洋葱伯克氏群细菌的分子致病基础及其对生境适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洋葱伯克氏菌群(Bcc)由17个相近的亚种组成,它们对植物均有有利和有害的两个方面。有一些Bcc菌株能够降解自然环境中和人工合成的污染物,有一些能促进植物生长和防治植物病害。同时,Bcc的一些菌株被发现是植物病原菌而另一些是人体条件致病菌。然而,在过去的几十年里,相关研究表明人体致病Bcc菌出现了多重抗药性。因此,对Bcc菌进行风险评估,对来自于土壤、水、医院环境、植物病原菌等不同来源的Bcc菌进行分子检测及环境适应性的研究势在必行。
     本研究建立了一个简单易行并且结果稳定的生菜致病模型来检测Bcc菌的致病性。同时和Bcc菌致病性的其他评估模型如苜蓿模型、腊蛾模型和大鼠琼脂珠模型进行了比较。此外,本研究通过寄主模型培养基培养、1D蛋白质电泳、液相层析串联质朴分析和MASCOT数据库检索,以及硅肺功能分析,研究了Bcc菌的外膜蛋白。同时,为了找到一种抗菌制剂,促进医学和工业环境的卫生,本研究首次评估了金属铜表面对Bcc菌的抑菌作用。以不锈钢为对照研究了金属铜表面对Bcc菌的作用机制。
     主要的研究结果如下:
     1.利用生菜模型评价了265个菌株的致病性,细菌生长24小时后接种,观察5天。在184株被调查的B. pyrrocinia菌株中,有50株是弱致病力,5株致病力一般,有2株表现很强的致病症状,另外127株没有致病作用。然而,B. anthina, B. stabilis和B. arboris的所有菌株对生菜都有致病型;在大鼠致病模型上也得到了同样的结果。致病基因BCAM0218, BCAM0224和]BCAM0219在所有265个菌株均没有被检测到,BCESM在B. arbroris中被检测含有。
     2.测定了来源于医院、水、土壤和植物病原菌的70多株Bcc菌株在苜蓿、腊蛾和大鼠琼脂珠上的毒力。来源于医院和水中的菌株比土壤菌和植物病原菌的致病力强,但是也有少数的医院菌株表现出致病力减弱的症状。此外,来源于水的Bcc菌株致病力比土壤菌和植物病原菌强,但是比医院菌弱。在显微镜下观察生菜中脉组织,可以明显的看出细菌的入侵、定殖和复制。对生物膜的检测研究也得到相似的结果:来源于水和医院的菌株形成生物膜的能力比土壤菌和植物病原菌强。在致病模型试验中,B. cepacia LMG1222被用作参考菌株。
     3.在外膜蛋白研究中,通过LC-MS/MS方法进行了外膜蛋白的蛋白质组分析,在水、囊胞性纤维症、植物和土壤模拟生境下总共鉴定了400多个蛋白。在整个鉴定蛋白目录中,已检测发现了一些共同蛋白及一些在每个培养基条件下差异表达的蛋白。一些共同蛋白如ABC转运蛋白、外排泵蛋白、OmpW等是Bcc菌生存和生长的基础。一些蛋白如3型、4型和6型分泌系统(T3SS、T4SS、 T6SS), ZmpA、鞭毛蛋白、孔蛋白、LysR等在不同寄主模拟生境下表达差异有所不同,可能是Bcc菌在进化过程中对寄主及不同生存条件的反应,这也是未来研究工作的努力方向。
     4.铜表面对Bcc菌表现很强的抑菌活性。大量的铜离子进入细菌细胞,细菌在接触铜表面之后细胞裂解,但是并未发现DNA的损坏。可能的机制是,接触杀菌过程通常破坏细胞膜、铜大量的进入细胞、细胞死亡,然后DNA降解。
     5.我们正在开展B. seminalis的4个不同菌株的基因组和转录组的研究,目的是为了开启Bcc的生态学大门.
Burkholderia cepacia complex (Bcc) is composed of17closely related species and found ubiquitously, where they can have both beneficial and detrimental effects on plants. Some can degrade natural and man-made pollutants; some can promote plant growth or can control plant diseases. Some members are also recognized as a plant pathogen and some opportunistic human pathogens. However, over the past decade, there have been several reports of emergence of multidrug resistant Bcc infecting the vulnerable people. This has increased the need for the risk assessment, molecular basis and niche adaptation of Bcc isolates resourced from soil, water, clinical as well as plant pathogen.
     To test the pathogenicity, an alternative, potential, easy accessible and high throughput lettuce infection model was developed in this study. Alfalfa, Galleria mellonella (wax moth) and rat agar bead model was also used to evaluate the virulence intensity among Bcc isolates comparing with lettuce. Moreover, the outer membrane (OM) proteins of Bcc were investigated for molecular basis by growing Bcc bacteria in host mimic media.1D-SDS-PAGE and Lipid chromatography tandem mass spectrometry (LC-MS/MS) peptides profiles and MASCOT search database as well as in silico functional analysis were performed. Furthermore, to find possible antibacterial agent to keep environment particularly hospital and industries hygienic, copper surfaces as antibacterial agent, first time, was evaluated against Bcc. Mode of action of dry metallic copper surfaces against Bcc was also evaluated at copper exposed Bcc cells, while stainless steel was used as a control
     The main results of these studies were as follows:
     1. The lettuce model takes~24h to launch experiment including bacterial growth using store-bought lettuce and monitor for up to5d post-infection. Total,265Bcc isolates were used to investigate the virulence intensity and efficacy of lettuce. All isolates belonging to B. anthina, B. stabilis and B. arboris were determined avirulent in lettuce except B. pyrrocinia, where out of184,50isolates showed weak,5 moderate and2isolates showed severe disease symptoms and127found totally avirulent. Selected isolates in rat infection model showed same level of infection as in lettuce infection model. The transmissibility marker BCAM0218, BCAM0224, BCAM0219and BCESM were exclusively absent in265isolates except in B. arboris in which BCAM0219were determined.
     2. In the further study,70more Bcc isolates resourced from different places e.g clinical, water, soil and plant pathogens were tested in lettuce. Following lettuce pathogenicity was also tested in alfalfa, Galleria mellonella and rat agar bead alternative infection model. The biofilm formation ability was also tested. Severe to moderate pathogenicity was observed for isolates of clinical and water origin compared to soil and plant pathogen, with the exception of a few clinical isolates exhibiting reduced pathogenicity. Moreover, among water isolates, pathogenicity was also higher than soil and plant resource isolates but less than clinical. The lettuce midrib tissues show remarkable invasion, localization, and replication of bacteria when observed by transmission electron microscopic study. Similarly, biofilm formation ability was also higher among water and clinical virulent isolates compared to soil and plant pathogen isolates. B. cepacia LMG1222was used as a reference strain in these infection models.
     3. In the OM study, shotgun proteomic analyses of OM by LC-MS/MS, overall identified>400proteins under water, Cystic Fibrosis (CF) mimic, water mimic, plant mimic and soil mimic media. Among the catalog of entire identified proteins, shared proteins as well as several proteins remarkably differentially expressed under each growth medium were detected. Shared proteins like ABC transporter proteins, efflux proteins, OmpW etc could be fundamental for growth and survival. While differentially expressed proteins e.g type3, type4, type6secretion system (T3SS, T4SS, T6SS), ZmpA, flagellin, porin, LysR etc under different host mimic medium, perhaps reflecting the evolution due to different environmental survival toward host-adaptation and may represent prime for further studies.
     4. Copper surfaces were tested against Bcc and it showed the strong antibacterial activity. Higher influx of copper ions into the bacterial cells and cells disintegration among the cells exposed to copper surfaces were noted, while no DNA damage was detected at specified time. At the existing level of knowledge, it looks that contact killing proceeds by successive membrane damage, copper influx into the cells, cell death, and DNA degradation.
     5. The genomics and transcriptomics studies of four B. seminalis strains for the purpose to unlock the ecology of Bcc are under process.
引文
Abramovitch RB, Martin GB 2004. Strategies used by bacterial pathogens to suppress plant defenses. Curr Opin Plant Biol.7:356-364.
    Airey P, Verran J, (2007). Potential use of copper as a hygienic surface; problems associated with cumulative soiling and cleaning. J. Hosp. Infect.67,272-278.
    Azadeh BF, Sariah M, Wong MY, (2010). Characterization of Burkholderia cepacia genomovar I as a potential biocontrol agent of Ganoderma boninense in oil palm. Afr J Biotechnol.9:3542-3548.
    Balandreau J, Viallard V, Cournoyer B, Coenye T, Laevens S, Vandamme P. (2001). Burkholderia cepacia genomovar Ⅲ is a common plant-associated bacterium.
    Bernier SP, Silo-Suh L, Woods DE, Ohman DE, Sokol PA, (2003). Comparative analysis of plant and animal models for characterization of Burkholdetia cepacia virulence. Infect Immun.71:5306-5313.
    Bernier SP, Sokol PA, (2005). Use of suppression-subtractive hybridization to identify genes in the Burkholderia cepacia complex that are unique to Burkholderia cenocepacia. J Bacteriol.187:5278-5291.
    Bevivino A, Dalmastri C, Tabacchioni S, Chiarini L, Belli ML, Piana S, Materazzo A, Vandamme P, Manno G, (2002). Burkholderia cepaciaBurkholderia cepacia complex bacteria from clinical and environmental sources in Italy:genomovar status and distribution of traits related to virulence and transmissibility. J Clin Microbiol.40:846-851.
    Bevivino A, Tabacchioni S, Chiarni L, Carusi MV, del Gallo, M, Visca, P, (1994). Phenotypic comparison between rhizosphere and clinical isolates of Burkholderia cepacia. Microbiol.140:1069-1077.
    Biddick R, Spilker T, Martin A, LiPuma JJ, (2003). Evidence of transmission of Burkholderia cepacia, Burkholderia multivorans and Burkholderia dolosa among persons with cystic fibrosis. FEMS Microbiol Lett.228:57-62.
    Bielecki P, Puchalka J, Wos-Oxley ML, Loessner H, Glik J, (2011). In-Vivo expression profiling of Pseudomonas aeruginosa infections reveals niche-specific and strain-independent transcriptional programs. PLoS ONE 6: e24235.
    Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C, Denance N, Vasse J, Lauber E, Arlat M, (2007). Plant carbohydrate scavenging through TonB-dependent receptors:A feature shared by phytopathogenic and aquatic bacteria. PLoS ONE 2 e224.
    Bonas U, (1994). Hrp genes of phytopathogenic bacteria. Curr opin Microbiol Imunol. 192:79-98.
    Borkow G, Gabbay J, (2005). Copper as a biocidal tool. Curr. Med. Chem.12, 2163-75.
    Briand GG, Burford N, (1999). Bismuth compounds and preparations with biological or medicinal relevance. Chem. Rev,99:2601-265.
    Buchanan SK, (2001). Type Ⅰ secretion and multidrug efflux:transport through the TolC channel-tunnel. Trends Biochem Sci.26:3-6.
    Burkholder WH, (1950). Sour skin, a bacterial rot of onion bulbs. Phytopathol.40: 115-117.
    Butler SL, Doherty CJ, Hughes JE, Nelson JW, Govan JR, (1995). Burkholderia cepacia and cystic fibrosis:do natural environments present a potential hazard? J Clin Microbiol.33:1001-1004.
    Buttner D, and He SY, (2009). Type Ⅲ protein secretion in plant pathogenic bacteria Plant Physiology 150:1656-1664.
    Bylund J, Burgess LA, Cescutti P, Ernst RK, Speert DP, (2006). Exopolysaccharides from Burkholderia cenocepacia inhibit neutrophil chemotaxis and scavenge reactive oxygen species. J Biol Chem.281:2526-2532.
    Caraher E, Duff C, Mullen T, McKeon S, Murphy P, Callaghan M, McClean S, (2006). Invasion and biofilm formation of Burkholderia dolosa is comparable with Burkholderia cenocepacia and Burkholderia multivorans. J Cyst Fibrosis. 6:49-56.
    Cardona ST, Wopperer J, Eberl L, Valvano MA, (2005). Diverse pathogenicity of Burkholderia cepacia complex strains in the Caenorhabditis elegans host model. FEMS Microbiol Lett.250:97-104.
    Casey AL, Adams D, Karpanen TJ, Lambert PA, Cookson BD, Nightingale P, Miruszenko L, Shillam R, Christian P, Elliott TS, (2009)..Role of copper in reducing hospital environment contamination. J Hosp Infect.74:72-7.
    Cash HA, Woods DE, McCullough B, Johanson WG Jr, Bass JA, (1979). A rat model of chronic respiratory infection with Pseudomonas aeruginosa. Ann Rev Respir Dis.119:453-459.
    Castonguay-Vanier J, Vial L, Tremblay J, De'Ziel E, (2010). Drosophila melanogaster as a model host for the Burkholderia cepacia Complex. PLoS ONE 5:e11467.
    Cescutti P, Bosco M, Picotti F, Impallomeni G, Leitao JH, Richau JA, Sa-Correia I, (2000). Structural study of the exopolysaccharide produced by a clinical isolate of Burkholderia cepacia. Biochem Biophys Res Commun.273:1088-1094.
    Chamero P, Marton TF, Logan DW, Flanagan K, Cruz JR, Saghatelian A, Cravatt BF, Stowers L, (2007). Identification of protein pheromones that promote aggressive behavior. Nature 450:899-902.
    Chapus C, Rovery M, Sarda L, Verger R, (1988). Minireview on pancreatic lipase and colipase. Biochimie 70:1223-1234.
    Charkowski AO, Alfano JR, Preston G, Yuan J, He SY, Collmer A, (1998). The Pseudomonas syringae pv. Tomato HrpW protein has domains similar to harpins and pectatelyases and can elicit the plant hypersensitive response and bind to pectate. J Bacteriol.180:5211-5217.
    Cheng HP, Lessie TG, (1994). Multiple replicons constituting the genome of Pseudomonas cepacia 17616. J Bacteriol.176:4034-4042.
    Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P, (2006). Burkholderia cepacia complex species:health hazards and biotechnological potential. Tren Microbiol.14:277-286.
    Chu KK, Davidson DJ, Halsey TK, Chung JW, Speert DP, (2002). Differential persistence among genomovars of the Burkholderia cepacia complex in a murine model of pulmonary infection. Infect Immun.70:2715-2720.
    Clode FE, Kaufmann ME, Malnick H, Pitt TL, (2000). Distribution of genes encoding putative transmissibility factors among epidemic and non-epidemic strains of Burkholderia cepacia from cystic fibrosis patients in the United Kingdom. J Clin Microbiol.38:1763-1766.
    Coenye T, Vandamme P, (2003). Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol.5:719-729.
    Conway BA, Chu D, Bylund KK, Altman JE, Speert DP, (2004). Production of exopolysaccharide by Burkholderia cenocepacia results in altered cell-surface interactions and altered bacterial clearance in mice. J Inf Dis.190:957-966.
    Conway BA, Speert DP, (2002). Biofilm formation and acyl homoserine lactone production in the Burkholderia cepacia complex. J. Bacteriol 184:5678-5685.
    Corbett CR, Burtnick MN, Kooi C, Woods DE, Sokol PA, (2003). An extracellular zinc metalloprotease gene of Burkholderia cepacia. Microbiol-SGM 149: 2263-2271.
    Cornick NA, Silva M, Gorbach SL, (1990). In vitro antibacterial activity of bismuth subsalicylate. Rev. Infect. Dis,12:S9-S10.
    Couey HM, Alvarez AM, Nelson MG, (1984). Comparison of hot water spray and immersion treatment for control of postharvest decay of papaya. Plant Dis.68: 436-437.
    Cunha MV, Pinto-de-Oliveira A, Meirinhos-Soares L, Salgado MJ, Melo-Cristino J, Correia S, Barreto C, Sa-Correia I, (2007). Exceptionally high representation of Burkholderia cepacia among the B. cepacia complex isolates recovered from the major Portuguese Cystic Fibrosis center. J Clin Microbiol.45:1582-1588.
    Cunha MV, Sousa SA, Leitao JH, Moreira LM, Videira PA, Sa-Correia I, (2004). Studies on the involvement of the exopolysaccharide produced by cystic fibrosis-associated isolates of the Burkholderia cepacia complex in biofilm formation and in persistence of respiratory infections. J Clin Microbiol. 42:3052-3058.
    Darcan C, Ozkanca R, Flint KP, (2003). Flint, Survival of non-specific porin deficient mutants of Escherichia coli in Black Sea Water. Lett Appl Microbiol 37:380-385.
    De Costa DM, Erabadupitiya HRUT, (2005). An integrated method to control postharvest diseases of banana using a member of Burkholderia cepacia complex. Postharvest Biol Technol.36:31-39.
    De Curtis F, Lima G, Vitullo D, De Cicco V, (2010). Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on tomato by delivering antagonistic bacteria through a drip irrigation system. Crop Protection 29:663-670.
    Dennis JJ, Zylstra GJ, (1998). Plasposons:modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl Environ Microbiol.64:2710-2715.
    Dinesh SD, (2012). Artificial Sputum Medium. Nature Protocol Exchange doi: 10.1038/protex.212.
    Dollwet HH Sorenson JR. Historic uses of copper compounds in medicine. Trace Elem. Med 2:80-87.
    Drevinek P, Mahenthiralingam E, (2010). Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin. Microbiol. Infect. 16:821-830.
    Elguindi J, Wagner J, Rensing C, (2009). Genes involved in copper resistance influence survival of Pseudomonas aeruginosa on copper surfaces. J. Appl. Microbiol,106:1448-1455.
    Espirito Santo C, Lam EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ, Grass G, (2011). Bacterial killing by dry metallic copper surfaces. Appl. Environ. Microbiol,77:794-800.
    Espirito Santo C, Morais PV, Grass G, (2010). Isolation and characterization of bacteria resistant to metallic copper surfaces. Appl. Environ. Microbiol,76, 1341-1348.
    Fang Y, Lou MM, Li B, Xie GL, Wang F, Zhang LX, Luo YC (2010). Characterization of Burkholderia cepacia complex from cystic fibrosis patients in China and their chitosan susceptibility. World J Microbiol Biotechnol.26:443-450.
    Fang Y, Xie GL, Lou MM, Li B, Ibrahim M, (2011) Diversity Analysis of Burkholderia cepacia Complex in the Water Bodies of West Lake, Hangzhou, China. J Microbiol.49:309-314.
    Faundez G, Troncoso M, Navarrete P, Figueroa G, (2004). Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol.4:19.
    Fit N, Stefan R, Nadas G, Calina D, (2009). In vitro antibacterial activity of copper and bismuth powder. Bulletin UASVM, Veterinary Medicine,66:297-301.
    Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A.; (In) (2005). Protein Identification and Analysis Tools on the ExPASy Server; John M. Walker (ed):The Proteomics Protocols Handbook, Humana Press 571-607.
    Gill WM, Cole ALJ, (1992). Cavity disease of agaricus-bitorquis caused by Pseudomonas cepacia. Can J Microbiol.38:394-397.
    Gonzalez CF, Pettit EA, Valadez VA, Provin EM, (1997). Mobilization, cloning, and sequence determination of a plasmid-encoded polygalacturonase from a phytopathogenic Burkholderia(Pseudomonas) cepacia. Mol Plant Microb Inter. 10:840-851.
    Gordon AS, Howell LD, Harwood D, (1994). Responses of diverse heterotrophic bacteria to elevated copper concentrations. Can. J. Microbiol.40:408-411.
    Govan JR, Brown PH, Maddison J, Doherty CJ, Nelson JW, Dodd M, Greening AP, Webb AK, (1993). Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet,342:15-19.
    Govan JR, Deretic V, (1996). Microbial pathogenesis in cystic fibrosis:mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev.,60, 539-74.
    Grass G, Rensing C, Solioz M, (2011). Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol.77,1541-1547.
    Guglierame P, Pasca MR, De Rossi E, Buroni S, Arrigo P, Manina G, Riccardi G, (2006). Efflux pumps genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome. BMC Microbiol.6:66.
    H(?)iby N, (1995). Isolation and treatment of cystic fibrosis patients with lung infections caused by Pseudomonas(Burkholderia) cepacia and multiresistant Pseudomonas aeruginosa. Netherlands J. Med.46:280-287.
    Holden MT, Seth-Smith, HM, Crossman LC, Sebaihia M, Bentley SD, Cerdeno-Tarraga AM, Thomson NR, Bason N, Quail MA, Sharp S, other 23 authors (2009). The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J. Bacteriol,191:261-277.
    Housden NG, Wojdyla JA, Korczynska J, Grishkovskaya Irina, Kirkpatrick Nadine, Brzozowski AM, Kleanthous C, (2010). Directed epitope delivery across the Escherichia coli outer membrane through the porin OmpF. Proc Natl Acad Sci USA.107:21412-21417.
    Hu FP, Young JM, (1998). Biocidal activity in plant pathogenic Acidovorax, Burkholderia, Herbaspirillum, Ralstonia and Xanthomonas spp. J Appl Microbiol.84:263-271.
    Hutchinson GR, Parker S, Pryor JA, (1996). Home-use nebulizers:a potential primary source of Burkholderia cepacia and other colistin-resistant, gram-negative bacteria in patients with cystic fibrosis. J Clin Microbial.34:584-587.
    Ibrahim M, Shi Y, Qiu H, Jabeen A, Ii LP, Iiu H Li B, Kube M Xie GL, Wang Y, Sun GC Differential expression of in vivo and in vitro protein profile of outer membrane of Acidovorax avenae subsp. avenae. PlosOne.
    Ibrahim M, He L, Lou MM, Bo Z, Li B, Xie GL*and Zhang G, (2011). Prevalence of potential pathogenicity and molecular characterizations of Burkhoderia cepacia complex (BCC) among isolates from bamboo rhzosphere in China. Res J Chem Environ.15:998-1005.
    Ibrahim M, Tang Q, Shi Y, Almoneafy A, Fang Y, Xu L, Li W, Li B, Xie GL, (2012) Diversity of potential pathogenicity and biofilm formation among Burkholderia cepacia complex water, clinical, and agricultural isolates in China. World J Microbiol Biotechnol 28:2113-2123.
    Jaeger KE, Reetz MT, (1998). Microbial lipases form versatile tools for biotechnology. Trends Biotechnol.16:396-403.
    Jagannadham MV, (2008). Identification of proteins from membrane preparations by a combination of MALDI TOF-TOF and LC-coupled linear ion trap MS analysis of an Antarctic bacterium Pseudomonas syringae Lz4W, a strain with unsequenced genome. Electrophoresis 29:4341-50.
    Jap BK, Walian PJ, (1990). Biophysics of the structure and function of porins. Q Rev Biophys 23:367-403.
    Jeanteur D, Lakey JH, Pattus F, (1991). The bacterial porin superfamily:sequence alignment and structure prediction. Mol Microbiol.5:2153-2164.
    Ji XL, Lu GB, Gai YP, Gao HJ, Lu BY, Kong LR, Mu ZM, (2010). Colonization of Morus alba L. by the plant-growth-promoting and antagonistic bacterium Burkholderia cepacia strain Lu10-1. BMC Microbiol.10.
    Johnston Jr RB, (2001). Clinical aspects of chronic granulomatous disease. Curr Opin Hematol.8:17-22.
    Kall L, Krogh A, Sonnhammer ELL, (2004). A combined transmembrane topology and signal peptide prediction method. J Mole Biol.338:1027-1036.
    Kang Y, Carlson R, Tharpe W, Schell MA, (1998). Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl Environ Microbiol. 64:3939-3947.
    Kirzinger MW, Nadarasah G, Stavrinides J, (2011). Insights into cross-kingdom plant pathogenic bacteria. Genes,2:980-997.
    Koebnik R, Locher KP. Van Gelder P, (2000). Structure and function of bacterial outer membrane proteins:barrels in a nutshell. Mol. Microbiol.37:239-253.
    Koebnik R, (2005). TonB-dependent trans-envelope signaling:the exception or the rule? Trends Microbiol.13:343-347.
    Koenig P, Minis O, Haarmann R, Sommer MS, Sinning I, Schleiff E, Tews I, (2010). Conserved properties of polypeptide transport-associated (POTRA) domains derived from cyanobacterial Omp85. J Biol Chem.285:18016-18024.
    Kooi C, Corbett CR, Sokol PA, (2005). Functional analysis of the Burkholderia cenocepacia Zmp Ametalloprotease. J Bacteriol.187:4421-4429.
    Kothe M, Antl M, Huber B, Stoecker K, Ebrecht D, Steinmetz I, Eberl L, (2003). Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum-sensing system. Cell Microbiol.5:343-351.
    Kuehn MJ, Kesty NC, (2005). Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev.19:2645-55.
    Laemmli UK, Molbert E, Showe M, Kelenberger E, (1970). Form determining function of genes required for the assembly of the head of bacteriophage T4. J Mol Biol.49:99-113.
    Lay-Yee M, Clare GK, Petry RJ, Fullerton RA, and Gunson A, (1998). Quality and disease incidence of'Waimanalo Solo'papaya following forced-air heat treatments. Hort Sci.33:878-80.
    Lee YA, Chan CW, (2007). Molecular typing and presence of genetic markers among strains of banana finger-tip rot pathogen, Burkholderia cenocepacia, in Taiwan. Phytopathol.97:195-201.
    Lee YA, Shiao YY, Chao CP, (2003). First report of Burkholderia cepacia as a pathogen of banana finger-tip rot in Taiwan. Plant Dis.87:601-601.
    Lessie TG, Hendrickson W, Manning BD, Devereux R, (1996). Genomic complexity and plasticity of Burkholderia cepacia. FEMS Microbiol Lett.144:117-128.
    Li B, Fang Y, Zhang GQ, Yu RR, Lou MM, Xie GL, Wang YL, Lou M, Fang Y, Zhang G, Xie GL, Zhu B, Ibrahim M, (2010). Diversity of Burkholderia cepacia complex from the Moso Bamboo(Phyllostachys edulis) rhizhosphere soil. Cur. Microbiol.62:650-658.
    Li B, Fang Y, Zhang GQ, Yu RR, Lou MM, Xie GL, Wang YL, Sun GC, (2010). Molecular characterization of Burkholderia cepacia complex isolates causing bacterial fruit rot of apricot. Plant Pathol J.26:223-230.
    Li B, Liu BP, Yu RR, Lou MM, Wang YL, Xie GL, Li HY, Sun GC, (2011). Phenotypic and molecular characterization of rhizobacterium Burkholderia sp. strain R456 antagonistic to Rhizoctonia solani, sheath blight of rice. World J Microbiol Biotechnol.27:2305-2313.
    Lin L, Duo, SS, Bao WY, Lin SE, (2007). Analysis of outbreak of nosocomial bloodstream infection with Burkholderia cepacia by recA-RFLP. China J Infect Control.6:219-223.
    Lin S, Lin ZX, Yao GP, Deng CH, Yang P, Zhang X, (2007). Development of microwave-assisted protein digestion based on trypsin-immobilized magnetic microspheres for highly efficient proteolysis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Rapid Commun mass spectrom 21:3910-3918.
    LiPuma JJ, (1998). Burkholderia cepacia:management issues and new insights. Clin. Chest. Med.19:473-86.
    LiPuma JJ, Spilker T, Coenye T, Gonzalez CF, (2002). An epidemic Burkholderia cepacia complex strain identified in soil. Lancet 359:2002-2003.
    Lou M, Fang Y, Zhang G, Xie GL, Zhu B and Ibrahim M, (2010). Diversity of Burkholderia cepacia Complex from the Moso Bamboo (Phyllostachys edulis) Rhizhosphere Soil. Curr. Microbiol.62:650-658.
    Lou M, Zhang L, Su T, Xie GL, (2007). Genomovars of Burkholderia cepacia Complex from Rice Rhizo-sphere and Clinic in China. Rice Science.14: 229-234.
    Loutet SA, Valvano MA, (2010). A Decade of Burkholderia cenocepacia Virulence Determinant Research. Infect Immun.78:4088-4100.
    Macomber L, Imlay JA, (2009). The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. P. Natl. Acad. Sci.106, 8344-8349
    Maddocks SE, Oyston PC, (2008). Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiol.154:3609-3623.
    Mahenthiralingam E, Baldwin A, Dowson CG, (2008). Burkholderia cepacia complex bacteria:opportunistic pathogens with important natural biology. J Appl Microbiol.104:1539-1551.
    Mahenthiralingam E, Baldwin A, Vandamme P, (2002). Burkholderia cepacia complex infection in patients with cystic fibrosis. J Med Microbiol.51: 533-538.
    Mahenthiralingam E, Campbell ME, Henry DA, Speert DP, (1996). Epidemiology of Burkholderia cepacia infection in patients with cystic fibrosis:analysis by random amplified polymorphic DNA (RAPD) fingerprinting. J. Clin. Microbiol. 34,2914-2920.
    Mahenthiralingam E, Simpson DA, Speert DP, (1997). Identification and characterization of a novel DNA marker associated with epidemic Burkholderia cepacia strains recovered from patients with cystic fibrosis. J Clin Microbiol.35:808-816.
    Mahenthiralingam, E, Urban TA, Goldberg JB, (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat. Rev. Microbiol.3, 144-156.
    Maravic A, Skocibusic M, Sprung M, Samanic I, Puizina J, Pavela-Vrancic M, (2012). Occurrence and antibiotic susceptibility profiles of Burkholderia cepacia complex in coastal marine environment. Int J Environ Heal Res. In press.
    Matsuoka H, Miura A, Hori KL, (2009). Symbiotic effects of a lipase-secreting bacterium, Burkholderia arboris SL1B1, and a glycerol-assimilating yeast, Candida cylindracea SL1B2, on triacylglycerol degradation. J Biosci Bioeng. 107:401-408.
    McDowell A, Mahenthiralingam E, Dunbar KE, Moore JE, Crowe M, Elborn JS, (2004). Epidemiology of Burkholderia cepacia complex species recovered from cystic fibrosis patients:issues related to patient segregation. J Med Microbiol.53:663-668.
    Mehtar S, Wiid I, Todorov SD,2008. The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape:an invitro study. J. Hosp. Infect. 68:45-51.
    Miche L, Faure D, Blot M, Cabanne-Giuli E, Balandreau J, (2001). Detection and activity of insertion sequences in environmental strains of Burkholderia. Environ Microbiol.3:766-773.
    Mil-Homens DM, Rocha EPC, Fialho AM, (2010). Genome-wide analysis of DNA repeats in Burkholderia cenocepacia J2315 identifies a novel adhesin-like gene unique to epidemic-associated strains of the ET-12 lineage. Microbiol.156: 1084-1096.
    Molnar J, Engi H, Hohmann J, Molnar P, Deli J, Wesolowska O, Michalak K, Wang Q,2010. Reversal of multidrug resistance by natural substances from plants. Curr Topics Med Chem 10:17.
    Moreira LM, Videira PA, Sousa SA, Leitao JH, Cunha MV, Sa-Correia I, (2003). Identification and physical organization of the gene cluster involved in the biosynthesis of Burkholderia cepacia complex exopolysaccharide. Biochem Biophys Res Commun.312:323-333.
    Neely MN, Caparon M, (2002). Streptococcus-zebrafish. model of bacterial pathogenesis. Infect Immun.70:3904-3914.
    Nightingale P, Miruszenko L, Shillam R, Christian P, Elliott TS, (2010). Role of copper in reducing hospital environment contamination. J. Hosp. Infect,74: 72-77.
    Nikaido H, (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev.67:593-656.
    Noyce JO, Michels H, Keevil CW, (2006). Potential use of copper surfaces to reduce survival of epidemic methicillin-resistant Staphylococcus aureus in the healthcare environment. J. Hosp. Infect,63,289-297.
    Oh CS, Kim JF, Beer SV, (2005). The Hrp pathogenicity island of Erwinia amylovora and identification of three novel genes required for systemic infection. Mol Plant Pathol.6:125-138.
    Ohman DE, Sadoff JC, Iglewski BH, (1980). Toxin A-deficient mutants of Pseudomonas aeruginosa PA103:isolation and characterization. Infect Immun.28:899-908.
    Ohsumi Y, Kitamoto K, Anraku Y, (1998). Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion. J. Bacteriol,170: 2676-2682.
    Olsen JV, de Godoy LMF, Li GQ, Macek B, Mortensen P, (2005). Parts per million mass accuracy on an orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Prote.4:2010-2021.
    Osborn MJ, Wu HCP, (1980). Proteins of the Outer Membrane of Gram-Negative Bacteria. Annu Rev Microbiol.34:369-422.
    O'Sullivan LA, Weightman AJ, Jones TH, Marchbank AM, Tiedje JM, Mahenthiralingam E, (2007). Identifying the genetic basis of ecologically and biotechnologically useful functions of the bacterium Burkholderia vietnamiensis. Environ Microbiol.9:1017-1034.
    O'Toole G KH, Kolter R, (2000). Biofilm formation as microbial development. Annu Rev Microbiol.54:49-79.
    Ozkanca R, Flint KP, (2002). The effect of starvation stress on the porin protein expression of Escherichia coli in lake water. Lett Appl Microbiol.35: 533-537.
    Parke JL, Gurian-Sherman D, (2001). Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol.39:225-258.
    Passalacqua KD, Varadarajan A, Ondov BD, Okou DT, Zwick ME, Bergman NH, (2009). Structure and complexity of a bacterial transcriptome. J Bacteriol.191: 3203-3211.
    Paull RE, Nishijima W, Reyes M, Cavaletto C, (1997). A review of postharvest handling and losses during marketing of papaya (Carica papaya L.). Postharvest Biol Techno.11:165-179.
    Peix A, Mateos PF, Rodriguez-Barrueco C, Martinez-Molina E, Velazquez E. (2001). Growth promotion of common bean(Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biol Biochem.33: 1927-1935.
    Petersen TN, Brunak S, von Heijne G, Nielsen H, (2011). SignalP 4.0:discriminating signal peptides from transmembrane regions. Nat Methods 8:785-786.
    Petrova OE, Sauer K, (2010). The Novel Two-Component Regulatory System BfiSR Regulates Biofilm Development by Controlling the Small RNA rsmZ through CafA. J Bacteriol.192:5275-5288.
    Piddock LJ. (2006). Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev.19:382-402.
    Pirone L, Chiarini L, Dalmastri C, Bevivino A, Tabacchioni S, (2005). Detection of cultured and uncultured Burkholderia cepacia complex bacteria naturally occurring in the maize rhizosphere. Environ Microbiol.7:1734-1742.
    Pope CE, Short P, Philip E, Carter PE, (2010). Species distribution of Burkholderia cepacia complex isolates in cystic fibrosis and non-cystic fibrosis patients in New Zealand. J. Cyst. Fibros,9:442-446.
    Prehna G, Zhang G, Gong C, Duszyk M, Okon M, McIntosh, LP, Weiner JH, Strynadka NC, (2012). A Protein export pathway involving Escherichia coli porins structure. Cell press 20:1154-1166.
    Rahman MA, Mahmud TMM, Kadir J, Rahman RA, Begum MM, (2009). Enhancing the efficacy of Burkholderia cepacia B23 with calcium chloride and chitosan to control anthracnose of papaya during storage. Plant Pathol J.25:361-368.
    Rahme LG, Ausubel FM, Cao H, Drenkard E, Goumnerov, BC, Lau GW, Mahajan-Miklos S, Plotnikova J, Tan MW, Tsongalis J, Walendziewicz CL, Tompkins RG, (2000). Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci.97:8815-8821.
    Ramette A, LiPuma JJ, Tiedje JM (2005). Species abundance and diversity of Burkholderia cepacia complex in the environment. Appl Environ Microbiol.71: 1193-1201.
    Reik R, Spilker T, Lipuma JJ, (2005). Distribution of Burkholderia cepacia complex species among isolates recovered from persons with or without cystic fibrosis. J. Clin. Microbiol.,43:2926-2938.
    Rensing C, Grass G, (2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiology,27:197-213.
    Rey S, Acab M, Gardy JL, Laird MR, deFays K, Lambert C, Brinkman FS, (2005). PSORTdb:a protein subcellular localization database for bacteria. Nucleic Acids Res.1:33.
    Riedel K, Hentzer M, Geisenberger O, Huber B, Steidle A, Wu H, (2001). N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiol SGM,147: 3249-3262.
    Rosales-Reyes R, Skeldon AM, Aubert DF, Valvano MA, (2012). The Type VI secretion system of Burkholderia cenocepacia affects multiple Rho family GTPases disrupting the actin cytoskeleton and the assembly of NADPH oxidase complex in macrophages. Cell Microbiol.14:255-273.
    Rose H, Baldwin A, Dowson CG, Mahenthiralingam E, (2009). Biocide susceptibility of the Burkholderia cepacia complex. J. Antimicrob. Chemother.,63, 502-510.
    Sajjan U, Thanassoulis G, Cherapanov V, Lu A, Sjolin C, Steer B, Wu YJ, Rotstein OD, Kent G, McKerlie C, Forstner J, Downey GP, (2001). Enhanced susceptibility to pulmonary infection with Burkholderia cepacia in Cftr(-/-) mice. Infect Immun.69:5138-5150.
    Sajjan US, Sun L, Goldstein R, Forstner JF, (1995). Cable (Cbl) type Ⅱ pili of cystic fibrosis-associated Burkholderia (Pseudomonas) cepacia:nucleotide sequence of the cblA major subunit pilin gene and novel morphology of the assembled appendage fibers. J. Bacteriol 177:1030-1038.
    Saldias MS, Valvano MA, (2009). Interactions of Burkholderia cenocepacia and other Burkholderia cepacia complex bacteria with epithelial and phagocytic cells. Microbiol.155:2809-2817.
    Schaad NW, Jones JB, Chun W, (2001). Laborats (3rd ed.), American Phytopathological Society, St Paul, MN.
    Schell MA, Zhao P, Wells L, (2011). Outer membrane proteome of Burkholderia pseudomallei and Burkholderia mallei from diverse growth conditions. J Proteome Res.10:2417-24.
    Schirmer T, (1998). General and specific porins from bacterial outer membranes. J Struct Biol.121:101-109.
    Schoeffler AJ, Berger JM, (2008). DNA Topoisomerases:Harnessing and constraining energy to govern chromosome topology. Q Rev Biophys.41: 41-101.
    Schulz GE, (2008). The Structures of General Porins. Protein Science Encyc.25-40.
    Schwab U, Leigh M, Ribeiro C, Yankaskas J, Burns K, Gilligan P, Sokol P, Boucher R, (2002). Patterns of epithelial cell invasion by different species of the Burkholderia cepacia complex in well differentiated human airway epithelia. Infect Immun.70:4547-4555.
    Seed KD, Dennis JJ, (2008). Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Infect Immun.76: 1267-1275.
    Sharan R, Chhibber S, (2009). Alfalfa infection model:is it a potential alternative for mouse pneumonia model to study pathogenesis of Stenotrophomonas maltophilia? World J Microbiol Biotechnol.25:1609-1614.
    Silipo A, Molinaro A, Comegna D, Sturiale L, Cescutti P, Garozzo D, Parrilli M, Lanzetta R, (2006). Full structural characterisation of the lipooligosaccharide of a Burkholderia pyrrocinia clinical isolate. Eur J Org Chem.4874-4883.
    Singh NP, McCoy MT, Tice RR, Schneider EL, (1998). A simple technique for quantitation of low levels of DNA damage in individual cells for DNA damage in individual cells. Exp. Cell Res,175:184-191.
    Singhal L, Gautam V, Kaur M, Ray P, (2011). In vitro activity of doripenem against Burkholderia cepacia complex isolates from non-Cystic Fibrosis patients. Antimicrob. Agents. Chemother.55:1320-1321.
    Society for General Microbiology Superbug Complicates Treatment Of Infections In Cystic Fibrosis. Science Daily. (2009, March 23).
    Sokol PA, Kooi C, Hodges RS, Cachia P, Woods DE, (2000). Immunization with a Pseudomonas aeruginosa elastase peptide reduces severity of experimental lung infections due to P. aeruginosa or Burkholderia cepacia. J Infect Dis. 181:1682-1692.
    Sousa SA, Moreira LM, Wopperer J, Eberl L, Sa-Correia I, Leitao JH, (2007). The Burkholderia cepacia bceA gene encodes a protein with phosphomannose isomerase and GDP-D-mannose pyrophosphorylase activities. Biochem Biophys Res Commun.353:200-206.
    Sousa SA, Ramos CG, Leitao JH, (2011). Burkholderia cepacia Complex:Emerging Multihost Pathogens Equipped with a Wide Range of Virulence Factors and Determinants. Int J Microbiol.2011:607575.
    Sousa SA, Ulrich M, Ulrich M, (2007). Virulence of Burkholderia cepacia complex strains in gp91phox mice. Cel Microbiol.9:2817-2825.
    Starkey M, Rahme LG, (2009). Modeling Pseudomonas aeruginosa pathogenesis in plant hosts. Nat Protoc.4:117-124.
    Sudha VBP, Singh KO, Prasad SR, Venkatasubramanian P, (2009). Killing of enteric bacteria in drinking water by a copper device for use in the home:laboratory evidence. Trans. R. Soc. Trop. Med. Hyg.103,819-822.
    Tahara ST, Mehta A, Rosato YB, (2003). Proteins induced by Xanthomonas axonopodis pv. passiflorae with leaf extract of the host plant(Passiflorae edulis). Proteomics.3:95-102.
    Tomich M, Herfst CA, Golden JW, Mohr CD, (2002). Role of flagella in host cell invasion by Burkholderia cepacia. Infect Immun.70:1799-1806.
    Van VT, Berge O, Ke SN, Balandreau J, Heulin T (2000). Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218: 273-284.
    Vandamme P, Dawyndt P.2011. Classification and identification of the Burkholderia cepacia complex:Past, present and future. Syst. App. Micro,34:87-95.
    Vandamme P, Govan JRW, LiPuma JJ, (2007). Diversity and role of Burkholderia spp., p.1-28. In T. Coenye and P. Vandamme (ed.), Burkholderia:molecular microbiology and genomics. Horizon Bioscience, Norfolk, United Kingdom.
    Vandamme P, Henry D, Coenye T, Nzula S, Vancanneyt M, LiPuma JJ, Speert DP, Govan JR, Mahenthiralingam E, (2002). Burkholderia anthina sp nov. and Burkholderia pyrrocinia:two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol Med Microbiol.33:143-149.
    Vandamme P, Holmes B, Vancanneyt M, Coenye T, Hoste B, Coopman R, (1997). Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol. 47:1188-1200.
    Vandamme P. Dawyndt P, (2011).Classification and identification of the Burkholderia cepacia complex:Past, present and future. Syst Appl Microbiol.34:87-95.
    Vanlaere E, Lipuma JJ, Baldwin A, (2008). Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol.58:1580-1590.
    Vanlaere E, Lipuma JJ, Baldwin A, Henry D, De Brandt E, Mahenthiralingam E, Speert D, Dowson C, Vandamme P, (2008). Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int. J. Syst. Evol. Microbiol.58, 1580-1590.
    Vermis K, Coenye T, LiPuma JJ, Mahenthiralingam E, Nelis HJ. Vandamme P, (2004). Proposal to accommodate Burkholderia cepacia genomovar VI as Burkholderia dolosa sp. nov. Int J Syst Evol Microbiol.54:689-691.
    Vial L, Chapalain A, Groleau MC, Deziel E, (2011). The various lifestyles of the Burkholderia cepacia complex species:a tribute to adaptation. Environ Microbiol.13:1-12.
    Vial L, Groleau MC, Lamarche MG, Filion G, Castonguay-Vanier J, Dekimpe V, Daigle F, Charette SJ, Deziel E, (2010). Phase variation has a role in Burkholderia ambifaria niche adaptation. ISME J.4:49-60.
    Von Heijne G, (2006). Membrane protein topology. Nat Rev Mol Cell Biol.12: 909-918.
    Vu B, Chen M, Crawford RJ, Ivanova EP. Molecules.Bacterial extracellular polysaccharides involved in biofilm formation.14:2535-54.
    Wenger PN, Tokars JI, Brennan P, Samel C, Bland L, Miller M, Carson L, Jarvis W, (1997). An outbreak of Enterobacter hormaechei infection and colonization in an intensive care nursery. Clin Infect Dis.24,1243-1244.
    Yabuuchi E, Kawamura Y, Ezaki T, Ikedo M, Dejsirilert S, Fujiwara N, Naka T, and Kobayashi K, (2000). Burkholderia uboniae sp. nov.,l-arabinose-assimilating but different from Burkholderia thailandensis and Burkholderia vietnamiensis. Microbiol Immunol.44; 307-317.
    Yoder-Himes DR, Chain PS, Zhu Y, Wurtzel O, Rubin EM, Tiedje JM, Sorek R, (2009). Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc Natl Acad Sci.106:3976-3981.
    Yoshimoto T, Kabashima T, Uchikawa K, Inoue T, Tanaka N, Nakamura KT, Tsuru M, Ito K, (1999). Crystal structure of prolyl amino peptidase from Serratia marcescens. J Biochem.126:559-65.
    Yu NY, Wagner JR, Laird MR, Melli G, Rey S, (2010). PSORTb 3.0:improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608-1615.
    Zhang LX, Xie, GL, (2007). Diversity and distribution of Burkholderia cepacia complex in the rhizosphere of rice and maize. FEMS Microbiol Lett 266: 231-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700