低弹性模量仿生种植体的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     研究与骨组织弹性模量相匹配的生物活性种植体,并通过一系列体内外试验评价该种植体的生物相容性、骨结合能力、生物力学相容性等特点,以及周围骨组织的力学生物学反应,从而为该种植体的临床应用提供基础研究。
     方法
     以近β型TLM钛合金(Ti25Nb3Zr3Mo2Sn)作为种植体的基体材料,其弹性模量约为纯钛的1/2,而力学强度高于纯钛。为了提高钛合金表面的生物活性,通过微弧氧化(MAO)水热后处理(Htt)技术,在种植体表面形成粗糙多孔并复合有纳米HA的仿生涂层,从而制备低弹性模量的仿生种植体。通过检测该涂层的表面形貌、物相结构、粗糙度、亲水性等表征涂层的理化性能;以溶血实验、细胞毒性实验、急性全身毒性实验、皮下植入试验等评价种植体的生物相容;并在Beagle犬颌骨内骨水平植入该种植体,与相同处理的纯钛种植体和光滑表面的纯钛种植体相比较,结合Raman光谱、纳米压痕、硬组织切片等手段分析该种植体骨结合的质量。进一步通过延期负重,模拟种植体口内负载的环境,与高弹性模量的相同表面处理的纯钛种植体相比较,研究力学负载条件下TLM钛合金种植体(低弹性模量)结合骨的力学生物学行为,特别是种植体颈部骨结合的骨改建,以硬组织切片、Raman光谱、纳米压痕等多学科手段定量地研究该低弹性模量仿生种植体的生物活性和生物力学相容性优势。
     结果
     1. TLM钛合金经过微弧氧化处理(MAO)在其表面构建与牙本质小管相似的粗糙多孔结构,结合水热后处理(Htt),在该多孔结构的基础上复合生物活性的薄层纳米HA,从而构建出与牙本质-牙骨质复合体结构相似的种植体仿生涂层。
     2. TLM-MAO-Htt涂层理化性能的表征其表面粗糙度Ra为1.684μm,接触角为13.8±1.7°,亲水性大大提高;Ti-MAO-Htt涂层的表面结构、粗糙度、亲水性等与TLM-MAO-Htt涂层相似,二者间无明显区别。
     3.一系列的生物相容性实验证实TLM-MAO-Htt和Ti-MAO-Htt涂层具有很好的生物相容性,并具有异位成骨能力。
     4. Beagle犬颌骨内植入试验研究中,发现TLM-MAO-Htt种植体和相同处理的纯钛种植体(Ti-MAO-Htt)骨结合的效率和质量无明显差别,但二者均明显高于光滑表面的纯钛种植体(Ti-S)。
     5.在种植体延期负载试验中,发现高弹性模量的Ti-MAO-Htt种植体的骨结合率、螺纹内骨的面积率、皮质骨区结合骨的弹性模量和硬度均显著低于低弹性模量的TLM-MAO-Htt种植体(P≤0.05);而Ti-MAO-Htt种植体颈部呈角形骨吸收,种植体结合骨的骨改建较TLM-MAO-Htt种植体活跃。
     结论
     1.通过微弧氧化水热处理可在TLM钛合金表面成功构建粗糙多孔并复合有纳米HA的微纳米结构,与牙本质-牙骨质复合体结构相似,初步实现了牙种植体仿生涂层的构建。
     2. TLM-MAO-Htt涂层具有很高的亲水性、生物相容性和生物活性。
     3. TLM-MAO-Htt和Ti-MAO-Htt两组种植体的骨结合质量明显优于未处理的光滑纯钛组种植体。
     4.低弹性模量的TLM-MAO-Htt种植体与高弹性模量Ti-MAO-Htt种植体相比较,低弹性模量组种植体与周围骨组织间具有更好的力学相容性。
Objective
     To design study a bioactive implant that its elastic modulus matches with thebone tissue through both in vitro and in vivo tests which are able to evaluate thebiocompatibility and biomechanical compatibility of the implant, as well as themechanical biological reaction of the bone tissue around the implant so as to provide a basicstudy for the clinical application of this kind of implant.
     Methods
     TLM titanium alloy (Ti25Nb3Zr3Mo2Sn) which was approximate to β type wasused as the base material for the implant. Its elastic modulus is about1/2of the puretitanium while the mechanical strength is higher. In order to improve the biologicalactivity of the TLM titanium alloy surface, a biomimetic coating with rough andporous structure compounded with nano-HA was prepared via micro-arc oxidation(MAO) and hydrothermal treatment (Htt). In such a manner, two kinds of bionicimplants (TLM-MAO-Htt and Ti-MAO-Htt) were prepared. The surface morphology,phase structure, roughness and hydrophilicity of the coating were detected to characterize itsphysicochemical properties and the hemolysis experiments, cell toxicity test, acute systemictoxicity test and subcutaneous implantation test were applied to evaluate the biocompatibilityof the implants. We also embedded the TLM-MAO-Htt and Ti-MAO-Htt implants intobeagle dogs’ mandible at bone margin level and analyzed the quality of theosseointegration through Raman spectroscopy, nanoindentation, hard tissue slices analysescompared with both rough (Ti-MAO-Htt) and smooth pure titanium implant(Ti-S) with thesame processing. Delayed loading on the implants which can simulate the intraoral loadingenvironment was further carried on to study the mechanical biological behavior ofosseointegrated bone around the TLM-MAO-Htt and Ti-MAO-Htt implants, especially the osseointegration at the neck position. With multidisciplinary approaches of hard tissuesections analysis, Raman spectroscopy and nanoindentation, we quantitatively studied thebioactive and biomechanical compatible advantages of the low elastic modulus implants(TLM-MAO-Htt) compared to the high elastic modulus implants (Ti-MAO-Htt).
     Results
     1. TLM titanium alloy possessed a porous surface comprised of bioactive nanoHA after micro-arc oxidation (MAO) and hot water (Htt) treatment, which wassuccessfully mimicked the natural structure of dentin-cementum complex.
     2. The surface roughness (Ra) of TLM-MAO-Htt coating, was1.684μm; thecontact angle was13.8±1.7°and the hydrophilicity is enhanced; meanwhile, thecoating structure, roughness, and hydrophilic of Ti-MAO-Htt surface was similar tothe TLM-MAO-Htt coating, with no significant difference.
     3. The coating of TLM-MAO-Htt and Ti-MAO-Htt implants exhibited goodbiocompatibility and ectopic bone formation ability.
     4. No significant differences were found in the efficiency and quality ofosseointegration between the TLM-MAO-Htt implants and Ti-MAO-Htt implants inin vivo experiment, but both were significantly higher than the Ti-S implants(P≤0.05).
     5. In the delayed loading test, we found that the osseointegration rate, percentageof bone inside the thread (BIT), the hardness and elastic modulus of cortical bonearound implants were much lower in the Ti-MAO-Htt group comparing to theTLM-MAO-Htt group (P≤0.05). There were significant angular resorption in thecortical bone around neck of Ti-MAO-Htt implants, and the bone remodeling wassignificantly more active than TLM-MAO-Htt group.
     Conclusions
     1. By micro-arc oxidation and water heat operation on TLM titanium alloysurface, a rough and porous biomimetic coating with nano-HA can be successfullyconstructed, which is similar to dentin-cementum complex.
     2. Our TLM-MAO-Htt coating exhibits a favorable hydrophilicity,biocompatibility and bioactivity.
     3. The quality of osseointegration of TLM-MAO-Htt implants is similar toTi-MAO-Htt implants and superior to Ti-S implants.
     4. Compared with high elastic modulus implants (Ti-MAO-Htt), TLM-MAO-Httimplants with low elastic modulus possess a better mechanical compatibility with thesurrounding bone.
引文
[1] Van Noort R.Reviw titanium:the implant materials of today[J].J Mater Sci,1989,22:3801-3811.
    [2]刘宝林,林野,李德华.口腔种植学[M].北京:人民卫生出版社.2011:20-21.
    [3] Ellingsen JE, Thomsen P, Lyngstadaas SP. Advances in dental implant materials and tissue regeneration[J].Periodontol2000.2006.41:136-56..
    [4]胥少汀,葛宝丰,徐印坎..实用骨科学[M].北京:北京人民军医出版社,2005:73.
    [5] Wen CE, Yamada Y, Shimojima K, Chino Y, Asahina T, Mabuchi M. Processing and mechanical propertiesof autogenous titanium implant materials[J]. J Mater Sci Mater Med.2002.13(4):397-401..
    [6] Merle C, Streit MR, Volz C, et al. Bone remodeling around stable uncemented titanium stems during thesecond decade after total hip arthroplasty: a DXA study at12and17years[J]. Osteoporos Int,2011,22(11):2879-86.
    [7] Li X, Feng YF, Wang CT, et al. Evaluation of biological properties of electron beam melted Ti6Al4Vimplant with biomimetic coating in vitro and in vivo[J]. PLOS ONE,2012,7(12):e52049.
    [8] Gong H, Wang L, Zheng D, et al. The potential application of functionally graded material for proximalfemoral nail antirotation device[J]. Med Hypotheses,2012,79(3):415-7.
    [9] Zhao X, Niinomi M, Nakai M, et al. Optimization of Cr content of metastable beta-type Ti-Cr alloys withchangeable Young's modulus for spinal fixation applications[J]. Acta Biomater,2012,8(6):2392-400.
    [10] Niinomi M, Nakai M. Titanium-Based Biomaterials for Preventing Stress Shielding between ImplantDevices and Bone[J]. Int J Biomater,2011,2011:836587.
    [11] Miura K, Yamada N, Hanada S, et al. The bone tissue compatibility of a new Ti-Nb-Sn alloy with a lowYoung's modulus[J]. Acta Biomater,2011,7(5):2320-6.
    [12] Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications[J]. ActaBiomater,2012,8(11):3888-903.
    [13]于振涛,张亚锋,等.近β型钛合金Ti4ZrlSn3M025Nb(TLM)热处理与材料强化研究[J].稀有金属材料与工程,2008,34(S4):542-45.
    [14]罗智斌,丁学强.低弹性模量纯钛种植体的生物力学测试--体外模型实验[J].中国口腔种植学杂志,2002,7(3):118-120,131.
    [15]罗智斌,丁学强,李似聪.低弹性模量纯钛种植体的生物力学测试--在体实验研究[J].中国口腔种植学杂志,2004,9(2):51-53.
    [16]石磊,郭征,付军,等.低弹应力对钛合金植入物表面新骨形成的影响[J].中国现代医学杂志,2007,17(22):2703-2706,2709.
    [17] Long M, HJ Rack. Titanium alloys in total joint replacement--a materials science perspective[J].Biomaterials,1998,19(18):1621-39.
    [18] Lu Y, Zhu R, Lei T.[Current evolution of plasma sprayed hydroxyapatite coating[J]. Sheng Wu Yi XueGong Cheng Xue Za Zhi,2001,18(3):451-5,493.
    [19] Sergo V, Sbaizero O, Clarke DR. Mechanical and chemical consequences of the residual stresses in plasmasprayed hydroxyapatite coatings[J]. Biomaterials,1997,18(6):477-82.
    [20] Granato R, Marin C, Suzuki M, et al. Biomechanical and histomorphometric evaluation of a thin ion beambioceramic deposition on plateau root form implants: an experimental study in dogs[J]. J Biomed MaterRes B Appl Biomater,2009,90(1):396-403.
    [21] Coelho PG, JE.Lemons Physico/chemical characterization and in vivo evaluation of nanothicknessbioceramic depositions on alumina-blasted/acid-etched Ti-6Al-4V implant surfaces[J]. J Biomed Mater ResA,2009,90(2):351-61.
    [22] Yang Y, Kim KH, Ong JL. A review on calcium phosphate coatings produced using a sputtering process--analternative to plasma spraying[J]. Biomaterials,2005,26(3):327-37.
    [23] Rossler S, Sewing A, Stolzel M, et al. Electrochemically assisted deposition of thin calcium phosphatecoatings at near-physiological pH and temperature[J]. J Biomed Mater Res A,2003,64(4):655-63.
    [24] Zhao G, Schwartz Z, Wieland M, et al. High surface energy enhances cell response to titanium substratemicrostructure[J]. J Biomed Mater Res A,2005,74(1):49-58.
    [25]金凡亚,沈丽如,李炯.钛合金微弧氧化陶瓷膜微观特性的分析[J].材料保护,2005,(08):42-44+71.
    [26] Xiropaidis AV, Qahash M, Lim WH, et al. Bone-implant contact at calcium phosphate-coated and poroustitanium oxide (TiUnite)-modified oral implants[J]. Clin Oral Implants Res,2005,16(5):532-9.
    [27]马威,刘宝林,封兴华.成骨细胞在微弧氧化处理后纯钛表面的附着、增殖及ALP活性[J].实用口腔医学杂志,2005,(01):106-110.
    [28]张玉梅,黄平, P. Bataillon-linez HFH,等.钛表面处理后表面能分析及对细胞附着的影响[J].稀有金属材料与工程,2004,(05):518-521.
    [29]马楚凡,李贺军,张丽君.微弧氧化方法在钛表面注入钙磷离子及对成骨细胞早期附着的影响[J].第一军医大学学报,2005,(01):62-65.
    [30] Lim YW, Kwon SY, Sun DH, et al. Enhanced cell integration to titanium alloy by surface treatment withmicroarc oxidation: a pilot study[J]. Clin Orthop Relat Res,2009,467(9):2251-8.
    [31]魏建华,刘宝林,付涛,等.四种钛种植体表面在模拟体液中诱导磷灰石沉积的研究[J].口腔医学研究,2003,19(1):25-27.
    [32] Butz F, Aita H, Wang CJ, et al. Harder and stiffer bone osseointegrated to roughened titanium[J]. J DentRes,2006,85(6):560-5.
    [33] Katz JL, Misra A, Spencer P, et al. Multiscale mechanics of hierarchical structure/property relationships incalcified tissues and tissue/material interfaces[J]. Mater Sci Eng A Struct Mater,2007,27(3):450-468.
    [34]于振涛,张亚锋,袁思波,等.近β型钛合金Ti4Zr1Sn3Mo25Nb(TLM)热处理与材料强化研究[J].稀有金属材料与工程,2008,(S4):542-545.
    [35] Liu F, Song Y, Wang F, et al. Formation characterization of hydroxyapatite on titanium by microarcoxidation and hydrothermal treatment[J]. J Biosci Bioeng,2005,100(1):100-4.
    [36] Kitamura E, Stegaroiu R, Nomura S, et al. Biomechanical aspects of marginal bone resorption aroundosseointegrated implants: considerations based on a three-dimensional finite element analysis[J]. Clin OralImplants Res,2004,15(4):401-12.
    [37] Huiskes R, Weinans H, van RB. The relationship between stress shielding and bone resorption around totalhip stems and the effects of flexible materials[J]. Clin Orthop Relat Res,1992,(274):124-34.
    [38] Bruellhoff K, Fiedler J, Moller M, et al. Surface coating strategies to prevent biofilm formation on implantsurfaces[J]. Int J Artif Organs,2010,33(9):646-53.
    [39]麻西群,于振涛,牛金龙,等. Ti3Zr2Sn3Mo25Nb医用钛合金相变与力学性能[J].中国有色金属学报,2010,20(z1):410-413.
    [40] Junker R, Dimakis A, Thoneick M, et al. Effects of implant surface coatings and composition on boneintegration: a systematic review[J]. Clin Oral Implants Res,2009,20Suppl4:185-206.
    [41] Sammons RL, Lumbikanonda N, Gross M, et al. Comparison of osteoblast spreading on microstructureddental implant surfaces and cell behaviour in an explant model of osseointegration. A scanning electronmicroscopic study[J]. Clin Oral Implants Res,2005,16(6):657-66.
    [42] MacDonald DE, Deo N, Markovic B, et al. Adsorption and dissolution behavior of human plasmafibronectin on thermally and chemically modified titanium dioxide particles. Biomaterials,2002,23(4):1269-79.
    [43]张明华,于振涛,周廉,等. β型钛合金材料的生物相容性评价[J].稀有金属材料与工程,2007,(10):1815-1819.
    [44] Zhu X, Chen J, Scheideler L, et al. Effects of topography and composition of titanium surface oxides onosteoblast responses[J]. Biomaterials,2004,25(18):4087-103.
    [45] Huang Y, Wang Y, Ning C, et al. Hydroxyapatite coatings produced on commercially pure titanium bymicro-arc oxidation[J]. Biomed Mater,2007,2(3):196-201.
    [46] Huang Y, Chang T, Yang C, et al. Mineralized and osteoid tissue from dental pulp stem cells on micro-arcoxidation titanium in vitro[J]. J Huazhong Univ Sci Technolog Med Sci,2012,32(4):620-5.
    [47] Li LH, Kong YM, Kim HW, et al. Improved biological performance of Ti implants due to surfacemodification by micro-arc oxidation[J]. Biomaterials,2004,25(14):2867-75.
    [48]张明华,于振涛,张殿忠,等. β型钛合金材料的生物相容性评价[J].中国组织工程研究与临床康复,2010,(42):7849-7853.
    [49] Wu J, Liu ZM, Zhao XH, et al. Improved biological performance of microarc-oxidized low-modulusTi-24Nb-4Zr-7.9Sn alloy[J]. J Biomed Mater Res B Appl Biomater,2010,92(2):298-306.
    [50]张莉.大鼠胰岛β细胞原代分离培养及近膜钙离子测定技术研究[J].临床儿科杂志,2011,29(8):769-772.
    [51] Guida L, Annunziata M, Rocci A, et al. Biological response of human bone marrow mesenchymal stemcells to fluoride-modified titanium surfaces[J]. Clin Oral Implants Res,2010,21(11):1234-41.
    [52] Martin JY, Schwartz Z, Hummert TW, et al. Effect of titanium surface roughness on proliferation,differentiation, and protein synthesis of human osteoblast-like cells (MG63)[J]. J Biomed Mater Res,1995,29(3):389-401.
    [53] Vandrovcová M, Ba áková L. Adhesion, growth and differentiation of osteoblasts on surface-modifiedmaterials developed for bone implants..[J]. Physiol Res.2011,60(3):403-17.
    [54] Avila G, Misch K, Galindo-Moreno P, et al. Implant surface treatment using biomimetic agents[J]. ImplantDent,2009,18(1):17-26.
    [55] Nasatzky E, Gultchin J, Schwartz Z. The role of surface roughness in promoting osteointegration [J].Refuat Hapeh Vehashinayim.2003Jul;20(3):8-19,98.
    [56] Nakashima Y, Hayashi K, Inadome T, et al. Hydroxyapatite-coating on titanium arc sprayed titaniumimplants[J]. J Biomed Mater Res,1997,35(3):287-98.
    [57] Chang CK, Wu JS, Mao DL, et al. Mechanical and histological evaluations of hydroxyapatite-coated andnoncoated Ti6Al4V implants in tibia bone[J]. J Biomed Mater Res,2001,56(1):17-23.
    [58] Li LH, Kong YM, Kim HW, et al. Improved biological performance of Ti implants due to surfacemodification by micro-arc oxidation[J]. Biomaterials,2004,25(14):2867-75.
    [59] Bigerelle M.&K. Anselme. Statistical correlation between cell adhesion and proliferation on biocompatiblemetallic materials[J]. J Biomed Mater Res A,2005,72(1):36-46.
    [60] Rajaraman R, Rounds DE, Yen SP, et al. A scanning electron microscope study of cell adhesion andspreading in vitro[J]. Exp Cell Res,1974,88(2):327-39.
    [61] Anselme K, Bigerelle M, Noel B, et al. Qualitative and quantitative study of human osteoblast adhesion onmaterials with various surface roughnesses[J]. J Biomed Mater Res,2000,49(2):155-66.
    [62] Hunter A, Archer CW, Walker PS, et al. Attachment and proliferation of osteoblasts and fibroblasts onbiomaterials for orthopaedic use[J]. Biomaterials,1995,16(4):287-95.
    [63] Schwartz Z, Olivares-Navarrete R, Wieland M, et al. Mechanisms regulating increased production ofosteoprotegerin by osteoblasts cultured on microstructured titanium surfaces[J]. Biomaterials,2009,30(20):3390-6.
    [64] Kim MJ, Kim CW, Lim YJ, et al. Microrough titanium surface affects biologic response in MG63osteoblast-like cells[J]. J Biomed Mater Res A,2006,79(4):1023-32.
    [65] Zhao G, Zinger O, Schwartz Z, et al. Osteoblast-like cells are sensitive to submicron-scale surfacestructure[J]. Clin Oral Implants Res,2006,17(3):258-64.
    [66] Kubo K, Tsukimura N, Iwasa F, et al. Cellular behavior on TiO2nanonodular structures in amicro-to-nanoscale hierarchy model[J]. Biomaterials,2009,30(29):5319-29.
    [67] Garcia AJ.&CD.Reyes. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation[J].J Dent Res,2005,84(5):407-13.
    [68] Stein GS, Lian JB, Owen TA. Relationship of cell growth to the regulation of tissue-specific geneexpression during osteoblast differentiation[J]. FASEB J,1990,4(13):3111-23.
    [69] Franceschi RT.&BS.Iyer. Relationship between collagen synthesis and expression of the osteoblastphenotype in MC3T3-E1cells[J]. J Bone Miner Res,1992,7(2):235-46.
    [70] Franceschi RT, Iyer BS, Cui Y. Effects of ascorbic acid on collagen matrix formation and osteoblastdifferentiation in murine MC3T3-E1cells[J]. J Bone Miner Res,1994,9(6):843-54.
    [71] Franceschi RT, Wilson JX, Dixon SJ. Requirement for Na(+)-dependent ascorbic acid transport inosteoblast function[J]. Am J Physiol,1995,268(6Pt1):C1430-9.
    [72] Quarles LD, Yohay DA, Lever LW, et al. Distinct proliferative and differentiated stages of murineMC3T3-E1cells in culture: an in vitro model of osteoblast development[J]. J Bone Miner Res,1992,7(6):683-92.
    [73] Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength[J]. Osteoporos Int,2006,17(3):319-36.
    [74] Xiao G, Cui Y, Ducy P, et al. Ascorbic acid-dependent activation of the osteocalcin promoter in MC3T3-E1preosteoblasts: requirement for collagen matrix synthesis and the presence of an intact OSE2sequence[J].Mol Endocrinol,1997,11(8):1103-13.
    [75] Varanasi VG, Saiz E, Loomer PM, et al. Enhanced osteocalcin expression by osteoblast-like cells(MC3T3-E1) exposed to bioactive coating glass (SiO2-CaO-P2O5-MgO-K2O-Na2O system) ions[J]. ActaBiomater,2009,5(9):3536-47.
    [76] Kavukcuoglu NB, Patterson-Buckendahl P, Mann AB. Effect of osteocalcin deficiency on thenanomechanics and chemistry of mouse bones[J]. J Mech Behav Biomed Mater,2009,2(4):348-54.
    [77] Zhibin Du, Jiang Chen, Fuhua Yan, Yin Xiao. Effects of Simvastatin on bone healingaround titaniumimplants in osteoporotic rats. Clin. Oral Impl. Res.2009,20:145–150.
    [78]Fu X, Chen J, Wu D, et al. Effects of ovariectomy on rat mandibular cortical bone: a study using Ramanspectroscopy and multivariate analysis[J]. Anal Chem,2012,84(7):3318-23.
    [79] Boskey A.&R. Mendelsohn. Infrared analysis of bone in health and disease[J]. J Biomed Opt,2005,10(3):031102.
    [80] Goodyear SR, Gibson IR, Skakle JM, et al. A comparison of cortical and trabecular bone from C57Black6mice using Raman spectroscopy[J]. Bone,2009,44(5):899-907.
    [81] Ruppel ME, Miller LM, Burr DB. The effect of the microscopic and nanoscale structure on bonefragility[J]. Osteoporos Int,2008,19(9):1251-65.
    [82] Davies JE. Understanding peri-implant endosseous healing[J]. J Dent Educ,2003,67(8):932-49.
    [83] Bundy KJ, Williams CJ, Luedemann RE. Stress-enhanced ion release--the effect of static loading[J].Biomaterials,1991,12(7):627-39.
    [84] Zhu L, Ye X, Tang G, et al. Biomimetic coating of compound titania and hydroxyapatite on titanium[J]. JBiomed Mater Res A,2007,83(4):1165-75.
    [85] Inzana JA, Maher JR, Takahata M. et al. Bone fragility beyond strength and mineral density: Ramanspectroscopy predicts femoral fracture toughness in a murine model of rheumatoid arthritis.[J]. J Biomech.2013,46(4):723-30
    [86] Yu DG, Ding HF, Mao YQ, et al. Strontium ranelate reduces cartilage degeneration and subchondral boneremodeling in rat osteoarthritis model[J]. Acta Pharmacol Sin,2013,34(3):393-402.
    [87]卢军,潘可风,徐晓琳,等.不同骨结合率对种植体骨界面应力分布的影响[J].口腔颌面外科杂志,2005,15(3):234-237.
    [88] Chappard D, Basle MF, Legrand E, et al. New laboratory tools in the assessment of bone quality[J].Osteoporos Int,2011,22(8):2225-40.
    [89] Raghavan M, Sahar ND, Kohn DH, et al. Age-specific profiles of tissue-level composition and mechanicalproperties in murine cortical bone[J]. Bone,2012,50(4):942-53.
    [90] Smith GC. Surgical principles of the Branemark osseointegration implant system[J]. Aust Prosthodont SocBull,1985,15:37-40.
    [91] Ingber A. The osseointegration implant system and its influence upon occlusal design[J]. Alpha Omegan,1985,78(4):73-81.
    [92] Wennerberg A.&T. Albrektsson. Effects of titanium surface topography on bone integration: a systematicreview[J]. Clin Oral Implants Res,2009,20Suppl4:172-84.
    [93] Le GL, Soueidan A, Layrolle P, et al. Surface treatments of titanium dental implants for rapidosseointegration[J]. Dent Mater,2007,23(7):844-54.
    [94] Sollazzo V, Pezzetti F, Scarano A, et al. Anatase coating improves implant osseointegration in vivo[J]. JCraniofac Surg,2007,18(4):806-10.
    [95] Sollazzo V, Palmieri A, Pezzetti F, et al. Genetic effect of anatase on osteoblast-like cells[J]. J BiomedMater Res B Appl Biomater,2008,85(1):29-36.
    [96] Palmieri A, Brunelli G, Guerzoni L, et al. Comparison between titanium and anatase miRNAs regulation[J].Nanomedicine,2007,3(2):138-43.
    [97] Kawasaki T. Theory of chromatography of rigid rod-like macromolecules on hydroxyapatite columns. VI.Analytical calculation of chromatograms[J]. J Chromatogr,1974,93(2):257-73.
    [98] Narayanan R, Seshadri SK, Kwon TY, et al. Calcium phosphate-based coatings on titanium and itsalloys[J]. J Biomed Mater Res B Appl Biomater,2008,85(1):279-99.
    [99] Meunier A, Christel P, Sedel L, et al.[The influence of the elasticity module of the femoral shaft and neckof a total hip prosthesis on the distribution of stress in the femur [J]. Int Orthop,1990,14(1):67-73.
    [100] Otani T, Whiteside LA, White SE. Strain distribution in the proximal femur with flexible composite andmetallic femoral components under axial and torsional loads[J]. J Biomed Mater Res,1993,27(5):575-85.
    [101]陈良建,李益民.钛种植体结构和弹性模量对骨界面应力分布的影响[J].中南大学学报(自然科学版),2009,40(2):400-405.
    [102]罗智斌,丁学强,邓飞龙,等.低弹性模量纯钛种植体的骨内植入试验研究[J].中山大学学报(医学科学版),2003,24(2):126-128.
    [103]赵峰,韩彦峰,胡江峰.弹性模量和初始应力对种植体骨界面应力分布影响的三维有限元分析[J].中国口腔种植学杂志,2006,11(2):55-58.
    [104] Hedia HS. Stress and strain distribution behavior in the bone due to the effect of cancellous bone, dentalimplant material and the bone height[J]. Biomed Mater Eng,2002,12(2):111-9.
    [105] Simon U, Augat P, Ignatius A, et al. Influence of the stiffness of bone defect implants on the mechanicalconditions at the interface--a finite element analysis with contact[J]. J Biomech,2003,36(8):1079-86.
    [106] Lin DJ, Chuang CC, Chern LJH, et al. Bone formation at the surface of low modulus Ti-7.5Mo implants inrabbit femur[J]. Biomaterials,2007,28(16):2582-9.
    [107] Sumitomo N, Noritake K, Hattori T, et al. Experiment study on fracture fixation with low rigidity titaniumalloy: plate fixation of tibia fracture model in rabbit[J]. J Mater Sci Mater Med,2008,19(4):1581-6.
    [108] Stoppie N, Van Oosterwyck H, Jansen J, et al. The influence of Young's modulus of loaded implants onbone remodeling: an experimental and numerical study in the goat knee[J]. J Biomed Mater Res A,2009,90(3):792-803.
    [1] Huang Y, Song L, Huang T, et al.. Characterization and formation mechanism of nano-structuredhydroxyapatite coatings deposited by the liquid precursor plasma spraying process[J]. Biomed Mater.2010,5(5):054113.
    [2]沃尔夫编著,薛冬峰等译.纳米物理和纳米技术[M].北京:机械工业出版社,2010,04-05.
    [3]方克明.微米纳米材料微观结构表征[M].北京:冶金工业出版社,2009,67-68.
    [4]张永康,孔德军,冯爱新,鲁金忠,张雷洪,葛涛.涂层界面结合强度检测研究(Ⅰ):涂层结合界面应力的理论分析[J].物理学报.2006,(06):2897-2900.
    [5] Beekmans HC, Meijer GJ, Barkhuysen R, Blijdorp PA, Merkx MA, Jansen J. The hydroxylapatite-boneinterface:10years after implant installation[J]. Int J Oral Maxillofac Surg.2008,37(8):768-72.
    [6] W Liang, W You, et al.. Comparative Study of the Residual Stress in Plasma Sprayed Nanostructure andConventional Structure Coatings[J]. Materials Protection.2009,(03):58-62+94.
    [7] Catledge SA, Fries MD, Vohra YK, et al.. Nanostructured ceramics for biomedical implants[J]. J NanosciNanotechnol.2002,2(3-4):293-312.
    [8]贺刚.纳米羟基磷灰石/含氟磷灰石/TiO<,2>梯度涂层对钛种植体表面改性的研究[D].四川大学华西口腔医学院,2006,4-8.
    [9] Ning CY, Wang YJ, Lu WW, et al.. Nano-structural bioactive gradient coating fabricated by computercontrolled plasma-spraying technology[J]. J Mater Sci Mater Med.2006,17(10):875-84.
    [10] Ong JL.&DC.Chan. Hydroxyapatite and their use as coatings in dental implants: a review[J]. Crit RevBiomed Eng.2000,28(5-6):667-707.
    [11]王英波,鲁雄,冯波,屈树新,翁杰.脉冲电沉积制备HA/ZrO_2纳米复合涂层的稳定性及生物相容性评价[J].高等学校化学学报.2010,(02):253-259.
    [12]周淑,王瑜,章非敏,光寒冰.纳米硅涂层对钛瓷结合强度的影响[J].华西口腔医学杂志.2009,(03):276-279.
    [13]黄平,董宇启,曹聪,冯宇,张继东.等离子喷涂纳米氧化钛涂层骨界面剪切强度的研究[J].脊柱外科杂志.2008,(04):234-236.
    [14] Ting Lei,Li Wang,Chun Ouyang,Nian-Feng Li,Le-Shan Zhou.In Situ Preparation and EnhancedMechanical Properties of Carbon Nanotube/Hydroxyapatite Composites[J]. Applied CeramicTechnology,2011.
    [15]杜瑞林,曾绍先,谢鑫荟.钛合金表面新型生物玻璃/纳米羟基磷灰石涂层的细胞相容性评价[J].生物骨科材料与临床研究.2007,(05):6-9+15.
    [16]杜瑞林,赵兰岗,胡誉怀,曾绍先,谢鑫荟.钛合金表面新型生物玻璃/羟基磷灰石涂层的体内动物实验[J].生物骨科材料与临床研究.2008,(01):4-7+11.
    [17] Zandi M, Mirzadeh H, Mayer C, et al.. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatincoated with nano-HAp as a novel scaffold using mesenchymal stem cells[J]. J Biomed Mater Res A.2010,92(4):1244-55.
    [18] Zandi M, Mirzadeh H, Mayer C, et al.. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatincoated with nano-HAp as a novel scaffold using mesenchymal stem cells[J]. J Biomed Mater Res A.2010,92(4):1244-55.
    [19]贺刚,陈治清,盛祖立.纯钛种植体表面纳米TiO2生物活性涂层的构建[J].中国口腔种植学杂志.2008,13(3):101-104,135.
    [20] Briggs EP, Walpole AR, Wilshaw PR, Karlsson M, Palsgard E. Formation of highly adherent nano-porousalumina on Ti-based substrates: a novel bone implant coating[J]. J Mater Sci Mater Med.2004,15(9):1021-9.
    [21] Walpole AR, Xia Z, Wilson CW, Triffitt JT, Wilshaw PR. A novel nano-porous alumina biomaterial withpotential for loading with bioactive materials[J]. J Biomed Mater Res A.2009,90(1):46-54.
    [22] Hyde GK, McCullen SD, Jeon S, et al.. Atomic layer deposition and biocompatibility of titanium nitridenano-coatings on cellulose fiber substrates[J]. Biomed Mater.2009,4(2):025001.
    [23] Chen F, Lam WM, Lin CJ, et al.. Biocompatibility of electrophoretical deposition of nanostructuredhydroxyapatite coating on roughen titanium surface: in vitro evaluation using mesenchymal stem cells[J]. JBiomed Mater Res B Appl Biomater.2007,82(1):183-91.
    [24] Yang GL, He FM, Hu JA, Wang XX, Zhao SF. Effects of biomimetically and electrochemically depositednano-hydroxyapatite coatings on osseointegration of porous titanium implants[J]. Oral Surg Oral Med OralPathol Oral Radiol Endod.2009,107(6):782-9.
    [25] Feng Y, Cao C, Li BE, Liu XY, Dong YQ. Primary study on the antibacterial property of silver-loadednano-titania coatings[J]. Zhonghua Yi Xue Za Zhi.2008,88(29):2077-80.
    [26]张敏,史建陆,林昌健.纳米银/羟基磷灰石涂层的制备与表征[J].中国口腔种植学杂志.2010,(1):14-16,47.
    [27]李蜀光,陈玉婷,魏海刚,李婉霞,张继平,陈蕾.纳米二氧化钛涂层种植体材料的抗菌活性实验研究[J].口腔颌面外科杂志.2009,19(3):193-195.
    [28] Jonasson S, Gustafsson A, Koch B, Bucht A. Inhalation exposure of nano-scaled titanium dioxide (TiO2)particles alters the inflammatory responses in asthmatic mice.[J]. Inhal Toxicol.2013,25(4):179-91.
    [29] Veith M, Aktas OC, Metzger W, et al.. Adhesion of fibroblasts on micro-and nanostructured surfacesprepared by chemical vapor deposition and pulsed laser treatment[J]. Biofabrication.2010,2(3):035001.
    [30] Coelho PG, Cardaropoli G, Suzuki M, Lemons JE. Early healing of nanothickness bioceramic coatings ondental implants. An experimental study in dogs[J]. J Biomed Mater Res B Appl Biomater.2009,88(2):387-93.
    [31] Arcelli D, Palmieri A, Pezzetti F, Brunelli G, Zollino I, Carinci F. Genetic effects of a titanium surface onosteoblasts: a meta-analysis[J]. J Oral Sci.2007.49(4):299-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700