CdAA吸附生长猪日粮中镉效果的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题以“杜长大”三元杂交猪为试验对象,首次研究了添加CdAA对日粮中镉的吸附效果。
     192头“杜长大”三元杂交猪(体重27.6±1.44kg)按试养试验要求分成4组,每组设三个重复,每个重复16头(公母各半,公猪去势)。对照组饲喂生产用饲粮,试验组分别在生产用饲粮中添加0.5%CdAA(试验1组,T1)、0.5%CdAA+10mg/kg镉(试验2组,T2)、10mg/kg镉(试验3组,T3)。试验猪采用以栏为单位群饲,自由采食和饮水。试养试验预试期7天,正试期83天,试验期间每7天记录耗料情况。饲养试验结束后,按体重相近的要求,从每个重复中各选4头(公母各半)共48头,按常规方法屠宰。屠宰后观察内脏器官病变;收集全血样,测定血红蛋白含量;制作血清,测定血清GOT、GPT、ALP、SOD、GSH-Px活性和TP、ALB、SUN、CHL、TG的含量及IgG、IgA、IgM水平;取脾脏、肠淋巴结、胸腺称重;采集背最长肌、肝、肾、全血等样品测镉的残留。
     组织器官镉残留测定结果表明:生产用饲粮添加CdAA组(试验1组)生长肥育猪的肌肉、肝脏、肾脏中镉残留量分别为0.03、0.24、0.57mg/kg,达到了国际上对肉食品中重金属镉限定的最高标准(欧盟标准:肌肉0.05mg/kg,肝脏0.5mg/kg,肾脏1.0mg/kg),分别比对照组降低90.9%(P<0.01)、81.4%(P<0.01)、75.2%(P<0.01)。试验2组肌肉、肝脏、肾脏中镉残留量分别比试验3组降低78.7%(P<0.01)、77.7%(P<0.01)、76.8%(P<0.01)。全血中镉的含量试验1组比对照组降低82.6%(P<0.01),试验2
    
    颐星.学世动戈J
    组比试验3组降低71.4%(P<0.01)。
     饲养试验表明:试验1组与对照组之间差异不显著。与试验3组相比,
    试验2组日增重提高了15.0%(p<0.01),料重比降低13.2%(p<0.01)。
     内脏器官观察可见:试验3组肝脏、肾脏、脾稍肿大,胃粘膜溃疡等。
     血红蛋白的测定结果表明:与对照组相比,试验1组提高了10石%
    (P<0.01);试验2组比试验3组组提高了24.2%(p<0.01)。
     血清中GSH一Px和SOD的活性测定结果发现:添加CdAA使GSH一Px和
    SOD活性均有提高的趋势(P>0.05)。
     免疫指标测定显示:日粮添加福使免疫器官相对重量呈增高的趋势,添
    加cdAA则有降低免疫器官相对重量的效果。试验2组血清IgA、IgM水平
    分别比试验3组提高了5.6%(P<0 .05)和巧.1%(P<0.05),CdAA对IgG水平
    有提高趋势。
     血清生化指标测定结果表明:试验2组的血清谷草转氨酶和谷丙转酶活
    比试验3组分别降低7.9%(P<0.05)和18.7%(P<0.01),试验2组与对照组
    相比差异不显著(P>0.05)。试验2组血清碱性磷酸酶活性比试验3组提高
    25.9%(P<0 .05),与对照组差异不显著(P>0.05)。各组间的血清总蛋白、白
    蛋白、尿素氮、胆固醇水平差异不显著(P>0.05)。
This experiment is conducted to evaluate the effects of CdAA to absorb cadmium in corn-soybean diets of growing pigs.
    One hundred and ninety two Duroc * Landrace * Yorkshine growing pigs, (average initial weight of 27.6 +1.44 kg), were randomly allotted to four groups. Each group consisted of three pens of sixteen pigs (females and castrated males balanced). In the period of their growth, the pigs received three types of same basal diet (control) (3.11, 3.08, 3.03 Meal/kg, DE, respectively; 16.51, 15.90, 13.81% CP, respectively), supplemented with 0.5% CdAA (T1), 0.5 % CdAA and 10mg/kg cadmium (T2),10mg/kg mg/kg (T3), respectively. Feed and water were provided ad libitum. The experiment diets were fed daily for 83d after being pretested for 7d. Feed consumption was recorded every week and no pigs were found died during experiment. At the end of feeding trial, Four pigs from each pen were selected based on similar live weight (sex balanced) and slaughtered. While the pigs were sacrificed, pathological changes of T4 were recorded and the samples of blood (serum), muscle, liver, kidney were collected for laboratory analysis.
    The cadmium concentration on muscle, liver, and kidney cortex from pigs were determined. The average wet weight cadmium concentration in muscle, liver, and kidney of Tl were 0.03, 0.24, 0.57 mg/kg, respectively, which were depressed by
    
    
    
    90.9 % (P<0.01), 81.4 % (P<0.01), 75.2 % (P<0.01), respectively and accord with the international tiptop standard (European Union standard). Compared with T3, the corresP<0nding concentrations in T2 decreased by 78.7 % (P<0.01), 77.7% (P<0.01), 76.8% (P<0.01), respectively. Cadmium concentration in blood of Tl decreased by 82.6 % (P<0.01) compared with control. The corresP<0nding concentration of T2 decreased by 71.4 % (P<0.01) compared with T3.
    The result of feeding trial showed that there was no significance in ADG and F/G between Tl and control. ADG in T2 increased by 15.0 % (P<0.01) and F/G ration of this treat decreased by 13.2% (P<0.01) compared with T3.
    Pathological changes were mainly found in T3 including a little tumefactive change of liver, kidney, spleen, thymus, and intestine lymphaden. Ulcer was found hi stomachic mucosa of this treatment.
    Determination of hemoglobin level from each treatment indicated that CdAA can increase hemoglobin concentration. Compared with control, Hb in Tl increased by 10.6% (P<0.01). Hb in T2 increased by 24.2% (P<0.01) compared to T3.
    The analysis of GSH-Px and SOD activities in serum showed that there was an upward tendency in treatments supplemented with CdAA. Tl was the highest among four's.
    CdAA supplement can improve immune function in growing swine. Administration of dietary supplemental cadmium to pigs resulted in an upward tendency of relative weight of immune organs, whereas CdAA supplement can increase relative weight of immune organs. Among four groups, there was no significance between Tl and control or between T2 and T3. As far as Ig in serum was concerned, there was a downward tendency from groups added with cadmium. CdAA increase Ig level clearly. Compared with T3, serum IgA and IgM levels of T2 increased 5.6% (P<0.05), 15.1% (P<0.05) respectively.
    The analysis of serum biochemical parameters indicated that there was an upward tendency, as far as GOT and GPT in T2 and T3 was concerned. Compared with T3, GOT and GPT activities of T2 decreased by 7.9% (P<0.05) ,18.7% (P<0.01) respectively. There was no significance between T2 and control or between Tl and control (P>0.05, P>0.9 respectively). There was a downward tendency, as far as ALP
    
    
    of treatments supplement cadmium was concerned. Compared with T3, ALP level of T2 increased by 25.9% (P<0.05). There was no significance between T2 and control or between Tl and control (P>0.05, P>0.05 respectively). As far as serum TP, ALM, SUN levels was concerned, there was no significance among four groups (P>0.05), but there was a downward tendency from treatments added with cadmium and T3 was the lowest. There was no significance for serum CH
引文
Abshire M K, Devor D E, Diwan B A et al. In vtro exposure to cadmium in rat L6 myoblasts can result in both enhancement and suppression of maligant progression in vivo[J]. Carcinogenesis, 1996, 17: 1349-1356
    Ammerman C B, Miller S M, Fick K R et al. Contaminating elements in mineral supplements and their potential toxicity: a review[J]. J Anim Sci, 1977, 44(3): 485-508
    Anke M, Masaoka T, Groppel B et al. The influenceof sulphur, molybdenum and cadmium exposure on the growth of goat, cattle and pig [J]. Archiv fur Tierenahrung, 1989, 39(1-2): 221-228
    Banis R J, Pond W G, Walker E F et al. Dietary cadmium, iron and zinc interactions in the growing rats[J]. Proc Soci Exp Biol Med, 1969, 130: 802-806
    Bonner F W, King L J and Parke D V. The effect of dietary cadmium on zinc, copper and levels in the bone of rats[J]. Toxicol Lett, 1980, 5: 105-108
    Brzóska M M, Moniuszko-Jaloniuk J, Jurczuk M et al. The effect of zinc supply on cadmiuminduced changes in the tibia of rats [J]. Food Chem Toxicol, 2001, 39: 729-737
    Chmielnicka J and B Sowa. Cadmium interaction with essential metals(Zn. Cu,. Fe), metabolism metallothionein, and ceruloplasmin in pregnant rats and fetuses[J]. Exp Environ Safety, 1996, 35: 277-291
    Cohen M, Lotta D, Coogan T et al. Mechanisms of metal carcinogevesis: The teactions of metals with nucleic acids. In Biological effects of heavy meals (E C Foulkes, ED), 1991, pp.,19-75. CRC, Boca, Raton.
    Coppen-Jaeger D E and Wilhelm M. The effects of cadmium on zinc absorption in isolated rat intestinal preparations[J]. Biol Trace Elem Res, 1989, 21: 207-212
    Crowe A and Morgan E H. Effect of dietary cadmium on iron metabolism in growing rats[J]. Toxicol Appl Pharmacol, 1997, 145: 136-146
    Dwyer S D, Zhuang Y X, Smith J B. Calcium mobilization by cadmium or decreasing extracellular Na~+ or PH in coronary endothelial cells[J]. Exp Cell Res, 1991, 192: 22-31
    Elinder C G, Nordberg M, Palm B et al. Cadmium, zinc and copper in rabbit kidney metallothionein-relation to kidney toxicity[J]. Environ Res, 1987, 42: 553-562
    Elsenhans B, Kolb K, Schumann K et al. The longitudinal distribution of cadmium, zinc, copper, iron and metallothionein in the small intestinal mucosa of rats after admunistration of cadmium
    
    chloride. Biol Trace Elem Res, 1994, 41: 31-46
    Fairweather-Tait S J. Iron-zinc and calcium-Fe interactions in relation to Zn and Fe absorption[J]. Proc Nutri Soci, 1995, 54: 465-473
    Flanagan P Rmclellan J S, Haist J et al. Increased dietary cadmium absorption in mice and human subjects with iron deficiency[J]. Gastroenterology, 1978, 74: 841-846
    Flegal K M, Cary E E, Pond W G et al. Dietary setenium and cadmium interrelationships in growing swine[J]. J Nutr, 1980, 110: 1255-1261
    Fox M R S, Jacob R M, Jones A O L et al. Effects of vitamin C and iron on cadmium metabolism[J]. Annals of the New York Academy of Sciences, 1980, 355: 249-261
    Frilick D F, Kraybill H F, Dimitroff J M. Toxic effects of cadmium. A Review. Environ Res[J]. 1971, 4: 71-85
    Frozialeck J. Some toxic and essential trace metals in swine from northern Poland[J]. Sci Total Environ, 1993, 136(1-2): 193-204
    Fujimaki H. J Environ Pathol Toxicoi Oncol, 1987, 7: 39-46
    Fujimaki H. Toxicol Lett, 1985, 24: 21-24
    Funk A E, Day F A and Brady F O. Displacement of zinc and copper from copper-induced metallothionein by cadmium and by mercury: in vivo and ex vivo studies[J]. Comp Biochem Physiol, 1987, 86C: 1-6
    Groten J P, Sinkeldam E J, Muys T et al. Interaction of dietary Ca, P, Mg, Cu, Fe, Zn and Se with the accumulation and oral toxicity of cadmium in rats[J]. Food Chem Toxicol, 1991, 29 (4): 249-258
    Guevel R L et al. Interhibition of rainbow trout (oncorhynchus mykiss) estrogen receptor activity by cadmium[J]. Biol Reprod, 2000, 63(1): 220-226
    Gunnarsson D, Nordberg G, Lundgren P et al. Cadmium-induced decrement of the LH receptor expression and cAMP levels in the testis of rats[J]. Toxicol, 2003, 183: 57-63
    Hansen L G, Hinesly T D. Cadmium from soil amended with sewage sludge: effects and residues in swine[J]. Environ Health Persp, 1979, 28: 51-57
    Harmingtion M A, K L Gunderson, R R Kopito. J Biol Chem, 1999, 274(39):27536-27544.
    Hartwig A. Carcinogenicity of metal compounds: possible role of DNA repair inhibition[J]. Toxicol Lett, 1998, 102-103: 235-329
    Hossain Z and Fazlul H. Studies on the interaction between Cd2+ ions and DNA[J]. J Inorg Biochrm, 2002, 90: 85-96
    Hossain Z and Fazlul H. Studies on the interaction between Cd2+ ions and nucleobases and nucleotides[J]. J Inorg Biochrm, 2002, 90: 97-105
    IARC. Beryllium, cadmium, mercury and exposures in the glass manufacturing inductry. In IARC
    
    Monographs on the evaluation of carcinogenic risks to humans. 1993, 58: 41-117
    Joshi J G and Zimmerman A. Ferritin: an expanded role in metabolic regulation[J]. Toxicol, 1988, 48: 21-29
    Kazuo N, Hirokd N. Cadmium induced renal dysfunction: new mechanism, treatment and preventtion[J]. J Trace Elements in Exp Med, 1998,11: 275-288
    Kello D and Kostial K. Influence of age on whole-body retention and distribution of Cd in the rat[J]. Environ Res, 1977,14:92-98
    Klaassen C D, Liu J, Liu Y P et al. Chronic cadmium-induced nephrotoxicity is not necessarily mediated-through the Cd-metal Iothinonein complex[J]. Toxicol Sci, 1998, 1: 1605
    Kozlowska K, Brzozowska A, Sulkowska J et al. The effect of cadmium on iron metablism in rats. Nutr Res, 1993, 13: 1163-1172
    Lamphere D N, Dorn C R, Reddy C S et al. Reduced cadmium body burden in cadmium exposed calves fed supplemental zinc[J]. Environ Res, 1984, 33: 119-129
    Lisk D J, Boyd R D, Telford J N et al. Toxicologic studies with swine fed corn grown on municipal sewage sludge-amended soil[J]. J Anim Sci, 1982, 55(3): 613-619
    Lyons A M, Mooney R, Lyng F et al. The effects of cadmium exposure on the cytology and function of primary cultures from rainbow trout[J]. Cell Biochem Funct, 1998, 16(1): 13-21
    Michael P W. Cadmium carcinogenesis in review[J]. J Inorg Biochem, 2000, 79: 241-244
    Miller W J. Cadmium nutrition and metabolism in ruminants: relationship to concentrations in tissue and products[J]. Feedstuffs, 1971, 7:24
    Min K S, Fujita Y, Onosaka S et al. Role of intestinal metallothionein in absorption and distribution of orally administered cadmium[J]. Toxicol Appl Pharmacol, 1991,109: 7-16
    Nakagawa H. Urinary β_2-microglobulin concentration and mortality in a cadmium-polluted area[J]. Arch Environ Health, 1993, 48(6): 428-435
    Niemi, Venalainen E R, Hirvi T et al. The lead, cadmium and mercury concentrations in muscle, liver and kidney from finnish pigs and cattle during 1987-1988[J]. Zeitschrift fur Lebensmittel-Untersuchung und-Forschung(Abstr). 1991, 192(5): 427-429
    NRC. 1980. Mineral tolerance of domestic animals. National Academy of Sciences, Washington, DC.
    Ohta H and Cherian M G. Gastrointestinal absorption of cadmium and metallothionein[j]. Toxicol Appl Pharmacol, 1991, 107: 63-72
    Ohta H and Cherian M G. The influence of nutritional deficiences on gastrointestinal uptake of cadmium and cadmium-cadmium-metallothionein in rats[J]. Toxicology, 1995, 97: 71-80
    Oishi S, Nakagawa J, Ando M. Effects of cadmium administration on the endogenous metal balance in rats[J]. Biol Trace Element Res, 2000, 76: 257-278
    Omaye S T, Bermard M S, Fillios L C et al. Effects of cadmium chloride on the rat testicular
    
    solubale selenoryme peroxidase[J]. Res Commi Pathphama, 1975, 12(4): 695-706
    Osuna O, Edds G T. Toxicology of aflatoxin B1, warfarin, and cadmium in young pigs: performance and hematology. Am J Vet Res, 1982, 43(8): 1380-1386
    Paksy K,. Rajczy K, Forga'cs Z. Cadmium interferes with steroid biosynthesis in rat granulosa and luteal cels in vitro[J]. Biomertals, 1992, 5(4): 245-256
    Panemangalore M. Interaction among zinc. copper and cadmium in rats: effect of low zinc and copper diets and oral cadmium exposure[J]. J Trace Elem Exp Med, 1993, 6: 125-139
    Piasek M, Laskey. J W,. Biomarkers of heavy metal reproductive effects and interaction with essential elements in experimental studies on female rats[J]. Arh Hig Rada Toksikol, 1996, 47(3): 245-252
    Pond W G and Yen J T. Protection by clinoptiolite or zeolite NaA against cadmium-induced anemia in growing swine[J]. Proc Soci Exp Biol Med, 1983, 173(3): 332-337
    Pond W G, Phyllis Chapman and Walker E. Influence of dietary zinc, corn oil and cadmium on certain blood components, weight gain and parakeratosis in young pigs[J]. J Anim Sci, 1966, 25(1): 122-127
    Pond W G and Walker E F. Cadmium-induced anemia in growing pigs: protective effect of oral and parenteral iron[J]. J Anim Sci, 1973, 6: 1122-1128
    Raszk J, Docekalova H, Rubes J et al. Ecotoxicologic relations on a large pig-fattening farm located in a lignite mining area and near solidfuel electical power plant[J]. Vet Med, 1992,37(8): 435-448
    Rehm S, Waalkes M P, Acute cadmium chloride-induced renal toxicity in the Syrian hamster[J]. Toxicoi Appl Pharmacol. 1990, 104: 94-105
    Rimbach G and J Pallauf. Cadmium accumulation, zinc status, and mineral bioavallability of growing rats fed diets high in zinc with increasing amounts of phytic acid[J]. Biol Trace Elem Res, 1997, 57: 59-70
    Rosonald R. B, Nonavinakere V K, Magdi R I et al. Intratracheal exposure of the guinea pig lung to cadmium and/or selenium: a histological evaluation[J]. Toxico Lett, 2000, 114: 101-109
    Sakata S, Iwami K and Enoki Y. Effects of cadmium on in vitro and in vivo erythropoiesis: Erythroid progenitor cells (CFU-E), iron, and erythropoie-tin in cadmium-induced iron deficiency anemia[J]. Exp. Hematol. 1988, 16: 581-587
    Sasser L B and Jarboe G E. Intestinal absorption and retention of cadmium in neonatal rats[J]. Toxicol Appl Pharmacol, 1977, 41: 423-431
    Sasser L B and Jarboe G E. Intestinal absorption and retention of cadmium in neonatal pigs compared to rats and guinea pigs[J]. J Nutr, 1980, 110: 1641-1647
    Schafer S G and Forth W. Effect of acute and subchronic exposure to cadmium on the retention of iron in rats[J]. J Nutr, 1984, 114: 1989-1996
    
    
    Scheuhammer A M. Influence of reduced dietary calcium on the accumulation and effects of lead, cadmium, and aluminium in birds [J]. Environmental Pollution Volume: 1996, 94(3): 337-343
    Schrey P, Wittsiepe J, Budde U et al. Dietary intake of lead, cadmium, copper and zinc by children from the German North Sea island Amrum[J]. Int J Hygiene Environ Health. 2000, 203: 1-9
    Smith J B, Dwyer S D, Smith L. Cadmium evokes inositol polyphosphate formation and calcium mobilization[J]. J Biol Chem, 1989, 264: 7115-7118
    Smith R M, Griel Jr L C, Muller L D et al. Effects of dietary cadmium chloride throughout gestation on blood and tissue metabolites of promigravid and neonatal dairy cattle[J]. J Anim Sci, 1991, 69: 4078-4087
    Tahvonen R, Kumpulaien J. Lead and cadmium caintmts in prk, beef, andchicken, and in pig and cow liver in Finland during 1991 [J]. Food Additives and Contaminants, 1994, 11(4): 415-426
    Tamaru T. Cadmium-induced anemia in relation to cadmium and iron in organs and vitamin D deficiency[J]. Jpn. J. Hyg 1980, 35: 573-583
    Trottier B, Athot J, Ricard A C et al. Maternal-fetal distribution of cadmium in the guinea pig following a low dose inhalation exposure[J]. Toxicol Lett. 2002, 129: 189-197
    Tsangaris G T, Tzortzatou-Stathopoulou. Cadmium induces apoptosis differentially on immune system cell lines[J]. Toxicology, 1998, 128: 143-150
    Varga B, Paksy K. Toxic effects of cadmium on LHRH-induced LH release and ovulation in rats[J]. Reprod Toxicol, 1991, 5 (3): 199-205
    Vestereard P, Shaikh Z A. The nephrotoxicity of intravenously administration and preexisting renal Cadmium burden [J]. Toxical Applpharmacol. 1994, 126; 240-247.
    Weigel HJ, Ilge D, Elmadfa I et al. Availability and toxicological effects of low levels of biologically bound cadmium[J]. Arch Environ Contam Toxicol, 1987, 16: 85-93
    Yamagami K, Nishimura S, Sorimachi M. Cd~(2+) and Co~(2+) at micromolar concentrations stimulate catecholamine secretion by increasing the cytosolic free Ca~(2+) concentration in cat adrenal chromaffin cells[J]. Brain Res, 1994, 646: 295-298
    Yamagami K, Nishimura S, Sorimachi M. Cd~(2+) and Co~(2+) at micromolar concentrations mobile intracellular Ca~(2+) via the generation of inositol 1,4,5-triphosphate in bovine chromffin cells[J]. Brain Res, 1998, 798: 316-319
    Yucesoy B, Turhan A, Urem et al. Effect of occupational lead and cadmium exposure on some immunoregulatory cytokine levels in man[J]. Toxicol, 1997, 123(1-2): 143-147
    Zglinicki T, Edwall V, Ostlund C et al. Very low cadmium concentrations stimulate DNA synthesis and cell growth [J]. J Cell Sci, 1992, 103: 1073-1081
    Zheng H, Liu J, Choo K H A et al. Metallothionein-Ⅰ and Ⅱ knock-out mice are sensitive to cadmium-induced liver mRNA expression of c-jun and p53[J]. Toxicol Appl Pharmacol, 1996, 136: 229-235
    
    
    丁训诚,秦涌,李建新等.镉对雌性大鼠排卵功能的影响[J].卫生毒理学杂志,1992,6(1):1-3
    马吉飞,高洪.氯化镉对小鼠的病理损伤和硒的保护效应[J].畜牧与兽医,1998,30(1):9-10
    马卓,陈万芳,于勇.镉对小鼠免疫功能的影响及硒的保护效应.中国兽医大学学报,1997,17(2):170-172
    毛德寿,同宗灿,王志远等.环境生化毒理学[M].沈阳:辽宁大学出版社,1986
    王文仲,徐兆发.镉的脏毒理学[J].中国工业医学杂志,2001,14(5):291-293
    王昕陟译.降低猪肉中重金属含量的研究[J].国外畜牧科技,1999,26(4):41-43
    王茂起,王竹天,包大跃等.中国2000年食品污染状况监测与分析[J].中国食品卫生杂志,2002,14(2):3-8
    王爱国,陈学敏,鲁文清.低硒高镉对大鼠组织中谷胱甘肽过氧化物酶活性影响的动态观察[J].中国地方病学杂志,1995,14(6):337-340
    王献仁,龚诒芬.硒对镉致大鼠肺巨噬细胞吞噬和Fc受体表达抑制的[J].卫生研究,1993,22(3):131-134
    王夔主编.生命科学中的微量元素(第二版)[M].北京:中国计量出版社,1996,pp850-884
    冯健,岳秀英,冯泽光.肉鸡实验性镉中毒的病理学研究[J].畜牧兽医学报,2001,32(5):468-475
    卢次勇,黎大明,董书等.镉致淋巴细胞DNA损伤及其免疫毒性研究[J].中国职业医学,2000,27(2):2-3
    田淑琴,龙虎,黄志宏.实验性肉鸭镉中毒研究[J].西南民族学院学报.自然科学版,2001,27(2):225-228
    白忠贞,王桂敏.镉中毒对血清AKP活性影响的实验研究[J].职业医学,1996,23(6):4-5
    刘秀英,王翔朴,贺全仁.镉对肝、肾毒性与谷胱甘肽含量的关系[J].卫生毒理学杂志,2001,15(1):31-32
    刘湛,张铣,薛彬.镉对小鼠体液免疫功能和淋巴细胞钙稳态的影响[J].卫生毒理学杂志,1993,7(1):20-21
    朱善良,陈龙,高伟等.大鼠慢性镉染毒后精子生成量和精子运动能力研究[J].生殖与避孕,2002,22(1):14-17,22
    朱模忠主编.肉食品毒理学[M].上海:上海科学技术出版社,1992,pp100-102
    
    
    宋敏,高永,薛彬.氯化镉对小鼠免疫功能的影响[J].滨州医学院学报,1995,18(2):7-9
    张文昌,李煌元,江一平等.镉对大鼠雌性性腺毒性研究[K].中国职业医学,1999,26(5):7-8
    李慧.有毒元素镉超标对肉鸭生长性能的影响[J].中国饲料,7:19
    杨小芳.镉钙交叉作用对钙调素依赖体系的影响[J].国外医学:卫生学分册,1994,21(2):71-74
    杨梅英,张士雍,刘应义.硒对镉中毒鸡免疫功能的保护效应.兽医大学学报,1990,10(4):368-371
    陈清,卢国栋主编.微量元素与健康[M].北京:北京大学出版社,1989,pp211-221
    陈霞,扬文胜,靳健等.Cd~(2+)离子诱导的DNA构象变化[J].高等学校化学学报,2001,22(7):1228-1229
    岳秀英,冯健,冯泽光.雏鸭实验性镉中毒的病理学研究[J].畜牧兽医学报,2001,32(2):162-169
    林忠宁,董胜璋,余贵英等.镉诱导小鼠脾淋巴细胞超氧化物酶活性和细胞活性比较[J].中国职业医学,2002,29(1):4-9
    金亚平.镉对哺乳动物生殖系统及后代发育的影响[J].国外医学:卫生学分册,1991,1:14-18
    赵月兰,秦建华.重金属类有毒物质对食品的污染及其危害[J].肉品卫生,1994,12:23-26
    赵永同,侯悦.硒与镉某些拮抗作用的实验研究[J].中国环境科学,1989,9(1):56-59
    赵孝章.临江河水生生物体中重金属含量的模糊评价[J].环境科学研究,1992,5(3):54-58
    赵素牌译.清除猪体内有害重金属的方法[J].中国畜牧兽医,2002,29(2):8
    唐伟峰,黄安辉,王翔朴.镉在肝细胞内的吸收过程及其对肝细胞内钙稳态的影响[J].中国公共卫生学报,1995,14(1):4-5
    唐伟峰,黄安辉,陶炼晖等.镉对大鼠肝细胞内钙,钙调蛋白,钙泵的影响[J].湖南医科大学学报,1993,18(3):272-273
    徐厚恩主编.中国污染物有毒危险性评价[M].北京:北京医科大学、中国协和医科大学联合出版社,1997,pp29-46
    高克强.警惕矿物添加剂中镉铅超标对猪的危害[J].广西畜牧兽医,2001,16(4):23-25
    曹友军.镉对免废系统的影响[J].国外医学:卫生学分册,1993,20(4):208-211
    阎丽,路明.医院污水处理系统中生物对金属富集的研究[J].哈尔滨师范大学自然科学学报,1992,8(1):65-70
    薛彬,刘湛,雷志明.镉对小鼠免疫毒性研究[J].中国环境科学,1995,15(1):76-78
    戴清文,樊璞,杨允正等.猪实验性镉中毒[J].动物毒物学,1992,7(1):9-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700