prostate permeability had been recovered to usually statue at24hr aftermicrobubble-mediated ultrasound irradiation.
     2. Direct evidences of morphology by means of LSCM and TEM with lanthanumnitrate tracing, demonstrated the mechanism of the prostate permeability enhanced bymicrobubble-mediated ultrasonic insonation. the prostate permeability was affected byinsonation of ultrasound mediated by microbubble, and it was the possible mechanism thatultrasonic sonoporation induced by acoustic cavitation, which was embodied in theexudation of tracer, the opening of tight junctions between vascular endothelial orglandular epithelial cells at the instant of acoustic cavitation, and the reinstatement ofenhanced permeability at24hr after acoustic cavitation.
引文
1. Timms BG, Hofkamp LE. Prostate development and growth in benign prostatichyperplasia. Differentiation,2011;82(4-5):173-183.
    2. Dietrich W, Susani M, Stifter L, Haitel A. The human female prostate-immunohistochemical study with prostate-specific antigen, prostate-specific alkalinephosphatase, and androgen receptor and3-D remodeling. J Sex Med,2011;8(10):2816-2821.
    3. McNeal JE. The zonal anatomy of the prostate. Prostate,1981;2(1):35-49.
    4. Selman SH. The McNeal prostate: a review. Urology,2011;78(6):1224-1228.
    5. Hammerer P, Huland H. Anatomy and sonography of the prostate. Urologe A,1989;28(6):311-316.
    6. Villers A, Steg A, Boccon-Gibod L. Anatomy of the prostate: review of the differentmodels. Eur Urol,1991;20(4):261-268.
    7. Wendell-Smith CP. The terminology of the prostate and its related structures.Morfologiia,1997;112(5):89-94.
    8. Quintar AA, Doll A, Leimgruber C, Palmeri CM, Roth FD, Maccioni M, MaldonadoCA. Acute inflammation promotes early cellular stimulation of the epithelialandstromal compartments of the rat prostate. Prostate,2010;70(3):1153-1165.
    9. Krieger JN, Riley DE, Cheah PY, Liong ML, Yuen KH. Epidemiology of prostatitis:new evidence for a world-wide problem. World J Urol,2003;21(2):70-74.
    10. Nickel JC, Downey J, Hunter D, Clark J. Prevalence of prostatitis-like symptoms in apopulation-based study using the National Institutes of Health chronic prostatitissymptom index. J Urol,2001;165(3):842–845.
    11. Ramakrishnan K, Salinas RC. Prostatitis: acute and chronic. Prim Care,2010;37(3):547-563.
    12. Nelson WG. Profiling prostate cancer. Proc Natl Acad Sci USA,2011;108(52):20861-20862.
    13. Fitzpatrick JM, Desgrandchamps F, Adjali K, Gomez Guerra L, Hong SJ, El Khalid S,Ratana-Olarn K; Reten-World Study Group. Management of acute urinary retention: aworldwide survey of6074men with benign prostatic hyperplasia. BJU Int,2012;109(1):88-95.
    14. Buckley BS, Lapitan MC, Simpson CR, Sheikh A. Risk of prostate cancer associatedwith benign prostate disease: a primary care case-control study. Br J Gen Pract,2011;61(592):e684-e691.
    15. Kramer G, Mitteregger D, Marberger M. Is benign prostatic hyperplasia (BPH) animmune inflammatory disease? Eur Urol,2007;51(5):1202–1216.
    16. De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gr nberg H, Drake CG, Nakai Y, IsaacsWB, Nelson WG. Inflammation in prostate carcinogenesis. Nat Rev Cancer,2007;7(4):256–269.
    17. Wagenlehner FM, Naber KG. Prostatitis: the role of antibiotic treatment. World J Urol,2003;21(2):105–108.
    18. Charalabopoulos K, Karachalios G, Baltogiannis D, Charalabopoulos A, Gianna-kopoulos X, Sofikitis N. Penetration of antimicrobial agents into the prostate.Chemotherapy,2003;49(6):269–279.
    19. Barza M. Anatomical barriers for antimicrobial agents. Eur J Clin Microbiol InfectDis,1993;12Suppl1:S31-35.
    20.顾方六.现代前列腺病学.北京:人民军医出版社,2002:521-528.
    21. Fulmer BR, Turner TT. A blood-prostate barrier restricts cell and molecular movementacross the rat ventral prostate epithelium. J Urol,2000;163(5):1591-1594.
    22. El-Alfy M, Pelletier G, Hermo LS, Labrie F. Unique features of the basal cells ofhuman prostate epithelium. Microsc Res Tech,2000;51(5):436-446.
    23. Pelletier RM, Byers SW. The blood-testis barrier and sertoli cell junctions: structuralconsiderations. Microsc Res Tech,1992;20(1):3-33.
    24. Pelletier RM. Blood barriers of the epididymis and vas deferens act asynchronouslywith the blood barrier of the testis in the mink (Mustela vison). Microsc Res Tech,1994;27(4):333-349.
    25. Hedger MP. Immunophysiology and pathology of inflammation in the testis andepididymis. J Androl,2011;32(6):625-640.
    26.钟惟德,何慧婵,陈玉祥等.医用硅纳米粒跨越血前列腺屏障的实验研究.中华泌尿外科杂志,2004;25(5):340-342.
    27. Sternberger NH, Sternberger LA. Blood-brain barrier protein recognized bymonoclonal antibody. Proc Natl Acad Sci USA,1987;84(22):8169-8173.
    28. Sternberger NH, Sternberger LA, Kies MW, Shear CR. Cell surface endothelialproteins altered in experimental allergic encephalomyelitis. J Neuroimmunol,1989;21(2-3):241-248.
    29. Ghabriel MN, Lu JJ, Hermanis G, Zhu C, Setchell BP. Expression of a blood-brainbarrier-specific antigen in the reproductive tract of the male rat. Reproduction,2002;123(3):389-397.
    30. Tsai H, Werber J, Davia MO, Edelman M, Tanaka KE, Melman A, Christ GJ,Geliebter J. Reduced connexin43expression in high grade, human prostaticadenocarcinoma cells. Biochem Biophys Res Commun,1996;227(1):64-69.
    31. Habermann H, Ray V, Habermann W, Prins GS. Alterations in gap junction proteinexpression in human benign prostatic hyperplasia and prostate cancer. J Urol,2002;167(2Pt1):655-660.
    32. Lang MD, Nickel JC, Olson ME, Howard SR, Ceri H. Rat model of experimentallyinduced abacterial prostatitis. Prostate,2000;45(3):201-206.
    33. Wientjes MG, Zheng JH, Hu L, Gan Y, Au JL. Intraprostatic chemotherapy:distribution and transport mechanisms. Clin Cancer Res,2005;11(11):4204-4211.
    34. Iczkowski KA. Chronic pelvic pain syndrome: a role for aberrant cytokine function. JUrol,2010;184(4):1253-1254.
    35. Fujita K, Ewing CM, Sokoll LJ, Elliott DJ, Cunningham M, De Marzo AM, IsaacsWB, Pavlovich CP. Cytokine profiling of prostatic fluid from cancerous prostateglands identifies cytokines associated with extent of tumor and inflammation. Prostate,2008;68(8):872-882.
    36. Sugimoto M, Oka M, Tsunemori H, Yamashita M, Kakehi Y. Effect of aphytotherapeutic agent, Eviprostat, on prostatic and urinary cytokines/chemokinesin a rat model of nonbacterial prostatitis. Prostate,2011;71(4):438-444.
    37. Nickel JC. Prostatitis. Can Urol Assoc J,2011;5(5):306-315.
    38. Nickel JC, Sorensen R. Transurethral microwave thermotherapy for nonbacterialprostatitis: a randomized double-blind sham controlled study using new prostatitis
    39. Kastner C, Hochreiter W, Huidobro C, Cabezas J, Miller P. Cooled transurethralmicrowave thermotherapy for intractable chronic prostatitis--results of a pilot studyafter1year. Urology,2004;64(6):1149-1154.
    40. Mené MP, Ginsberg PC, Finkelstein LH, Manfrey SJ, Belkoff L, Ogbolu F, Osborne D.Transurethral microwave hyperthermia in the treatment of chronic nonbacterialprostatitis. J Am Osteopath Assoc,1997;97(1):25-30.
    41. Choi NG, Soh SH, Yoon TH, Song MH. Clinical experience with transurethralmicrowave thermotherapy for chronic nonbacterial prostatitis and prostatodynia. JEndourol,1994;8(1):61-64.
    42. Aaltomaa S, Ala-Opas M. The effect of transurethral needle ablation on symptoms ofchronic pelvic pain syndrome-a pilot study. Scand J Urol Nephrol,2001;35(2):127-131.
    43. Leskinen MJ, Kilponen A, Lukkarinen O, Tammela TL. Transurethral needle ablationfor the treatment of chronic pelvic pain syndrome (category III prostatitis): arandomized, sham-controlled study. Urology,2002;60(2):300-304.
    44. Chiang PH, Chiang CP. Therapeutic effect of transurethral needle ablation innon-bacterial prostatitis: chronic pelvic pain syndrome type IIIa. Int J Urol,2004;11(2):97-102.
    45. Lee KC, Jung PB, Park HS, Whang JH, Lee JG. Transurethral needle ablation forchronic nonbacterial prostatitis. BJU Int,2002;89(3):226-229.
    46. Chiang PH, Tsai EM, Chiang CP. Pilot study of transurethral needle ablation (TUNA)in treatment of nonbacterial prostatitis. J Endourol,1997;11(5):367-370.
    47. Serel TA, Ko ar A, Ozturk A, Dogruer K, Taho lu M, Kecelio lu M. Treatment withneodymium: YAG laser in patients with chronic prostatitis: a preliminary report. IntUrol Nephrol,1997;29(1):53-58.
    48. Nickel JC, Siemens DR, Johnston B. Transurethral radiofrequency hot balloon thermaltherapy in chronic nonbacterial prostatitis. Tech Urol,1998;4(3):128-130.
    49.明德玉,郑华,单磊.经直肠He-Ne激光并超短波治疗慢性前列腺炎.中华物理医学与康复杂志,2002;24(11):690-691.
    50.冯若.超声空化与超声医学.中华超声影像学杂志,2004;13(1):63-65.
    51. Stride EP, Coussios CC. Cavitation and contrast: the use of bubbles in ultrasoundimaging and therapy. Proc Inst Mech Eng H,2010;224(2):171-191.
    52. Prentice P, Cuschieri A, Dholakia K, Prausnitz M, Campbell P. Membrane disruptionby optically controlled microbubble cavitation. Nat Phys,2005;1(2):107-110.
    53. Doinikov AA, Bouakaz A. Theoretical investigation of shear stress generated by acontrast microbubble on the cell membrane as a mechanism for sonoporation. J AcoustSoc Am,2010;128(1):11-19.
    54. Liu Z, Gao S, Zhao Y, Li P, Liu J, Li P, Tan K, Xie F. Disruption of tumor neovascul-ature by microbubble enhanced ultrasound: a potential new physical therapy ofanti-angiogenesis. Ultrasound Med Biol,2012;38(2):253-261.
    55. Moosavi Nejad S, Hosseini SH, Akiyama H, Tachibana K. Optical observation of cellsonoporation with low intensity ultrasound. Biochem Biophys Res Commun,2011;413(2):218-223.
    56. Zolochevska O, Xia X, Williams BJ, Ramsay A, Li S, Figueiredo ML. Sonoporationdelivery of interleukin-27gene therapy efficiently reduces prostate tumor cell growthin vivo. Hum Gene Ther,2011;22(12):1537-1550.
    57. Li P, Armstrong WF, Miller DL. Impact of myocardial contrast echocardiography onvascular permeability: comparison of three different contrast agents. Ultrasound MedBiol,2004;30(1):83-91.
    58. Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K. Cellularmechanisms of the blood-brain barrier opening induced by ultrasound in presence ofmicrobubbles. Ultrasound Med Biol,2004;30(7):979-989.
    59. Hagen EK, Forsberg F, Liu JB, Gomella LG, Aksnes AK, Merton DA, Johnson D,Goldberg BB. Contrast-enhanced power Doppler imaging of normal and decreasedblood flow in canine prostates. Ultrasound Med Biol,2001;27(7):909-913.
    60. Sano F, Terao H, Kawahara T, Miyoshi Y, Sasaki T, Noguchi K, Kubota Y, Uemura H.Contrast-enhanced ultrasonography of the prostate: various imaging findings thatindicate prostate cancer. BJU Int,2011;107(9):1404-1410.
    61. Liu P, Wang X, Zhou S, Hua X, Liu Z, Gao Y. Effects of a novel ultrasound contrastagent with long persistence on right ventricular pressure: Comparison with SonoVue.Ultrasonics,2011;51(2):210-214.
    62.刘平,高云华,谭开彬等.脑超声造影中超声强度对血脑屏障通透性的影响.中国超声医学杂志,2005;21(7)481-483.
    63.刘平,高云华,谭开彬等.经颅脑超声造影对血脑屏障通透性的影响.中华超声影像学杂志,2006;15(7):525-527.
    64. Jenssen C, Alvarez-Sánchez MV, Napoléon B, Faiss S. Diagnostic endoscopicultrasonography: Assessment of safety and prevention of complications. World JGastroenterol,2012;18(34):4659-4676.
    65. Robertson VJ, Baker KG. A review of therapeutic ultrasound: effectiveness studies.Phys Ther,2001;81(7):1339-1350.
    66. Yi K, Ji S, Kim J, Yoon J, Choi M. Contrast-enhanced ultrasound analysis of renalperfusion in normal micropigs. J Vet Sci,2012;13(3):311-314.
    67. Tang MX, Mulvana H, Gauthier T, Lim AK, Cosgrove DO, Eckersley RJ, Stride E.Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability.Interface Focus,2011;1(4):520-539.
    68. Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol,1968;3(5):356–366.
    69. Borden MA, Kruse DE, Caskey CF, Zhao S, Dayton PA, Ferrara KW. Influence oflipid shell physicochemical properties on ultrasound-induced microbubble destruction.IEEE Trans Ultrason Ferroelectr Freq Control,2005;52(11):1992-2002.
    70. Ferrara KW, Borden MA, Zhang H. Lipid-shelled vehicles: engineering for ultrasoundmolecular imaging and drug delivery. Acc Chem Res,2009;42(7):881-892.
    71. Klibanov AL. Microbubble contrast agents: targeted ultrasound imaging andultrasound-assisted drug-delivery applications. Invest Radiol,2006;41(3):354-362.
    72.沈圆圆,高钟镐, Natalya Rapoport.超声微泡作为基因或药物载体的研究进展.药学学报,2009;44(9):961-966.
    73. Kang ST, Yeh CK. Ultrasound microbubble contrast agents for diagnostic andtherapeutic applications: current status and future design. Chang Gung Med J,2012;35(2):125-139.
    74. Dijkmans PA, Juffermans LJ, Musters RJ, van Wamel A, ten Cate FJ, van Gilst W,Visser CA, de Jong N, Kamp O. Microbubbles and ultrasound: from diagnosis totherapy. Eur J Echocardiogr,2004;5(4):245-256.
    75. Unger EC, Matsunaga TO, McCreery T, Schumann P, Sweitzer R, Quigley R.Therapeutic applications of microbubbles. Eur J Radiol,2002;42(2):160-168.
    76. Bao S, Thrall BD, Miller DL. Transfection of a reporter plasmid into cultured cells bysonoporation in vitro. Ultrasound Med Biol,1997;23(6):953-959.
    77. Ward M, Wu J, Chiu JF. Experimental study of the effects of Optison concentration onsonoporation in vitro. Ultrasound Med Biol,2000;26(7):1169-1175.
    78.初志战,黄卓烈,丘泰球.超声法转基因及其应用前景.声学技术,2002;21(4):171-173.
    79.莫润阳,林书玉,王成会.超声空化的研究方法及进展.应用声学,2009;28(5):389-400.
    80.朱晗晓,蔡迅梓,严世贵.低频超声增强抗生素抗菌疗效研究进展.国际骨科学杂志,2009;30(5):275-277.
    81.刘忠华,刘贻尧,杨红.超声空化效应和超声微泡在生物医学中的应用.生物技术通讯,2008;19(3):475-478.
    82.项飞翔,王新房,谢明星,周翔,张艳容,张丽.国产超声造影剂在超声辐照下对肝细胞产生的生物效应.中国医学影像技术,2007;23(3):325-328.
    83. Miller DL, Pislaru SV, Greenleaf JE. Sonoporation: mechanical DNA delivery byultrasonic cavitation. Somat Cell Mol Genet,2002;27(1-6):115-134.
    84. Liu Y, Yang H, Sakanishi A. Ultrasound: mechanical gene transfer into plant cells bysonoporation. Biotechnol Adv,2006;24(1):1-16.
    85. Wu J, Nyborg WL. Ultrasound, cavitation bubbles and their interaction with cells. AdvDrug Deliv Rev,2008;60(10):1103-1116.
    86.邱媛媛,张春兵,屠娟,章东.微气泡激发的声微流对细胞声孔效应的影响.声学学报,2012;37(1):91-96.
    87. Forbes MM, Steinberg RL, O'Brien WD Jr. Frequency-dependent evaluation of therole of definity in producing sonoporation of Chinese hamster ovary cells. JUltrasound Med,2011;30(1):61-69.
    88. Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents:fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng,2007;9:415-447.
    89. Geis NA, Katus HA, Bekeredjian R. Microbubbles as a vehicle for gene and drugdelivery: current clinical implications and future perspectives.Curr Pharm Des,2012;18(15):2166-2183.
    90. Kaya M, Ahishali B. Assessment of permeability in barrier type of endothelium inbrain using tracers: Evans blue, sodium fluorescein, and horseradish peroxidase.Methods Mol Biol,2011;763:369-382.
    91. Roelants M, Huygens A, Crnolatac I, Van Cleynenbreugel B, Lerut E, Van Poppel H,de Witte PA. Evans blue as a selective dye marker for white-light diagnosis ofnon-muscle-invasive bladder cancer: an in vitro study. BJU Int,2012;109(2):300-305.
    92. Manaenko A, Chen H, Kammer J, Zhang JH, Tang J. Comparison Evans Blueinjection routes: Intravenous versus intraperitoneal, for measurement of blood-brainbarrier in a mice hemorrhage model. J Neurosci Methods,2011;195(2):206-210.
    93. Krieger JN, Lee SW, Jeon J, Cheah PY, Liong ML, Riley DE. Epidemiology ofprostatitis. Int J Antimicrob Agents,2008;31Suppl1:S85-90.
    94. Bajpayee P, Kumar K, Sharma S, Maurya N, Kumar P, Singh R, Lal C. Prostatitis:prevalence, health impact and quality improvement strategies. Acta Pol Pharm,2012;69(4):571-579.
    95. Cohen JM, Fagin AP, Hariton E, Niska JR, Pierce MW, Kuriyama A, Whelan JS,Jackson JL, Dimitrakoff JD. Therapeutic Intervention for Chronic Prostatitis/ChronicPelvic Pain Syndrome (CP/CPPS): A Systematic Review and Meta-Analysis. PLoSOne,2012;7(8):e41941.
    96. Ortiz R, Au JL, Lu Z, Gan Y, Wientjes MG. Biodegradable intraprostatic doxorubicinimplants. AAPS J,2007;9(2):E241-E250.
    97. Yongliang Liu, Zheng Liu, Tao Li, Gang Ye. Ultrasonic sonoporation can enhance theprostate permeability. Med Hypotheses,2010;74(3):449-451.
    98. Timmers M, Vermijlen D, Vekemans K, De Zanger R, Wisse E, Braet F. TracingDiO-labelled tumour cells in liver sections by confocal laser scanning microscopy. JMicrosc,2002;208(Pt1):65-74.
    99. Banerjee D, Pal SK. Dynamics in the DNA recognition by DAPI: exploration of thevarious binding modes. J Phys Chem B,2008;112(3):1016-1021.
    100.Yasujima T, Ohta K, Inoue K, Yuasa H. Characterization of human OCT1-mediatedtransport of DAPI as a fluorescent probe substrate. J Pharm Sci,2011;100(9):4006-4012.
    101. Ruan S, Gu Z, Yang Y. Energy dispersive X-ray analysis in studying the permeabilityof blood-brain barrier caused by lead in rats. Zhonghua Yu Fang Yi Xue Za Zhi,1999;33(2):107-109.
    102. Luo L, Liu Y, Zhang X, Liu Y. Changes of blood aqueous barrier afterphacoemulsification in rabbits. Yan Ke Xue Bao,2003;19(1):6-9.
    103. Kong WM, Gong J, Dong L, Chen MX. Changes in tight junction of intestinalmucosa in patients with irritable bowel syndrome: a study with tracing electronmicroscope. Nan Fang Yi Ke Da Xue Xue Bao,2007;27(8):1167-1170.
    104. Hua X, Zhu LP, Li R, Zhong H, Xue YF, Chen ZH. Effects of diagnostic contrast-enhanced ultrasound on permeability of placental barrier: a primary study. Placenta,2009;30(9):780-784.
    105. Kyrylkova K, Kyryachenko S, Leid M, Kioussi C. Detection of apoptosis by TUNELassay. Methods Mol Biol,2012;887:41-47.
    106. Dutta D, Park I, Mills NC. Fixation temperature affects DNA integrity in the testis asmeasured by the TUNEL assay. Toxicol Pathol,2012;40(4):667-674.
    107. Toga K, Yoda S, Maekawa K. The TUNEL assay suggests mandibular regression byprogrammed cell death during presoldier differentiation in the nasute termiteNasutitermes takasagoensis. Naturwissenschaften,2011;98(9):801-806.
    108. Kumari D, Nair N, Bedwal RS. Testicular apoptosis after dietary zinc deficiency:ultrastructural and TUNEL studies. Syst Biol Reprod Med,2011;57(5):233-243.
    1. Jenssen C, Alvarez-Sánchez MV, Napoléon B, Faiss S. Diagnostic endoscopicultrasonography: Assessment of safety and prevention of complications. World JGastroenterol,2012;18(34):4659-4676.
    2. Anderson CR, Hu X, Zhang H, Tlaxca J, Declèves AE, Houghtaling R, Sharma K,Lawrence M, Ferrara KW, Rychak JJ. Ultrasound molecular imaging of tumorangiogenesis with an integrin targeted microbubble contrast agent. Invest Radiol,2011;46(4):215-224.
    3. Robertson VJ, Baker KG. A review of therapeutic ultrasound: effectiveness studies.Phys Ther,2001;81(7):1339-1350.
    4. Church CC, O'Brien WD Jr. Evaluation of the threshold for lung hemorrhage bydiagnostic ultrasound and a proposed new safety index. Ultrasound Med Biol,2007;33(5):810-818.
    5. Stratmeyer ME, Greenleaf JF, Dalecki D, Salvesen KA. Fetal ultrasound: mechanicaleffects. J Ultrasound Med,2008;27(4):597-605.
    6. Church CC, Carstensen EL, Nyborg WL, Carson PL, Frizzell LA, Bailey MR. Therisk of exposure to diagnostic ultrasound in postnatal subjects: nonthermalmechanisms. J Ultrasound Med,2008;27(4):565-592.
    7. Pietrow PK, Auge BK, Zhong P, Preminger GM. Clinical efficacy of a combinationpneumatic and ultrasonic lithotrite. J Urol,2003;169(4):1247-1249.
    8. Auge BK, Lallas CD, Pietrow PK, Zhong P, Preminger GM. In vitro comparison ofstandard ultrasound and pneumatic lithotrites with a new combination intracorporeallithotripsy device. Urology,2002;60(1):28-32.
    9. Olbert P, Weber J, Hegele A, Varga Z, Heidenreich A, Hofmann R. CombiningLithoclast and ultrasound power in one device for percutaneous nephrolithotomy: invitro results of a novel and highly effective technology. Urology,2003;61(1):55-59.
    10. Ryan DL, Darby M, Bauman D, Tolle SL, Naik D. Effects of ultrasonic scaling andhand-activated scaling on tactile sensitivity in dental hygiene students. J Dent Hyg,2005;79(1):9.
    11. Chen C, Liu Y, Maruvada S, Myers M, Khismatullin D. Ethanol injection inducedcavitation and heating in tissue exposed to high intensity focused ultrasound. J AcoustSoc Am,2012;132(3):2038.
    12. Jewell ML, Weiss RA, Baxter RA, Cox SE, Dover JS, Donofrio LM, Glogau RG,Kane MC, Martin P, Lawrence ID, Schlessinger J. Safety and tolerability ofhigh-intensity focused ultrasonography for noninvasive body sculpting:24-week datafrom a randomized, sham-controlled study. Aesthet Surg J,2012;32(7):868-876.
    13. Sountoulides P, Theodosiou A, Finazzi-Agró E. The current role of high-intensityfocused ultrasound for the management of radiation-recurrent prostate cancer. ExpertRev Med Devices,2012;9(4):401-408.
    14.冯若.超声空化与超声医学.中华超声影像学杂志,2004;13(1):63-65.
    15. Stride EP, Coussios CC. Cavitation and contrast: the use of bubbles in ultrasoundimaging and therapy. Proc Inst Mech Eng H,2010;224(2):171-191.
    16. Rayleigh I. The pressure generated by explosion of a cavity inliquid. Philos. Mag.,1917;34:94-98.
    17. Coussios CC, Farny CH, Haar GT, Roy RA. Role of acoustic cavitation in the deliveryand monitoring of cancer treatment by high-intensity focused ultrasound (HIFU). Int JHyperthermia,2007;23(2):105-120.
    18. Anderson SJ, Perlitz DA, Bonness WK, Capone DE. Acoustic cavitation localizationin reverberant environments. J Acoust Soc Am,2012;132(3):2055.
    19. Roy RA, Atchley AA, Crum LA, Fowlkes JB, Reidy JJ. A precise technique for themeasurement of acoustic cavitation thresholds and some preliminary results. J AcoustSoc Am,1985;78(5):1799-1805.
    20. Ter Harr GR, Daniels S, Morton K. Evidence for acoustic cavitation in vivo:thresholds for bubble formation with0.75-MHz continuous wave and pulsed beams.IEEE Trans Ultrason Ferroelectr Freq Control,1986;33(2):162-164.
    21. Holland CK, Apfel RE. Thresholds for transient cavitation produced by pulsedultrasound in a controlled nuclei environment. J Acoust Soc Am,1990;88(5):2059-2069.
    22. Giesecke T, Hynynen K. Ultrasound-mediated cavitation thresholds of liquidperfluorocarbon droplets in vitro. Ultrasound Med Biol,2003;29(9):1359-1365.
    23. Deng CX, Xu Q, Apfel RE, Holland CK. In vitro measurements of inertial cavitationthresholds in human blood. Ultrasound Med Biol,1996;22(7):939-948.
    24. Styn N, Hall TL, Fowlkes JB, Cain CA, Roberts WW. Histotripsy homogenization ofthe prostate: thresholds for cavitation damage of periprostatic structures. J Endourol,2011;25(9):1531-1535.
    25. Chen WS, Matula TJ, Brayman AA, Crum LA. A comparison of the fragmentationthresholds and inertial cavitation doses of different ultrasound contrast agents. JAcoust Soc Am,2003;113(1):643-651.
    26. Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol,1968;3(5):356–366.
    27. Postema M, Schmitz G. Bubble dynamics involved in ultrasonic imaging. Expert RevMol Diagn,2006;6(3):493-502.
    28. Casciaro S, Palmizio Errico R, Conversano F, Demitri C, Distante A. Experimentalinvestigations of nonlinearities and destruction mechanisms of an experimentalphospholipid-based ultrasound contrast agent. Invest Radiol,2007;42(2):95-104.
    29. Doinikov AA, Haac JF, Dayton PA. Modeling of nonlinear viscous stress inencapsulating shells of lipid-coated contrast agent microbubbles. Ultrasonics,2009;49(2):269-275.
    30. Dijkmans PA, Juffermans LJ, Musters RJ, van Wamel A, ten Cate FJ, van Gilst W,Visser CA, de Jong N, Kamp O. Microbubbles and ultrasound: from diagnosis totherapy. Eur J Echocardiogr,2004;5(4):245-256.
    31. Unger EC, Matsunaga TO, McCreery T, Schumann P, Sweitzer R, Quigley R.Therapeutic applications of microbubbles. Eur J Radiol,2002;42(2):160-168.
    32. Borden MA, Kruse DE, Caskey CF, Zhao S, Dayton PA, Ferrara KW. Influence oflipid shell physicochemical properties on ultrasound-induced microbubble destruction.IEEE Trans Ultrason Ferroelectr Freq Control,2005;52(11):1992-2002.
    33. Wu J, Nyborg WL. Ultrasound, cavitation bubbles and their interaction with cells. AdvDrug Deliv Rev,2008;60(10):1103-1116.
    34. Ferrara KW, Borden MA, Zhang H. Lipid-shelled vehicles: engineering for ultrasoundmolecular imaging and drug delivery. Acc Chem Res,2009;42(7):881-892.
    35.初志战,黄卓烈,丘泰球.超声法转基因及其应用前景.声学技术,2002;21(4):171-173.
    36.莫润阳,林书玉,王成会.超声空化的研究方法及进展.应用声学,2009;28(5):389-400.
    37.朱晗晓,蔡迅梓,严世贵.低频超声增强抗生素抗菌疗效研究进展.国际骨科学杂志,2009;30(5):275-277.
    38.刘忠华,刘贻尧,杨红.超声空化效应和超声微泡在生物医学中的应用.生物技术通讯,2008;19(3):475-478.
    39. Miller DL, Pislaru SV, Greenleaf JE. Sonoporation: mechanical DNA delivery byultrasonic cavitation. Somat Cell Mol Genet,2002;27(1-6):115-134.
    40. Liu Y, Yang H, Sakanishi A. Ultrasound: mechanical gene transfer into plant cells bysonoporation. Biotechnol Adv,2006;24(1):1-16.
    41. Bao S, Thrall BD, Miller DL. Transfection of a reporter plasmid into cultured cells bysonoporation in vitro. Ultrasound Med Biol,1997;23(6):953-959.
    42. Ward M, Wu J, Chiu JF. Experimental study of the effects of Optison concentration onsonoporation in vitro. Ultrasound Med Biol,2000;26(7):1169-1175.
    43.邱媛媛,张春兵,屠娟,章东.微气泡激发的声微流对细胞声孔效应的影响.声学学报,2012;37(1):91-96.
    44. Forbes MM, Steinberg RL, O'Brien WD Jr. Frequency-dependent evaluation of therole of definity in producing sonoporation of Chinese hamster ovary cells. JUltrasound Med,2011;30(1):61-69.
    45. Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents:fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng,2007;9:415-447.
    46. Geis NA, Katus HA, Bekeredjian R. Microbubbles as a vehicle for gene and drugdelivery: current clinical implications and future perspectives. Curr Pharm Des,2012;18(15):2166-2183.
    47. Mayer CR, Geis NA, Katus HA, Bekeredjian R. Ultrasound targeted microbubbledestruction for drug and gene delivery. Expert Opin Drug Deliv,2008;5(10):1121-1138.
    48. Tsutsui JM, Grayburn PA, Xie F, Porter TR. Drug and gene delivery and enhancementof thrombolysis using ultrasound and microbubbles. Cardiol Clin,2004;22(2):
    49. Bekeredjian R, Grayburn PA, Shohet RV. Use of ultrasound contrast agents for gene ordrug delivery in cardiovascular medicine. J Am Coll Cardiol,2005;45(3):329-335.
    50. Landini L, Santarelli MF, Landini L, Positano V. Ultrasound techniques for drugdelivery in cardiovascular medicine. Curr Drug Discov Technol,2008;5(4):328-332.
    51. Laing ST, McPherson DD. Cardiovascular therapeutic uses of targeted ultrasoundcontrast agents. Cardiovasc Res,2009;83(4):626-635.
    52. Bekeredjian R, Kroll RD, Fein E, Tinkov S, Coester C, Winter G, Katus HA, KulaksizH. Ultrasound targeted microbubble destruction increases capillary permeability inhepatomas. Ultrasound Med Biol,2007;33(10):1592-1598.
    53. Hu YZ, Zhu JA, Jiang YG, Hu B. Ultrasound microbubble contrast agents: applicationto therapy for peripheral vascular disease. Adv Ther,2009;26(4):425-434.
    54.沈圆圆,高钟镐, Natalya Rapoport.超声微泡作为基因或药物载体的研究进展.药学学报,2009;44(9):961-966.
    55. Kang ST, Yeh CK. Ultrasound microbubble contrast agents for diagnostic andtherapeutic applications: current status and future design. Chang Gung Med J,2012;35(2):125-139.
    56. Klibanov AL. Microbubble contrast agents: targeted ultrasound imaging andultrasound-assisted drug-delivery applications. Invest Radiol,2006;41(3):354-362.
    57. O'Brien WD Jr. Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol,2007;93(1-3):212-255.
    58. Carstensen EL. Acoustic cavitation and the safety of diagnostic ultrasound.Ultrasound Med Biol,1987;13(10):597-606.
    59. Topcuoglu MA, Saka E, Onal MZ. Hyperoxia potentiated sonothrombolysis as amethod of acute ischemic stroke therapy. Med Hypotheses,2006;66(1):59-65.
    60. Molina CA, Ribo M, Rubiera M, Montaner J, Santamarina E, Delgado-Mederos R,Arenillas JF, Huertas R, Purroy F, Delgado P, Alvarez-Sabín J. Microbubbleadministration accelerates clot lysis during continuous2-MHz ultrasound monitoringin stroke patients treated with intravenous tissue plasminogen activator. Stroke,2006;37(2):425-429.
    61. Maruyama K, Suzuki R, Takizawa T, Utoguchi N, Negishi Y. Drug and gene deliveryby "bubble liposomes" and ultrasound. Yakugaku Zasshi,2007;127(5):781-787.
    62.刘红霞,常淑芳,孙江川,王志刚.超声联合紫杉醇微泡对卵巢癌细胞株A2780/DDP增殖和凋亡的影响.重庆医科大学学报,2012;37(5):389-392.
    63.刘亚敏,孙江川,王志刚,常淑芳,李兴升.超声破坏紫杉醇微泡对卵巢癌细胞株SKOV3的抑制增殖及诱导凋亡作用.中国超声医学杂志,2007;23(5):340-342.
    64. Xing W, Gang WZ, Yong Z, Yi ZY, Shan XC, Tao RH. Treatment of xenograftedovarian carcinoma using paclitaxel-loaded ultrasound microbubbles. Acad Radiol,2008;15(12):1574-1579.
    65.刘瑶,康娟,吴小翎,王志刚,汪朝霞,李攀,王珏.载紫杉醇超声微泡造影剂对人肝癌细胞株HepG_2增殖影响及诱导凋亡作用研究.中国超声医学杂志,2008;24(8):676-678.
    66. Yang L, Shirakata Y, Tamai K, Dai X, Hanakawa Y, Tokumaru S, Yahata Y, TohyamaM, Shiraishi K, Nagai H, Wang X, Murakami S, Sayama K, Kaneda Y, Hashimoto K.Microbubble-enhanced ultrasound for gene transfer into living skin equivalents. JDermatol Sci,2005;40(2):105-114.
    67. Qiu L, Zhang L, Wang L, Jiang Y, Luo Y, Peng Y, Lin L. Ultrasound-targetedmicrobubble destruction enhances naked plasmid DNA transfection in rabbit Achillestendons in vivo. Gene Ther,2012;19(7):703-710.
    68. Nie F, Xu HX, Tang Q, Lu MD. Microbubble-enhanced ultrasound exposure improvesgene transfer in vascular endothelial cells. World J Gastroenterol,2006;12(46):7508-7513.
    69. Korpanty G, Chen S, Shohet RV, Ding J, Yang B, Frenkel PA, Grayburn PA. Targetingof VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction ofmicrobubbles. Gene Ther,2005;12(17):1305-1312.
    70. Chen WJ, Xiong ZA, Tang Y, Dong PT, Li P, Wang ZG. Feasibility and effect ofultrasound microbubble-mediated wild-type p53gene transfection of HeLa cells. ExpTher Med,2012;3(6):999-1004.
    71. Suzuki R, Namai E, Oda Y, Nishiie N, Otake S, Koshima R, Hirata K, Taira Y,Utoguchi N, Negishi Y, Nakagawa S, Maruyama K. Cancer gene therapy by IL-12gene delivery using liposomal bubbles and tumoral ultrasound exposure. J ControlRelease,2010;14(2):245-250.
    72. Carson AR, McTiernan CF, Lavery L, Hodnick A, Grata M, Leng X, Wang J, Chen X,Modzelewski RA, Villanueva FS. Gene therapy of carcinoma usingultrasound-targeted microbubble destruction. Ultrasound Med Biol,2011;37(3):393-402.
    73. Li P, Armstrong WF, Miller DL. Impact of myocardial contrast echocardiography onvascular permeability: comparison of three different contrast agents. Ultrasound MedBiol,2004;30(1):83-91.
    74.高云华,谭开彬.超声造影剂介导靶向治疗的研究进展.中华超声影像学杂志,2004;13(12):951-952.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700