膜生物反应器处理医院污水的消毒及消毒副产物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜生物反应器(MBR)应用于医院污水处理工艺不但具有出水有机物和悬浮物浓度低、剩余污泥少等优点,且具有物理消毒作用。课题研究了在工程应用中采用MBR处理医院污水的消毒特征,MBR处理前后污水的氯消毒动力学、氯消毒副产物及其生物毒性。
     实验结果表明,由于膜和膜面沉积层的截留作用实现了MBR对指示微生物的有效去除,在工程应用中MBR对细菌总数和粪大肠杆菌的平均去除率分别达到2.0~3.9 log和2.8~4.0 log。MBR在连续运行22个月以后,由于膜丝的破损和老化,消毒效果有明显的下降趋势。
     采用次氯酸钠(NaClO)进行消毒试验,原污水出现明显的“拖尾现象”,其细菌总数和粪大肠菌群的变化符合对滞后和拖尾均有体现的Collins-Selleck模型。MBR出水具有极高的消毒效率,当有效氯浓度为3.0 mg/L,接触时间为2 min时,细菌总数和粪大肠菌群均不被检出,考虑消毒剂瞬时衰减的Chick-Waston模型对NaClO灭活MBR出水中细菌的灭活曲线有最佳拟合效果。
     为检测消毒前后医院污水中的卤代乙酸(HAAs),建立了离子色谱与固相萃取结合的分析方法。经过25倍预浓缩后,一溴乙酸的检出限为2.61μg/L,二溴乙酸的检出限为1.30μg/L,其余三种HAAs的检测限为0.48~0.82μg/L,准确度和精密度等测定结果符合一般分析要求。将该方法用于测定三个不同处理工艺的医院污水消毒前后水样中的HAAs,发现A、B和C三个污水处理站氯化消毒前后水样中HAAs的增长率分别为91.28%、63.61%和79.50%。
     对于医院原污水和MBR出水,要获得相同的CRT值,原污水投氯量显著高于MBR出水,相应耗氯量为MBR出水的5~10倍;且为了获得更高的CRT,原污水需要的投氯量的增量明显高于MBR出水。
     当CRT约为0.0075 mg·h/L时,MBR出水中粪大肠菌群即可不被检出,且放置6 h未见再生长现象,此时三卤甲烷、卤代乙酸和可吸附有机卤化物浓度分别为8.01μg/L、19.05μg/L和102.5μg/L,相应的生物毒性为8.96μg/L(以K_2Cr_2O_7计)。要达到同样的消毒效果,原污水产生的生物毒性为MBR出水的4.5倍。
Membrane bioreactor (MBR) used in hospital sewage treatment may serve as a pre-disinfection unit, in addition to its solid/liquid separation and biological degradation of pollutants functions, to produce the effluent with high quality. The aim of this study was to evaluate the pre-disinfection characteristics of MBR, chlorination disinfection by-products and the bio-toxicity for the effluent from a MBR treating hospital wastewater.
     The experimental results show that the removal rates of total bacteria and fecal coliform by this MBR are 2.0~3.9 log and 2.8~4.0 log, respectively, due to the rejection by membrane and the visible cake layer developed on the membrane surface. The disinfection efficiency decreases after the MBR having been operated 22-month continuously, for the membrane fibers’ageing and leakage.
     In this time-course study, sodium hypochlorite (NaClO) was used as a disinfectant to inactivate the residual indicator microorganisms in the raw wastewater and the effluent from MBR. The total bacteria and fecal coliform in the raw wastewater behaved“trailing effect”obviously, and their kinetic fitting accords with the Collins-Selleck Model, which can express both“lag and trailing”. The results indicated that the total bacteria and fecal coliform in the MBR effluent were completely inactivated when the concentrations of available chlorine were 3.0 mg/L and the contact time was 2 min, meanwhile the concentrations of chlorine residual were less than 1.58 mg/L. With the nonlinear fitting for the experimental data, the Chick-Waston model incorporating a first-order disappearance term for chlorine residual was found to best describe the observed inactivation of total bacteria in the MBR effluent.
     The ion chromatography combined with solid phase extraction (SPE) method was developed for the analysis of sub-μg/L haloacetic acids (HAAs) concentrations, a class of disinfection by-products formed as a result of chlorination of wastewater. Linearity, repeatability and detection limits of the method were evaluated. The detection limits of monobromoacetic acid and dibromoacetic acid are 2.61μg/L and 1.30μg/L respectively, and the other three rang from 0.48 to 0.82μg/L under 25-folds preconcentration. When the above optimization procedure is applied to three hospital wastewater samples with different treatment processes in Tianjin, and the results indicate that the dichloroacetic acid is the major compound, and the growth ratios of the HAAs after disinfection by sodium hypochlorite are 91.28%, 63.61% and 79.50%, respectively.
     The chlorine-demands of the raw wastewater are 5~10 times higher than that of the MBR effluent under the same value of CRT. Also the increasing rate of chlorine-demands in the raw wastwater is quicker along with the increasing of CRT value.
     To meet the requirement for indicative microorganism (fecal coliform) in the Discharge Standard of Water Pollutants for Medical Organization (GB18466-2005), the CRT value required for the MBR effluent is about 0.0075 mg·h/L, meanwhile, the concentration of trihalomethanes (THMs), haloacetic acids (HAAs) and adsorbable organic halogen compounds (AOX) are 8.01μg/L, 19.05μg/L and 102.5μg/L, respectively. And correspondingly the bio-toxity by acute toxicity test with Daphnia magna is 8.96μg/L (K_2Cr_2O_7), which is much lower than the raw wastewater.
引文
[1] 马世豪,凌波. 医院污水污物处理[M]. 北京: 化学工业出版社, 2000: 13.
    [2] 常丽春, 王凯军. 我国医院污水处理现状分析及发展趋势探讨[J]. 城市管理与科技, 2004, 6(3): 108-110.
    [3] 汪映萍, 谢思桃. 医院污水处理现状及存在的主要问题[J]. 给水排水技术动态[J]. 2004(2): 25-27.
    [4] Metcalt & Eddy,Inc.,Wastewater Engineering:Treatment and Reuse,Fourth Edition[M]. 北京: 化学工业出版社, 2004: 76.
    [5] Kummerer K. Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test[J]. Chemosphere, 2000, 40(7): 701-710.
    [6] Kummerer K, Meyer M, Steger-Hartmann T. Biodegradability of the anti-tumour agent ifosfamide and its occurrence in hospital effluents and communal sewage[J]. Water Research, 1997, 31(11): 2705-2710.
    [7] Emmanuel E. Ecotoxicological risk assessment of hospital wastewater: a proposed framework for raw effluents discharging into urban sewer network[J]. J. Hazard. Mater., 2005, 117(1): 1-11.
    [8] Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data[J]. Toxicology Letters, 2002, 131(1-2): 5-17.
    [9] Simon D Costanzo, John Murby, John Bates. Ecosystem response to antibiotics entering the aquatic environment[J]. Marine Pollution Bulletin, 2005, 51(1-4): 218-223.
    [10] Jolibois B, Guerbet M. Detection of hospital wastewater genotoxicity with the SOS chromotest and Ames fluctuation test[J]. Chemosphere, 2003, 51(6): 539-543.
    [11] Jolibois B, Guerbet M. Evaluation of industrial, hospital and domestic wastewater genotoxicity with the Salmonella fluctuation test and the SOS chromotest[J]. Mutation Research, 2005, 565(2): 151-162.
    [12] Laville N, Ait-Aissa S, Gomez E et al. Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes[J]. Toxicology, 2004, 196(1-2): 41-55.
    [13] Willie Grabow. SARS: can it be transmitted by water? [J]. Water 21, 2003, (8): 10.
    [14] Wenbo Y, Nazim C, John I. State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America[J]. Journal of Membrane Science, 2006, 270(1-2): 201-211.
    [15] T Melin, B Jefferson, D Bixioc et al. Membrane bioreactor technology for wastewater treatment and reuse[J]. Desalination, 2006, 187(1-3): 271-282.
    [16] Simon Judd. Fouling control in submerged membrane bioreactors, Proceeding of IWA Special Conference: Water Environment-Membrane Technology[C]. 2004, Seoul: 433-443.
    [17] F B Frechen, W Schier. Upgrading of wastewater treatment plants (WWTP) with the MBR-process, Proceeding of IWA Special Conference: Water Environment-Membrane Technology[C]. 2004, Seoul: 1269-1276.
    [18] Arnold Janson, Sandro Monti, S P Hong. Increasing wastewater treatment capacity and effluent quality without increasing land area requirements: a case history, Proceeding of IWA Special Conference: Water Environment-Membrane Technology[C]. 2004, Seoul: 651-659.
    [19] Jae-Hyung Park, Eui-Sung Hwang, Kyung-Sook Shin et al. Advanced membrane bioreactor system for nitrogen and bio-P removal from municipal wastewater: demonstration system results, Proceeding of IWA Special Conference: Water Environment-Membrane Technology[C]. 2004, Seoul: 725-734.
    [20] Tao Guihe, Kiran Kekre, Zhao Wei et al. Membrane bioreactors for water reclamation, Proceeding of IWA Special Conference: Water Environment-Membrane Technology[C]. 2004, Seoul: 1043-1050.
    [21] C H Ni, T K Chen, Chi H Chen et al. Application of MBR technology in wastewater treatment and reclamation in Taiwan, Proceeding of IWA Special Conference: Water Environment-Membrane Technology[C]. 2004, Seoul: 1051-1058.
    [22] Hoon Kim, Hyung-Soo Kim, Ick-Tae Yeom et al. Application of membrane bioreactor system with full scale plant on livestock wastewater, Proceeding of IWA Special Conference: Water Environment-Membrane Technology[C]. 2004, Seoul: 571-578.
    [23] Kevin Olmstead, Jim Buckles, Shin Joh Kang. Treatment of a petroleum wastewater using an immersed membrane biological reactor, Proceeding of IWA Special Conference: Water Environment-Membrane Technology[C]. 2004, Seoul: 659-667
    [24] 张颖,李力,顾平. 膜生物反应器用于处理医院污水[J]. 中国给水排水, 2005, 21(2): 83-85.
    [25] Daughton C G, Jones-Lepp. Pharmaceuticals and personal care products in the environment: scientific and regulatory issues [C]. Symposium Series 791, American Chemical Society, 2001, Washington DC.
    [26] Ternes T A. Occurrence of drugs in German sewage treatment plants and rivers[J]. Water Research, 1998, 32(11): 3245-3260.
    [27] Zwiener C, Frimmel F H. Oxidative treatment of pharmaceuticals in water [J]. Water Research, 2000, 34(6): 1881-1885.
    [28] Clara M, Strenn B, Kreuzinger N. Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration [J]. Water Research, 2004, 38 (4): 947-954.
    [29] Hailing-S?rensen B, Nielsen N, Lanzky P F et al. Occurrence, fate and effects of pharmaceutical substances in the environnement-a review [J]. Chemosphere, 1998, 36 (2): 357-393.
    [30] Richardson M L, Bowron J M. The fate of pharmaceutical chemicals in the aquatic environment [J]. Pharmacology, 2000, 37(1): 1-12.
    [31] Dirk Loftier, Thomas A. Analytical method for the determination of the aminoglycoside gentamicin in hospital wastewater via liquid chromatography-electrospray-tandem mass spectrometry[J]. Journal of Chromatography A, 2003, 1000(1-2): 583-588.
    [32] Emmanuel E, Khalil H. Fate of glutaraldehyde in hospital wastewater and combined effects of glutaraldehyde and surfactants on aquatic organisms [J]. Environment International, 2005, 31(3): 399- 406.
    [33] Kummerer K. Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources-a review[J]. Chemosphere, 2001, 45 (6-7): 957-969.
    [34] United States Environmental Protection Agency (USEPA). Drinking water criteria document for chlorine, hypochlorous acid and hypochlorite ion[S]. Environmental Criteria and Assessment Office. Cincinnati, U.S. EPA; 1989a.
    [35] Emmanuel E. Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater[J]. Environment International, 2004, 30(7): 891-900.
    [36] 张晓健. 消毒副产物总致癌风险的首要指标参数-卤乙酸[J]. 给水排水, 2000, 26(8): 1-6
    [37] Manuel J Rodriguez, Jean-B Serode, Patrick Levallois. Behavior of trihalomethanes and haloacetic acids in a drinking water distribution system[J]. Water Research, 2004, 38(20): 4367-4382.
    [38] Paul Pavelic. Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water[J]. Journal of Contaminant Hydrology,2005, 77(4): 351-373.
    [39] Sirivedhin T, Gray K A. Part I. Identifying anthropogenic markers in surface waters influenced by treated effluents: a tool in potable water reuse[J]. Water Research, 2005, 39(6): 1154-1164.
    [40] Sirivedhin T, Gray K A. 2. Comparison of the disinfection by-product formation potentials between a wastewater effluent and surface waters [J]. Water Research, 2005,39(6): 1025-1036.
    [41] 高泽宣. 两种净水剂处理医院污水致突变物研究[J]. 中国公共卫生, 1997, 13(10): 600-603.
    [42] 郑祥,吕文洲,杨敏等. 膜技术对污水中病原微生物去除的研究进展[J]. 2005, 25(1): 1-5.
    [43] Madaeni S S. The application of membrane technology for water disinfection[J]. Water Research, 1999, 33(2): 301-308.
    [44] Urase Taro, Yamamoto Kazuo, Ohgaki Shinichiro et al. Effect of pore structure of membranes and module configuration on virus retention[J]. Journal of Membrane Science, 1996, 115(1): 21-29.
    [45] M Gomez, A de la Rua, G Garralon et al. Urban wastewater disinfection by filtration technologies [J]. Desalination, 2006, 190(1-3): 16-28.
    [46] Van Voorthuizen E M, Ashbolt N J, Sch?fer A I. Role of hydrophobic and electrostatic interactions for initial enteric virus retention by MF membranes [J]. Journal of Membrane Science, 2001, 194(1): 69-79.
    [47] Herath Gemunu, Yamamoto Kazuo, Uras Taro. Removal of Viruses by Microfiltration Membranes at Different Solution Environments [J]. Wat. Sci. Tech, 1999, 40(4-5): 331-338.
    [48] Herath Gemunu, Yamamoto Kazuo, Uras Taro. The effect of suction velocity on concentration polarization in microfiltration membranes under turbulent flow conditions [J]. Journal of Membrane Science, 2000, 169(2): 175-183.
    [49] Madaeni S S. Virus removal from water and wastewater using membranes [J]. Journal of Membrane Science, 1995, 102: 65-75.
    [50] Monarca S, Feretti D, Collivignarelli C et al. The influence of different disinfectants on mutagenicity and toxicity of urban wastewater[J]. Water Research, 2000, 34 (17): 4261-4269
    [51] Owen G, Bandi M, Howell J A et al. Economic assessment of membrane processes for water and waste water treatment[J]. Journal of Membrane Science, 1995, 102 (15): 77-91
    [52] 顾国维,何义亮. 膜生物反应器-在污水处理中的研究和应用[M]. 北京: 化学工业出版社, 2002: 114-123.
    [53] van der Roest H F, Lawrence D P, van Bentem A G N, 2002. Membrane Bioreactors for Municipal Wastewater Treatment, Water and Wastewater Practitioner Series: STOWA Report[C]. IWA Publishing, London.
    [54] Wong H M, Tarn L S, Tang T W et al. 2003. Rejection of bacteriophage bymembrane bioreactor[C]. In: Proceedings of the International Conference on Pollution in the Metropolitan and Urban Environment, Hong Kong.
    [55] T Stephenson, S J Judd, B Jefferson et al. Membrane Bioreactors for Wastewater Treatment[C]. IWA Publishing, London, 2000.
    [56] Churchouse S, Brindle K, 2002. Operational experience of full scale membrane bioreactor sewage treatment plants[C]. In: Proceedings of the IWA Third World Water Congress, International Water Association, Melbourne, Australia.
    [57] Ueda T, Horan N J. Fate of indigenous bacteriophage in a membrane bioreactor [J]. Water Research, 2000, 34(7): 2151-2159.
    [58] Chiemchaisri C, Yamamoto K. Performance of membrane separation bioreactor at various temperatures for domestic wastewater treatment[J]. Journal of Membrane Science, 1994, 87(1-2): 119-129.
    [59] N Cicek, H Winnen, M T Suidan et al. Effectiveness of the membrane bioreactor in the biodegraddation of high molecular weight compounds [J]. Water Research, 1998,32(5): 1553-1563.
    [60] Shang Chii, Wong Hiu Man, Chen Guanghao. Bacteriophage MS-2 removal by submerged membrane biore actor [J]. Water Research, 2005, 39(17): 4211-4219.
    [61] Gunten U V, Driedger A. By-products formation during water disinfection: atool to assess disinfection efficiency[J]. Water Research, 2001, 35(8): 2095-2099.
    [62] Laura Marabini, Silvia Frigerio, Enzo Chiesara, et al. Toxicity evaluation of surface water treated with different disinfectants in HepG2 cells[J]. Water Research, 2006, 40(2): 267-272.
    [63] E E Chang, P C Chiang, S H Chao et al. Relationship between chlorine consumption and chlorination by-products formation for model compounds[J]. Chemosphere, 2006, 64(7): 1196-1203.
    [64] 胡洪营,王丽莎,魏东斌. 污水消毒面临的技术挑战及其对策[J]. 世界科技研究与发展, 2005, 27(6): 36-41.
    [65] Li Sha Wang, Dong-Bin Wei, Hong-Ying Hu. Screening and estimating of toxicity formation with photobacterium bioassay during chlorine disinfection of wastewater[J]. J. Hazard. Mater. (2006), doi:10.1016/j.jhazmat. 2006.07.001.
    [66] Crebelli R, Contia L, Monarc S et al. Genotoxicity of the disinfection by-products resulting from peracetic acid- or hypochlorite-disinfected sewage wastewater[J]. Water Research, 2005, 39 (6): 1105-1113.
    [67] Graves C G, Matanoski G M, Tardiff R G. Weight of evidence for an association between adverse reproductive and developmental effects and exposure to disinfection by-products: a critical review[J]. Regul. Toxicol. Pharmacol., 2001, 34(2): 103-124.
    [68] Tardiff R G, Carson M L, Ginevan M E. Updated weight of evidence for an association between adverse reproductive and developmental effects and exposure to disinfection by-products[J]. Regul. Toxicol. Pharmacol., 2006, 45(2): 185-205.
    [69] White D M, Garland D S, Narr J et al. Natural organic matter and DBP formation potential in Alaskan water supplies[J]. Water Research, 2003, 37(4): 939-947.
    [70] Hyun-Chul Kim, Myong-Jin Yu. Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control[J]. Water Research, 2005, 39(19): 4779-4789.
    [71] Zhen-Ye Zhao, Ji-Dong Gu, Xiao-Jun Fan et al. Molecular size distribution of dissolved organic matter in water of the Pearl River and trihalomethane formation characteristics with chlorine and chlorine dioxide treatments [J]. J. Hazard. Mater., 2006, 134(1-3): 60-66.
    [72] Nuray Ates, S Sule Kaplan, Erkan Sahinkaya et al. Occurrence of disinfection by-products in low DOC surface waters in Turkey[J]. J. Hazard. Mater. (2006), doi:10.1016/j.jhazmat. 2006.08.076
    [73] Stefanie Schulz, Hermann H Hahn. Generation of halogenated organic compounds in municipal waste water[J]. Wat. Sci. Tech, 1998, 37(1): 303-309.
    [74] Menahem R, Lilly H G, Josepha M. Formation of disinfection byproducts during chlorination of secondary effluent and renovated water[J]. Water Environment Research, 1997, 69(6): 1154-1161.
    [75]张丽萍,叶裕才,吴天宝等再生水用于地下水回灌的加氯消毒研究[J].中国给水排水,2001,17(4):12-15
    [76]Junghoon Choi,Richard L Valentine Formation of N-nitrosodimethylamine(NDMA)from reaction of monochloramine:a new disinfection by-product[J]Water Research,2002,36(4):817-824
    [77]李君文氯化消毒时三卤甲烷的形成(1)-形成机理及影响因素[J].环境保护科学,1994,20(1):5-9
    [78]Yang X,Shang Chii,Huang Ju-Chang DBP formation in breakpoint chlorinationofwastewater[J]Water Research,2005,39(19):4755-4767
    [79]Nissinen T K,Miettinen I T,Martikainen P J et al Disinfection by-products inFinnish drinking waters[J]Chemosphere,2002,48(1):9-20
    [80] Karen L S, Keith P H. Drinking water disinfection by-products: an Australian perspective[J]. Water Research, 1998,32(5): 1522-1528.
    [81] Elif Pehlivanoglu-Mantasl, David L Sedlak. The fate of wastewater-derived NDMA precursors in the aquatic environment[J]. Water Research, 2006, 40(6): 1287-1293.
    [82] Przemyslaw Andrzejewski, Barbara Kasprzyk-Hordern, Jacek Nawrocki. The hazard of N-nitrosodimethylamine (NDMA) formation during water disinfection with strong oxidants[J]. Desalination, 2005, 176 (1-3): 37-45.
    [83] Marhaba F T, Mangmeechai A, Chaiwatpongsakorn C et al. Trihalomethanes formation potential of shrimp farm effluents[J]. J. Hazard. Mater., 2006, 136(2): 151-163.
    [84]国家环境保护总局(水和废水监测分析方法编委会).水和废水监测分析方法 (第四版) [M]. 北京:中国环境科学出版社,2002:172,472,694-706,721
    [85]陈毓荃生物化学实验方法和技术[M]北京:科学出版社,2002:95-97, 171-173
    [86]贺北平,秦竹,王占生气相色谱法测定给水中三卤甲烷的方法[J].中国环境监测,1997,13(4):18-20
    [87]王占生,刘文君编著做污染水源饮用水处理[M]北京:中国建筑工业出版社.1999:32-34
    [88] Jorma Kuivinen, Haekan Johnsson. Determination of trihalomethanes and some chlorinated solvents in drinking water by headspace technique with capillary column gas-chromatography[J]. Water Research, 1999, 33 (5): 1201-1208.
    [89] Pi Yunzheng, Hu Jun, Yun Guichun. Treatment of organic compounds in reclaimed wastewater for groundwater recharge [J]. Tsinghua Science and Technology, 2004, 9(4): 455-459.
    [90] B Arrojo, A Mosquera-Corra, J M Garrido et al. A membrane coupled to a sequencing batch reactor for water reuse and removal of coliform bacteria[J]. Desalination, 2005, 179 (1-3): 109-116.
    [91]刘志杰,谢华,俞毓馨等厌氧污泥胞外多聚物的提取、测定法选择[J].环境化学,1994,15(4):23-26
    [92] Delia Teresa Sponza. Extracellular polymer substances and physicochemical properties of floes in steady and unsteady activated sludge systems [J]. Process Biochemistry, 2002, 37(9): 983-998.
    [93] Jae-Sok Kim, Chung-Hak Lee, Hee-Dong Chun. Comparison of ultrafiltration characteristic between activated sludge and BAC sludge [J]. Water Research, 32(11): 3443-3451.
    [94] Goodwin J A S, Foster C F. A further examination into the composition of activated sludge surfaces in relation to their settlement characteristics [J]. Water Research, 1985, 19(4): 527-533.
    [95] Chrysi S Laspidou, Bruce E Rittmann. A unified theory for extracellular polymeric substances, soluble microbial products and active and inert biomass[J]. Water Research, 2002, 36(11): 2711-2720.
    [96] 刘壮, 杨造燕, 田淑媛. 活性污泥胞外多聚物的研究进展[J]. 城市环境与城市生态, 1999, 12(5): 54-57.
    [97] Hoddson P H, Leslie G L, Schneider R P et al. Cake resistance and solute rejection in bacterial microfiltration: The role of the extracellular matrix[J]. Journal of Membrane Science, 1993, 79(1): 35-53.
    [98] Nagaoka H., Ueda S, Miya A. Influence of bacteria extracellular polymers on membrane separation activated sludge process[J]. Wat. Sci. Tech., 1996, 34(9): 165-172.
    [99]吴金玲,黄霞.膜-生物反应器混合液性质对膜污染影响的研究进展[J].环境污染治理技术与设备,2006,7(2):16-24
    [100] Kim J S, Lee C H, Chang I S. Effect of pump shear on the performance of a crossflow membrane biore actor [J]. Water Research, 2001, 35 (9): 2137-2144.
    [101] Mikkelsen L H. The shear sensitivity of activated sludge: Relations to filterability, rheology and surface chemistry [J]. Colloids and Surfaces A, 2001, 182(1-3): 1-14.
    [102] Houghton J I, Quarmby J, Stephenson T. Municipal wastewater sludge dewaterability and the p resence of microbial extracellular polymer[J]. Wat. Sci. Tech., 2001, 44(2-3): 373-379.
    [103] Rosenberger S, Kraume M. Filterability of activated sludge in membrane bioreactors[J]. Desalination, 2003, 151(2): 195-200.
    [104] Lee W, Kang S, Shin H. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors[J]. Journal of Membrane Science, 2003, 216(1-2): 217-227.
    [105]蔡春光,刘军深,蔡伟民胞外多聚物在好氧颗粒化中的作用机理[J].中国环境科学,2004,24(5):623-626
    [106] J W Morgan, C F Forster, L Evison, A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges[J]. Water Research, 1990, 24(6): 743-750.
    [107] Schmidt J E, Ahring B K. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors[J]. Biotechnology and Bioengineering, 1996, 49 (3): 229-246.
    [108]郑祥,吕文洲,杨敏等膜生物反应器去除污水中病毒的试验研究[J].科学通报,2005,50(2):117-122
    [109]卞晓锴,陆晓峰,施柳青蛋白质超滤过程及超滤膜的表面改性研究现状[J].膜科学与技术,2001,21(4):46-51
    [110] Shrivastava R, Upreti R K, Jain S R et al. Suboptimal chlorine treatment of drinking water leads to selection of multidrug-resistant Pseudomonas aeruginosa[J]. Ecotoxicology and Environmental Safety, 2004, 58 (2): 277-283.
    [111]邹宝波,程科萍等医院菌株对常用消毒剂的抗药性测定[J].现代医学,2002.30(2):28-29
    [112]许保玖给水处理理论[M]北京:中国建筑工业出版社,2000:468-486
    [113] Hassen A, Heyouni A, Shayeb H et al. Inactivation of indicator bacteria in wastewater by chlorine-a kinetics study[J]. Bioresource Technology, 2000, 72 (1): 85-93.
    [114] Hass C N, Karra S B. Kinetics of microbial inactivation by chlorine II: Kinetics in the presence of chlorine demand[J]. Water Research, 1984, 18 (11): 1451-1454.
    [115]王云,鲁巍,张晓健.氯及氯胺灭活大肠杆菌的消毒动力学模型[J].环境科学,2005,26(5):100-104
    [116] Selleck R E, Saunier B M, Collins H F. Kinetics of bacterial deactivation with chlorine[J]. Journal of the Sanitary Engineering Division, ASCE, 1978, 104: 1197-1212.
    [117] Horn L W. Kinetics of chlorine disinfection of an ecosystem [J]. Journal of the Sanitary Engineering Division , ASCE, 1972, 98: 183-194.
    [118] Majumdar S B, Ceckler W H, Sproul O J. Inactivation of poliovirus in water by ozonation [J]. Journal of Water Pollution Control Federation, 1973, 45(12): 2433-2443.
    [119] Anotai J. Effect of calcium ion on chemistry and disinfection of free chlorine at pH 10 [D]. Drexel University, 1996.
    [120] Mark L Hanson, Keith R Solomon. Haloacetic acids in the aquatic environment. Part I: macrophyte toxicity[J]. Environmental Pollution, 2004, 130 (3): 371-383
    [121] Manuel J, Jean-B S, Patrick Levallois. Behavior of trihalomethanes and haloacetic acids in a drinking water distribution system[J]. Water Research, 2004, 38 (20): 4367-4382
    [122] Brett Paull, Leon Barron. Using ion chromatography to monitor haloacetic acids in drinking water: a review of current technologies[J]. Journal of Chromatography A, 2004, 1046(1-2): 1-9.
    [123] US EPA. National Primary Drinking Water Regulation: Interim Enhanced Surface Water Treatment[S]. 1998, 63(241): 69477.
    [124] J B Serodes, M J Rodriguez, H Li C Bouchard. Occurrence of THMs and HAAs in experimental chlorinated waters of the Quebec City area (Canada)[J]. Chemosphere, 2003, 51(4): 253-263.
    [125]J Dojlido, E Zbiec, R Swietlik. Formation of the haloacetic acids during ozonation and chlorination of water in warsaw waterworks (Poland)[J]. Water Research, 1999, 33(14): 3111-3118.
    [126] X Zhang, R A Minear. Decomposition of trihaloacetic acids and formation ofthe corresponding trihalomethanes in drinking water[J]. Water Research, 2002, 36(14): 3665-3673.
    [127] E E Chang, Y P Lin, P C Chiang. Effects of bromide on the formation of THMs and HAAs[J]. Chemosphere, 2001, 43(8): 1029-1034.
    [128] J Hodgeson, J Collins, R E Barth. EPA Method 552.0[S]. Revision 1.0, National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH, USA, 1990.
    [129] D J Munch, J W Munch, A M Pawlecki. EPA Method 552.2[S]. Revision 1.0, National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH, USA, 1995.
    [130] D Martinez, J Farre, F Borrull et al. Capillary zone electrophoresis with indirect UV detection of haloacetic acids in water[J]. Journal of Chromatography A, 1998, 808 (1-2): 229-236.
    [131] D Martinez, F Borrull, M Calull. Evaluation of different electrolyte systems and on-line preconcentrations for the analysis of haloacetic acids by capillary zone electrophoresis[J]. Journal of Chromatography A, 1999, 835 (1-2): 187-196.
    [132] B Ells, D A Barnett, R W Purves et al. Detection of nine chlorinated and brominated haloacetic acids at part-per-trillion levels using ESI-FAIMS-MS [J]. Analytical Chemistry, 2000, 72 (19): 4555-4559. [133 ]S Hashimoto, A Otsuki. Simultaneous determination of haloacetic acids in environmental waters using electrospray ionization liquid chromatography mass spectrometry[J]. Journal of High Resolution Chromatography A, 1998, 21 (1): 55-58.
    [134] C Sarzanini, M C Bruzzoniti, E Mentasti. Preconcentration and separation of haloacetic acids by ion chromatography[J]. Journal of Chromatography A, 1999, 850(1-2): 197-211.
    [135] L M Nair, R Saari-Nordhaus, J M Anderson. Determination of haloacetic acids by ion chromatography[J]. Journal of Chromatography A, 1994, 671(1-2): 309-313.
    [136] Yongjian Liu, Shifen Mou. Determination of trace levels of haloacetic acids and perchlorate in drinking water by ion chromatography with direct injection[J]. Journal of Chromatography A, 2003, 997 (1-2): 225-235.
    [137] R Loos, D Barcelo. Determination of haloacetic acids in aqueous environments by solid-phase extraction followed by ion-pair liquid chromatography electrospray ionization mass spectrometric detection[J]. Journal of Chromatograp?hy A, 2001, 938(1-2): 45-55.
    [138] Yongjian Liu, Shifen Mou. Determination of trace-level haloacetic acids in drinking water by ion chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Chromatography A, 2004, 1039 (1-2): 89-95.
    [139]] 戴树桂, 张东梅, 张仁江等. 固相萃取技术预富集环境水样中邻苯二甲酸酯[J]. 环境科学, 2000, 21(2): 66-69.
    [140] D Martinez, F Borrull, M Calull. Comparative study of a solid-phase extraction system coupled to capillary electrophoresis in the determination of haloacetic compounds in tap water[J]. Journal of Chromatography A, 1998, 827 (1): 105-112.
    [141] Leon Barron, Brett Paull. Determination of haloacetic acids in drinking water using suppressed micro-bore ion chromatography with solid phase extraction[J]. Analytica Chimica Acta, 2004, 522(2): 153-161.
    [142] R Slingsby, R Kiser. Sample treatment techniques and methodologies for ion chromatography[J]. Trends in Analytical Chemistry, 2001, 20(6-7): 288-295.
    [143] Dionex, Sunnyvale, CA, 2000. Installaton instructions and troubleshooting guide for the OnGuard II Cartridges[R]. Document No. 031688, Revision 01.
    [144] 马军. 氯化消毒副产物的形成及对饮用水质的影响[J]. 中国给水排水 1997, 13(1): 35-36.
    [144]马军.氯化消毒副产物的形成及对饮用水质的影响[J].中国给水排水1997, 13(1):35-36
    [145]李君文,于祚斌,高明等天然水中三卤甲烷前体活性结构的研究[J].解放军预防医学杂志,1995,13(2):95-99
    [146]沈耀良,王宝贞氯化消毒副产物的形成及其控制(I) [J].污染防治技术, 1995,8(2):65-68
    [147] Clark R M. Chlorine demand and TTHM formation kinetics: a second order model[J]. J. Environ. Eng., ASCE, 1998, 124(1): 16-24.
    [148] Gallard H, Urs von Gunten. Chlorination of natural organic matter: kinetics of chlorination and of THM formation[J]. Water Research, 2002, 36(1): 65-74.
    [149] Taha F Marhaba, Doanh Van. The variation of mass and disinfection by-product formation potential of dissolved organic matter fractions along a conventional surface water treatment plant[J]. J. Hazard. Mater., 2000, 74(3): 133-147.
    [150] 赵英, 白晓琴, 顾平. 序批式膜生物反应器处理生活污水的特性[J]. 化工学报, 2005, 56(11): 2195-2199.
    [150] 陈卫文, 顾平, 刘锦霞. MBR对不同分子质量有机物的去除规律[J]. 中国给水排水, 2003, 19(2): 43-45.
    [151] Hyun Shang Shin, Jean Marc Monsallier, Gregory R Choppin. Spectroscopic and chemical characterizations of molecular size fractionated humic acid[J]. Talanta, 1999, 50 (3): 641-647.
    [152] Singer P C. Humic substances as precursors for potentially harmful disinfection by-products[J]. Wat. Sci. Tech., 1999, 40(9): 25-30
    [153] Singer P C. Occurrence of haloacetic acids in chlorinated drinking water[J]. Wat. Sci. Tech.: Water supply, 2002, 2(5-6): 487-492.[154 ] 黄雅芳, 许仕荣, 周书葵.用三卤甲烷预测相应的三卤乙酸[J]. 华南大学学报, 2004, 18(4): 90-94.
    [155] Boyce S D, Horning J F. Reaction pathways of trihalomethane formation from the halogenation of dihydroxyaromatic model compounds for humic acids[J]. Environ. Sci. Technol., 1983, 17(4): 202-211.
    [156] 陈维芳, 叶裕才. 可吸附有机卤化物的深度处理研究[J]. 污染防治技术, 1999, 12(2): 77-79.
    [157] 皮运正, 吴天宝, 陈维芳. 可吸附有机卤化物的深度处理实验研究[J]. 环境污染与防治, 2001, 23(2): 49-51.
    [158] Schulz Stefanie, Hahn Hermann H. Generation of halogenated organic compounds in municipal waste water[J]. Wat. Sci. Tech., 1998, 37(1): 303-309.
    [159] Kummerer K, Erbe T, Gartiser S et al. AOX-Emissions from hospitals into municipal waste water[J]. Chemosphere, 1998, 36(11): 2437-2445.
    [160] Bloor M C, Banks C J, Krivtsov V. Acute and sublethal toxicity tests to monitor the impact of leachate on an aquatic environment[J]. Environment International, 2005, 31(2): 269-273.
    [161] Cleuvers M. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects[J]. Toxicology Letters, 2003, 142(3): 185-194.
    [162] Lock K, Because S, Criel P et al. Ecotoxicity of cobalt to the springtail Folsomia candida[J]. Comparative Biochemistry and Physiology, Part C, 2004, 139(4): 195-199.
    [163]] 杨立群, 高泽宣. 用 Ames和微核试验对医院污水致突变性的评价[J]. 环境科学, 1997, 18(3): 88-89.
    [164] Ann L Miracle, Gerald T Ankley. Ecotoxicogenomics: linkages between exposure and effects in assessing risks of aquatic contaminants to fish[J]. Reproductive Toxicology, 2005, 19 (3): 321-326.
    [165] Vanessa Moraes de Andrade , Thales R O. Comet assay using mullet (Mugil sp.) and sea catfish (Netuma sp.) erythrocytes for the detection of genotoxic pollutants in aquatic environment[J]. Mutation Research, 2004, 560 (1): 57-67.
    [166] Bombail V, Aw D, Gordon E et al. Application of the comet and micronucleus assays to butterfish (Pholis gunnelus) erythrocytes from the Firth of Forth, Scotland[J]. Chemosphere, 2001, 44 (3): 383-392.
    [167] 周新文, 朱国年. Cu、Zn、Pb、Cd对鲫鱼组织 DNA毒性的研究[J]. 核农学报, 2001, 15(3): 167-173.
    [168] 刘国光, 徐海娟, 王莉霞等. 环境有机污染物对蚤的毒性研究[J]. 环境与健康杂志, 2003, 20(6): 369-371.
    [169] 叶伟红, 刘维屏. 大型蚤毒理试验与研究进展[J]. 环境污染治理技术与设备, 2004, 5(4): 4-7.
    [170] 孔繁翔. 环境生物学[M]. 北京: 高等教育出版社, 2000: 99-102.
    [171] Michels E, Leynen M, Cousyn C et al. Photoactic behavior of Daphnia magna as a tool in the continuous monitoring of water quality: experiments with a positively photoactic Daphnia magna clone[J]. Water Research, 1999, 33(3): 401-408.
    [172] 张甲耀, 肖化忠, 田世忠等. 三种有机磷萃取剂对水生生物的毒性效应[J].中国环境科学, 1996, 16(5): 382-385.
    [173] Wakabayashi M. Screening of organophosphate insecticide pollution in water by using Daphnia magna[J]. Ecotoxicology and Environmental Safety, 2000, 47(3): 239-245.
    [174] Kungolos A, Samaras P, Kipopoulou A M et al. Interactive toxic effects of agrochemicals on aquatic organisms[J]. Wat. Sci. Tech., 1999, 40(1): 357-364.
    [175] 孙红文, 黄国兰, 李书霞等. 三苯基锡和三丁基锡对大型蚤(Daphnia magna)的毒性作用研究[J]. 环境化学, 2000, 19(3): 235-239.
    [176] 黄国兰, 孙红文, 高娟等. 邻苯二甲酸二丁酯对大型蚤(Daphnia magna)的毒性作用研究[J]. 环境化学, 1998, 17(5): 428-433.
    [177] 国家环境保护局科技标准司,GB/T13266-91,物质对蚤类(大型蚤)急性毒性测定方法[S].
    [178] Bae T H, Han S S, Tak T M. Membrane sequencing batch reactor system for the treatment of dairy industry wastewater[J]. Process Biochemistry, 2003, 39 (2): 221-231.
    [179] Savant D V, Abdul-Rahman R, Ranade D R. Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry wastewater[J]. Bioresources Technology, 2006, 97 (9): 1092-1104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700