新型膜生物反应器开发及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜生物反应器(MBR)作为一种高效水处理设备,处理效果良好、运行稳定、应用范围广,在废水处理和污水回用中具有广泛的应用前景。因此,优化膜生物反应器设计和运行,开发低耗、多能、耐用的设备对MBR早日走向大规模应用具有重要意义。
     本文通过对比国内外研究成果,寻求最佳膜生物反应器的设计和运行参数,并根据水解酸化和加压溶气原理开发了两类新型反应器—水解+好氧MBR及加压MBR。通过小试、中试及实际工程考察了气水比、水力停留时间、进水浓度、操作压力、温度等因素对处理效果的影响;研究了膜通量衰减规律,并尝试了空曝、反冲、化学清洗等不同的膜污染防治措施;在试验和理论分析的基础上,本文对膜污染阻力的构成进行了分析;另外,本文还对压力场下污泥特性进行了初步探索。试验表明:
     1.水解+好氧MBR具有高效脱氮效果。对于高氨氮小区生活污水,当进水氨氮为85~115mg/L时,出水氨氮浓度低于5mg╱L,去除率高达95%以上。并且,出水其它指标完全达到《生活杂用水水质标准》GJ25.1—89中洗车和扫除标准。
     2.水解+好氧MBR具有高效有机物去除效果。处理高浓度易降解有机废水(餐饮废水)时,当进水COD、NH_4-N分别为2980mg/L和17.26mg/L时,出水COD、NH_4-N分别为58.5mg/L和1.22mg/L,去除率分别达到98%和93%;处理难降解TNT废水时,通过外加碳源,TNT由70~80mg/L降至0.5mg/L以下,去除率达到92.9%以上。
     3.加压MBR具有高效有机物去除效果。处理合成淀粉废水时,COD由1545mg/L降至20mg/L,去除率为98.7%;增加水解酸化预处理后,处理效果明显增强。当进水COD为13864mg/L时出水COD仅为57.14mg/L;当进水COD高达25680mg/L时,系统COD去除率依然能高达89.8%,容积负荷达到10.27kgCOD/m~3·d。
     4.膜污染污染阻力主要由凝胶极化阻力R_p和内部污染阻力R_(if)构成。无水解预处理时,加压MBR膜污染阻力中凝胶极化阻力R_p和内部污染阻力R_(if)分别占总污染阻力的50%和36.1%;有水解预处理时,R_p和R_(if)分别占总污染阻力的44.94%和32.13%。
As a kind of high efficient equipment of water treatment, membrane bioreactor has many advantages, such as good effluent quality, steady operation, broad application scope, and it has a extensive application prospect in wastewater treatment and sewage reclamation. Therefore, it has important significance on prompt membrane bioreactor large-scale application to optimize membrane bioreactor design and operation and develop MBR equipment of low energy consumption, various function, and duration.
    By summarizing domestic and international research accomplishment on membrane bioreactor, optimum operation parameters and design parameters are found out in this paper. And two new kinds of MBR (biological hydrolysis MBR and pressurized MBR) are developed according to hydrolysis and pressurization dissolution principle. Through little examination, pilot study and actual project, influences on treatment effect of air-water rate, HRT, concentration of pollutant, operating pressure and temperature are researched; The law of membrane flux attenuation is studied, and corresponding measures reducing the fouling are tried, such as no- effluent aeration, air and water backflush, chemical cleaning; On the foundation of experiment and theoretical analysis, the composition of membrane fouling resistance is analyzed in this paper, Additionally the sludge properties of P-MBR is studied preliminarily. Experiment shows:
    1. Biological hydrolysis MBR has good effect in nitrogen removal When it is used to treat domestic wastewater of high ammonia-nitrogen in a housing estate, the NHj-N decrease from 85-115 mg/L of influent to less than 5 mg/L of effluent, and the removal rate of NHt-N is above 95%., and other effluent indexes meet the grey water standard of washing vehicle and cleaning (GJ25 .1-89).
    2. Biological h ydrolysis M BR h as good effect i n o rganism removal. W hen i t i s u sed t o t reat domestic wastewater of high concertration easy degradation organic wastewater (meal wastewater), COD and NHt-N of the influent are 2980 mg/L, and 17.26 mg/L, COD and NHrN of the effluent are 58.5 mg/L and 1.22 mg/L respectively, and the removal rates of COD and NHt-N reach 98% and 93%
    
    
    respectively; When it is used to treat refractory TNT water, by extra carbon source, concertration of TNT reduced from 70-80 mg/L to less than 0.5 mg/L, and the removal rate reach 92.9%.
    3. Pressurized MBR good efficiency in organism removal When it is used to treat the synthetic wastewater in which starch is the main pollutant, COD is reduced from 1545 mg/L to 20 mg/L, and the removal rate is 98.7%; The removal effect of organism is strengthened obviously after adding hydrolysis pretreatment. When COD of influent is 13,864 mg/L, COD of effluent only is 57.14 mg/L; When COD of influent is as high as 25,680 mg/L, volume load being 10.27 kgCOD/m3·d, the COD removal rate can be as high as 89.8%.
    4. The membrane of P-MBR fouling resistance was mainly completed of polarization layer resistance (Rp) and internal fouling resistance (/fy). Without hydrolysis pretrealment, polarization layer resistance (Rp) and internal fouling resistance (R$ take 36.1% and the 50% of total fouling resistance respectively, With hydrolysis pretreatment, polarization layer resistance (Rp) and internal fouling resistance (%) take 32.13% and the 44.94% of total fouling resistance respectively.
引文
1.顾国维编,膜生物反应器-在污水处理中的研究和应用,北京:化学工业出版社,2002
    2.樊耀波,王菊思:水与废水处理中的膜生物反应器技术,环境科学,1995,16(5):79~81
    3.张琳,张元月:新型污水处理装置——膜生物反应器,重庆环境科学,1996,18(4):51~55
    4.黄霞,桂萍等:膜生物反应器废水处理工艺的研究进展,环境科学研究,1998,11(1):40~44
    5. Kimura S et al. Japan's aqua renaissance'90 projects. Wat. Sci. Tech. 1991,23:1573~1582
    6. Gunder B, Krauth K. Replacement of secondary clarification by membrane sepmfion-results with plate and hollow fibre modules[J]. Wat. Sci. Tech. 1998,38(4~5):383~393
    7. Holler S, Trosch W. Treatment of urbran wastewater treatment in a membrane bioreactor at high organic loading rates[J]. Journal of Biotechnology,2001,92:95~101
    8.魏源送等 国外膜生物反应器在污水处理中的研究进展,工业水处理,2003,23(1)1~7
    9. Pierre Cote et al. Bubblefree aeration using membranes: process analysis. Journal(IWA)—Wastewater, Reclamation, Recycling and Reuse: 210~220
    10. J.A. Scott, D.J.Neilson etc.: a dual function membrane bioreactor system for enhanced aerobic remediation of high-strength industrial waste, Water Science & Technology, 1998, 38(4~5):413~420
    11. Brindle K et al. Nitrification in a bubbleless oxygen mass transfers membrane bioreactor. Wat. Sci. Tech. 1996, 34(9):261~267
    12. Martin Brockman, Carl F. Seyffied: sludge activity under the conditions of crossflow microfiltration, Water Science & Technology, 1997, 35 (10): 173~181
    13. L. van Dijk, G. C. G. Roncken: membrane bioreactors for wastewater treatment: the state of the art and new developments, Water Science & Technology, 1997, 35(10): 35~41
    14.邢传红,Tardieu Eric等:无机膜—生物反应器处理生活污水试验研究,环境科学,1997,18(3):1~4
    15.李军等 淹没复合式膜生物反应器技术,城市环境与城市生态,2001,14(4)5~9
    16. S.Adham, et al. Feasibility of the membrane bioreactors for water reclamation. Wat. Sci. Tech. 2001.43(10)203~209
    17. Davis W J, Le M S, Heath C R. Intensified activated sludge process with submerged membrane microfiltration[J]. Wat. Sci. Tech. 1998,38(4~5):421~428
    18.李红兵,顾国维 中空纤维膜生物反应器处理生活污水的特性,环境科学,1999,20(2):
    
    53~56
    19.王连军,膜-生物反应器组合工艺稳定运行特性的研究,环境工程,2000,18(3):19~21
    20.郑祥,樊耀波,膜生物反应器处理毛纺印染废水的中试研究,环境科学,2001,22(4):79~82
    21.吴志超,巴西基酸生产废水膜生物工艺处理试验研究,中国环境科学,1999,19(2):163~168
    22. Chaize S, A Huyard. Membrane bioreactor on domestic wastewater treatment sludge production and modeling approach. Wat. Sci. Tech, 1991,23:1591~1600
    23. Muller E B, A H Stouthamer, et al, Aerobic domestic wastewater treatment in a pilot plant with complete sludge retention by cross-flow filtration. Wat Res, 1995,29(4): 1179~1189
    24.杜萍,三种型式膜-生物反应器工艺运行特性研究,给水排水,1999,25(3):24~27
    25.刘锐 一体式膜-生物反应器的微生物代谢特性及膜污染控制:[学位论文].北京:清华大学
    26.张绍园,膜分离与生物降解组合工艺处理受污染水研究:[学位论文],北京:中国科学院生态环境研究中心,2000
    27.魏源送,樊耀波废水处理中污泥减量技术的研究及应用,中国给水排水,2000,17(7):23~26
    28.刘锦霞,顾平 膜生物反应器脱氮除磷工艺的研究进展,城市环境与城市生态,2001,14(2):27~29
    29. Yuichi Suwa, Tsuneo Suzuki etc.: single-stage, single-sludge nitrogen removal by an activated sludge process with cross-flow filtration, Water Research, 1992, 26 (9): 1149~1157
    30.李红兵,中空纤维膜生物反应器处理生活污水特性研究:[硕士学位论文].同济大学,1998,1
    31. Stephenson T, Judd S, Jefferson B, et al. Membrane bioreactors for wastewater treatment[M]. Lonton: IWA Publishing,2000.59~111
    32,林喆,赵庆祥等:膜分离活性污泥法的研究,城市环境与城市生态,1994,7(1):6~10
    33.黄霞,桂萍等:膜生物反应器废水处理工艺的研究进展,环境科学研究,1998,11(1):40~44
    34.汪诚文,钱易等:膜-好氧生物反应器处理生活污水的实验研究,给水排水,1996,22(12):18~21
    35.王蒙、柴晓利 膜生物反应器处理生活污水的工艺及膜材料的选择,环境科学与技术,2001(3)
    36. Knops F N M, et al. The transversal flow microfiltration module. Theory, Design, Realization and experiments[J]. J. Memb. Sci. 1992,73,153~161
    37. Chang S, Fane A G. The effect of abe fibre diameter on filtration and flux distribution-Relevance to
    
    submerged hollow fibre modules[[J]. J. Memb. Sci. 2001,184(2),221~231
    38. Fane A G, Chang S. The performance of hollow fibre membranes for biomass filtration[C]. Cranfield University, UK,2001,14~18
    39. Chang I S, Judd S J. Air sparging of a submerged MBR for municipal wastewater treatment[J]. Process Biochemistry, 2002, 37:915~920
    40. Wilkes S, Brindle K, et al. The preliminary evaluation a submerged membrane bioreactor based on large diameter hollow fibre membranes for treatment of raw sewage[C]. The 2nd Symposium on Membrane Bioreactors for wastewater treatment, Cranfield University, UK, 1999
    41. Judd S. Novel MBR for the treatment of raw sewage[J]. Filtration+Separiation,2000,(10):34~36
    42. Yasutoshi Shimizu et al. Filtration characteristics of hollow fiber microfiltrafion membranes used in membrane bioreactor for domestic wastewater treatment. Wat. Res. 1996,30(10):2385
    43. Tatsuki Ueda et al. effects of aeration on suction pressure in a submerged membrane bioreactor. Wat. Res. 1997,31(3):489
    44.宋亮,一体式膜生物反应器处理有机废水的实验研究:[硕士学位论文],西安建筑科技大学,2000.6
    45. Hans E. Grethlein: anaerobic digestion and membrane separation of domestic wastewater, Joumal WPCF, 1978(50): 754~763
    46.杜萍、黄霞等 膜-生物反应器运行条件对膜过滤特性的影响,环境科学,1999,20(3):38~41
    47. L. van Dijk, G. C. G. Roncken: membrane bioreactors for wastewater treatment: the state of the art and new developments, Water Science & Technology, 1997, 35 (10): 35~41
    48. Field R. W., Wu D. etc.: Critical flux concept for microfiltration fouling, Journal of membrane science, 1995, 100:259~272
    49. Madaeni S. S.: Critical flux mechanism in membrane filtration of biomass, Book of abstracts, Euromembrane'97, "Progress in membrane science and technology", University of Twente, the netherlands, June 1997:14
    50. Benkahla Y. K., Ould-Dris A. etc.: Hydrodynamic anti-fouling mechanism in crossflow microfiltration, Poster presentation at ICOM '93, Heidelberg, Germany, Aug. 30—Sept. 3, 1993
    51. Si-Hassen D., Ould-Dris A. etc.: Conditions for cake reversibility in microfiltration ofmineral suspension with an organic membrane, Book of abstracts, Euromembrane '97, "Progress in membrane science and technology", University of Twente, the netherlands, June 1997:150
    52. Bouhbia E H, Aim R B, Fouling characterization in membrane bioreactors[J]. Separation and
    
    Purification Technology, 2001,22-23:123~132
    53. Bouhbia E H, Aim R B, Microfiltration of activated sludge using submerged membrane with air bubbling(application to wastewater treatment)[J]. Desalination, 1998.118:315~322
    54.何义亮.膜生物反应器工艺参数控制研究,上海环境科学,1999,18(2):83~87
    55.刘锐.一体式膜-生物反应器的微生物代谢特性及膜污染控制:[学位论文].北京:清华大学,2000
    56.王亚娥.膜-生物反应器特性影响因素研究.上海环境科学,199.18(7):318~320
    57.顾平.应用膜生物反应器处理生活污水的研究.中国给水排水,1998.14(5):6~8
    58.杜萍.一体式膜生物反应器污水处理特性及膜污染机理研究:[学位论文].北京:清华大学.1999
    59. Berthold Gunder et al. Replacement of secondary clarification by membrane separafionresults with tubular, plate and hollow fibre modules. Wat. Sci. Tech, 1999,40(4~5):311~320
    60. Muller E B et al. Aerobic domestic waste water treannent in a pilot plant with complete sludge retention bu crossflow filtration. Wat. Res. 1995,29(4): 1179~1189
    61. L. van Dijk, G. C. G. Roncken: membrane bioreactors for wastewater treatment: the state of the art and new developments, Water Science & Technology, 1997, 35(10): 35~41
    62. Cote P et al. Wastewater treatment using membranes: The North American experience. Wat. Sci. Tech. 2000, 41(10~11)209~215
    63. Gander M et al. Aerobic MBRs for domestic Wastewater treatment: a review with cost considerations. Seperation and Purification Technology. 2000,(18) 119~130
    64. Wouter Ghyoot et al. Nitrogen removal from sludge reject water with a membrane assisted bioreactor. Wat. Res. 1999,33(1):23~32
    65. Pedro A. Casillo et al. Biological phosphorus removal using a biofilm membrane reactor: operation at high organic loading rates. Wat. Sci. Tech. 1999,40(4~5):321~329
    66.苏宏、柏承志等,加压生物氧化法处理乙氨废水,环境科学,1998.(11).
    67.苏宏、柏承志等,加压生物氧化法处理助齐旷废水的应用研究,吉林化工学院学报,1997.14(3).48~54.
    68.王凯军 贾立敏 编著 城市污水生物处理新技术开发与应用:化学工业出版社,北京:2001
    69.刘锐等.一体式膜-生物反应器处理生活污水的中试研究.给水排水,1999.25(4).
    70.丁杭军等.一体式膜-生物反应器处理医院污水.中国给水排水,2001,17(9).
    71.张希衡等.废水厌氧生物处理工程.北京:中国环境科学出版社.1996
    72.邹联沛等.MBR对同步硝化反硝化的影响.中国给水排水,2001,17(6).
    73.张希衡:水污染控制工程(修订版),冶金工业出版社,83~124,1997
    
    
    74.胡金波、孔献珍,加压接触氧化法处理啤酒废水技术,环境科学研究,1995.8(6)29~31.
    75.万洪照、王立本,加压接触氧化处理染料废水,山东化工,1997.10(3)34~36.
    76.台明青、常国林,缺氧生化+加压生化法处理酒精酿造废水,化工环保,1998.18(5)309~311.
    77.修光利、吴生等,加压上流式好氧污泥床(PUASB)法处理制药废水初探,环境科学,1999.20(1).47~50.
    78.陈立波等,加压曝气-序批式活性污泥反应器(P-SBR)的研究,给水排水,2000.26(1).9~11.
    79.G.W.Yuan、K.H.Kranuth、K.F.Staab,用压力生物反应器、超滤器和毫微过滤器的组合式新工艺处理高浓度污水,给水与废水处理国际会议论文集,1994,北京,中国建筑出版社.
    80. K.H.Kranuth. Sustainable sewage treatment plants-Application of naofiltrotion and ultrafitrotion to a pressurized bio reactor. Wat Sci. Tech. 1996.34(30).389~394.
    81. K.H.Kranuth、 K. F.Staab, pressurized bioreactor with membrane filtration for waster treatment, wot.res, 1993.27(3).405~411.
    82. Magra, Y. and Itoh, M. The effect of operational factors on solid/liquid separationly ultra-membrane filtration in a biological denitrification system for collected human excreta treatment plants. Wat Sci. Tech,1991.43(11).51~58.
    83. Sutton, P.M et al. Combining biological and physical process for complete treatment of oily wastewoters. Int. Bio. Bio. 1994,33,3~21.
    84. P.C.Male\W.A.Pretoruis\Aerobic treatment of inhibitory wasterwater using a higt-pressure bioreactor with menbrane separation, Wat Sci&Tech,2001.43(11).51~58.
    85.C.P.小菜斯利 格雷迪,亨利C.利姆编著,李献文等译:废水生物处理理论与应用,北京:中国建筑工业出版社,1989
    86.刘茉蛾等编,膜分离技术应用手册,北京:化学工业出版社.2001
    87.郭新超,水解酸化+好氧膜生物工艺处理弹药销毁废水的试验研究:[硕士学位论文],西安建筑科技大学,2001.6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700