脉冲场凝胶电泳在铜绿假单胞菌分子流行病学研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     建立脉冲场凝胶电泳(Pulsed-Field Gel Electrophoresis, PFGE)基因分型方法,对天津市南开医院和天津市儿童医院临床分离的铜绿假单胞菌(Pseudomonas aeruginosa, PA)进行基因分型,进而对PA进行流行病学分析。
     方法:
     (1)临床送检标本按《全国临床检验操作规程》鉴定为PA,质控菌株为PAATCC27853。
     (2)采用K-B纸片扩散法对PA进行药敏试验,测试其对不同抗菌药物的敏感性,药敏结果按美国CLSI标准判读。南开医院PA的药敏试验检测14种抗菌药物,儿童医院PA的药敏试验检测15种抗菌药物。
     (3)对两家医院临床分离得到的128株PA进行PFGE基因分型和流行病学分析。
     (4)对临床分离出PA宿主的临床病例进行回顾性分析,判断菌株分离时段是否处在感染状态。
     结果:
     (1)感染和定植菌株的判断:来自于南开医院的72株PA中,有57株(79%)菌可能为感染菌株;而来自于儿童医院的56株PA中,有39株(70%)可能为感染菌株。两家医院的定植菌株均来自于呼吸道。
     (2)菌株的临床来源和分布:两家医院的PA菌株主要分离于痰标本,南开医院有51株,占71%;儿童医院为51株,占90%;其他菌株分离于胆汁、腹腔液、脓性分泌物、血液和尿液标本。南开医院的PA菌株主要来自于中西结合脑病科和呼吸科,而儿童医院菌株主要分离于呼吸科和内分泌科。
     (3)菌株的药物敏感性:南开医院的PA菌株对14种抗菌药物的耐药率在30%-70%之间;但儿童医院的PA菌株对抗生素的敏感性与南开医院菌株有所不同,耐药率在0%-100%之间,儿童医院菌株均对氨苄西林耐药,对丁胺卡那霉素、环丙沙星敏感。
     (4) PFGE分型:南开医院的72株PA被分为48个PFGE型,Ⅰ型5株;Ⅱ和Ⅲ型各4株;有14种PFGE谱各由2株菌共有,其余31株菌各表现为独特的PFGE谱。儿童医院56株PA被分为18个型别,A型26株;B型12株;C型3株:其余15株各成独特的PFGE谱。两家医院PA菌株中未见相同或相近的PFGE谱菌株。
     (5)儿童医院PFGE优势型和耐药性的关系:儿童医院的A和B型菌株几乎均对4种抗菌药物耐药和3种抗菌药物敏感。但对其余8种药物两型表现了不同的耐药率,其中4种药物耐药率有明显差别。
     (6)追溯两家医院主要PFGE型别菌株的时间和空间分布:南开医院Ⅰ型菌株是同一患者不同时间分离得到的菌株,Ⅱ型菌株和Ⅲ型菌株由不同科室患者在不同时间分离得到;儿童医院A型菌株来自于呼吸科的不同患儿,而B型菌株主要来自内分泌科的不同患儿。
     结论:
     (1)新建立的PFGE方法能够明确地对PA进行基因分型,可以作为有效的技术手段用于分子流行病学的研究和临床实践。
     (2)不同医院的临床分离得到的PA菌株抗生素耐药谱不同。
     (3)南开医院的PA菌株呈散发感染的特征,而儿童医院PA菌株表现为科室间流行趋势;两家医院PA菌株无相同基因型,故未见院间传播;PA菌株进化来源具有遗传学多元性。
     (4) PFGE在基因水平上对PA进行分析,可分析PA的遗传学特征、感染来源、传播途径及分布规律,对感染流行的监测提供可靠依据。
Objectives:
     To establish the genotyping method of pulsed field gel electrophoresis (PFGE) for Pseudomonas aeruginosa (PA), and investigate the molecular epidemiological characteristics of PA clinical isolates collected from Tianjin Nankai Hospital and Tianjin Children's Hospital.
     Methods:
     (1) The bacterial strains isolated from clinical samples were identified according to the procedure described in The Clinical Inspection SOP. The ATCC27853 was used as reference strain.
     (2) According to CLSI, K-B disk diffusion method was employed to examine the antimictobial susceptibility of PA. The 14 and 15 kinds of antibiotics were respectively used in susceptibiliyi tests for PA isolates from Tianjin Nankai Hospital and Tianjin Children's Hospital.
     (3) The genotypes of the 128 strains were characterized by PFGE analysis.
     (4) The clinical data of the PA hosts were retrospectively analyzed to evaluate the infectious status during the period of bacteria isolated.
     Results:
     (1) Colonization and infection:In 72 strains collected from Tianjin Nankai Hospital,57 strains were likely-pathogens; Among 56 strains isolated from Tianjin Children's Hospital,39 were likely-pathogens.
     (2) Infection sites:The most of PAs were isolated from sputum, which were 51 (71%) in Nankai Hospital isolates and 51 (91%) in Children's Hospital strains. Other strains were collected from the samples of sanies, ascite or peritoneal drainage fluid, blood or urine.
     (3) Antimicrobial susceptiblity:The PAs from the two hospitals showed different patterns. For those from Nankai Hospital, the resistant rates for different antibiotics were 30% to 70%; the strains from Children's Hospital, the rates were 0% to 100% and the stains were identically resistant to ampicillin, but sensitive to amikacin and ciprofloxacin.
     (4) PFGE analysis:the 72 stains from Nankai Hospital were classified into 48 types; 5 strains for typeⅠ,4 for each of typeⅡandⅢ,2 for each of 14 types, remaining 31 for the other 31 types. The 56 strains from Children's Hospital were divided into 18 types. More than half of the strains belonged to type A and B,3 to type C, others to unique type.
     (5) Relationship between PFGE and antimicrobial susceptibility:The strains of typeA and B were resistant to 6 kinds of antibiotics, but sensitive to 3 kinds of antibiotics. There was obviously different in 4 kinds of antibiotics between the two types.
     (6) Based upon the location and time distribution of PA stains in the two hospitals, the occurrence and spread of PAs could be clearly identified and tracked according to the genetic characteristics of PA.
     Conclusion:
     (1) The procedure of PFGE for PA genotyping was well established and was shown to be an effective meothod for the molecular epidemiological investigation of clinical PA isolates.
     (2) The PA strains grouped on the hospitals showed different in antimicrobial resistant patterns.
     (3) By PFGE analysis, it was found that the feature of sporadic infection was identified in Nankai Hospital and a trend of epidemic spreading existed in Children's Hospital. Nevertheless, there is no cross-infection between the two hospitals.
     (4) In this study, PA strains were characterized by PFGE genotyping. Therefore the source, spread route and distribution of the clinical PA strains could be readily determined and tracked. The reliable evidence could be provided for surveillance and control of infections by PFGE genotyping.
引文
[1]Curtis C, Shetty N. Recent trends and prevention of infection in the neonatal intensive care unit [J]. Curr Opin Infect Dis,2008,21(4):350-356.
    [2]Esen S, Leblebicioglu H. Prevalence of nosocomial infections at intensive care units in Turkey:multicentre 1-day point prevalence study [J]. Scand J Infect Dis, 2004,36(2):144-148.
    [3]Gikas A, Pediaditis J, Papadakis JA, et al. Prevalence study of hospital-acquired infections in 14 Greek hospitals:planning from the local to the national surveillance level [J]. J Hosp Infect,2002,50(4):269-275.
    [4]Lizioli A, Privitera G, Alliata E, et al. Prevalence of nosocomial infections in Italy:result from the Lombardy survey in 2000 [J]. J Hosp Infect,2003,54(2): 141-148.
    [5]Kim JM, Park ES, Jeong JS, et al. Multicenter surveillance study in nosocomial infections in major hospitals in Korea. Nosocomial Infection Surveillance Committee of the Korean Society for Nosocomial Infection Control [J]. Am J Infect Control, 2000,28(6):454-458.
    [6]汪复,朱德妹,胡付品,等.2007年中国CHINET细菌耐药性监测[J].中国感染与化疗杂志,2008,8(5):325-333.
    [7]汪复,朱德妹,胡付品,等.2008年中国CHINET细菌耐药性监测[J].中国感染与化疗杂志,2009,9(5):321-329.
    [8]Flamm RK, Weaver MK, Thornsberry C, et al. Factors associated with relative rates of antibiotic resistance in Pseudomonas aeruginosa isolates tested in clinical laboratories in the United States from 1999 to 2002 [J]. Antimicrob Agents Chemother,2004,48(9):2431-2436.
    [9]Asano K. Attention-getting cross infections:Multidrug resistant infections[J]. Nippon Naika Gakkai Zasshi,2007,96(11):2465-2469.
    [10]Macgowan AP. Clinical implications of antimicrobial resistance for therapy[J]. J Antimicrob Chemother,2008,62(Suppl 2):105-114.
    [11]Philippon A, Arlet G, Lagrange PH. Origin and impact of plasmid-mediated extended-spectrum beta-Lactamases[J]. Eur J Clin Microbiol Infect Dis,1994, 4(suppl 1):17-29.
    [12]Naze F, Jouen E, Randriamahazo T.R, et al. Pseudomonas aeruginosa outbreak linked to mineral water bottles in a neonatal intensive care unit::fast typing by use of high-resolution melting analysis of a variable-number tandem-repeat locus[J]. J Clin Microbiol,2010,48(9):3146-3152.
    [13]Rogues AM, Boulestreau H, Lasheras A, et al. Contribution of tap water to patient colonisation with Pseudomonas aeruginosa in a medical intensive care unit[J]. J Hosp Infect,2007,67(1):72-78.
    [14]Trautmann M, Lepper PM, Haller M, et al. Ecology of Pseudomonas aeruginosa in the intensive care unit and the evolving role of water outlets as a reservoir of the organism[J]. Am J Infect Control,2005,33(5 suppl 1):41-49.
    [15]Sanchez-Carrillo C, Padilla B, Marin M, et al. Contaminated feeding bottles: the source of an outbreak of Pseudomonas aeruginosa infections in a neonatal intensive care unit [J]. Am J Infect Control,2009,37(2):150-154.
    [16]徐秀华.临床医院感染学,修订版,湖南:湖南科学技术出版社,2005,587.
    [17]Tridade PA, McCulloeh JA, Oliveira GA, et al. Molecular techniques for MRSA typing:current issues and perspectives[J]. Braz J Infect Dis,2003,7(1):32-43.
    [18]Olive DM, Bean P. Principles and applications of methods for DNA-based typing of microbial organisms[J]. J Clin Microbiol,1999,37(6):1661-1669.
    [19]Yeh KS, Chen TH, Liao CW, et al. PCR amplification of the Salmonella typhimurium fimY gene sequence to detect the Salmonella Species[J]. Int J Food Microbiol,2002,78(3):227-234.
    [20]刘丁,易静,鲁卫平,等.肺炎克雷伯菌随机DNA多态性分型研究[J].中华医院感染学杂志,2001,11(5):336-338.
    [21]Mazurek GH, Reddy V, Marston BJ, et al. DNA fingerprinting infrequent restriction site amplification[J]. J Clin microbiol,1996,34(10):2386-2390.
    [22]Su LH, Chiu CH, Wu TL, et al. Molecular Epidemiology of Salmonella enterica serovar Enteritidis isolated in Taiwan[J]. Mocrobiol Immunol,2002,46(12): 833-840.
    [23]Grady R, Blanc D, Hauser P, et al. Genotyping of European isolates of methicillin-resistant Staphylococcus aureus by fluorescent amplified-fragment length polymorphism analysis (FAFLP) and pulsed-field gel electrophoresis (PFGE) typing [J]. J Med Microbiol,2001,50(7):588-593.
    [24]Kumari DN, Keer V, Hawkey PM, et al. Comparison and application of ribosome spacer DNA amplicon polymorphisms and pulsed-field gel electrophoresis for differentiation of methicillin-resistant Staphylococcus aureus strains[J]. J Clin Microbiol,1997,35(4):881-885.
    [25]Reboli AC, Houston ED, Monteforte JS, el al. Discrimination of epidemic and sporadic isolates of acinetobacter baumannii by repetitive element PCR-mediated DNA fingerprinting[J]. J Clin Microbiol,1994,32(11):2635-2640.
    [26]Versalovic J, Koeuth T, Lupski JR, et al. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes[J]. Nucleic Acids Res,1991,19(24):6823-6831.
    [27]Syrmis MW, O'Carroll MR, Sloots TP, et al. Rapid genotyping of Pseudomonas aeruginosa isolates harboured by adult and paediatric patients with cystic fibrosis using repetitive-element-based PCR assays[J]. J Med Microbiol,2004,53(Pt 11): 1089-1096.
    [28]Naas T, Fortineau N, Snanoudj R, et al. First Nosocomial outbreak of vancomycin-resistant Enterococcus faecium Expressing a VanD-like phenotype associated with a vanA genotype [J]. J Clin Microbiol,2005,43 (8):3642-3649.
    [29]Tenover FC, Arbeit RD, Goering RV. How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections:a review for healthcare epidemiologists. Molecular Typing Working Group of the Society for Healthcare Epidemiology of America [J]. Infect Control Hosp Epidemiol,1997, 18(6):426-439.
    [30]Maiden MC, Bygraves JA, Feil E, et al. Multilocus sequence typing:a portable approach to the identification of clones within populations of pathogenic microorganisms [J]. Proc Natl Acad Sic U S A,1998,95(6):3140-3145.
    [31]吴利先,黄文祥.多位点测序技术在病原菌核型分析中的应用[J].中华检验医学杂志,2006,29(13):278-281.
    [32]Enright MC, Day NP, Davies CE, et al. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus[J]. J Clin Microbiol,2000,38(3):1008-1015.
    [33]Nallapareddy SR, Duh RW, Singh KV, et al. Molecular typing of selected Enterococcus faecalis isolates:pilot study using multilocus sequence typing and pulsed-field gel electrophoresis [J]. J Clin Microbiol,2002,40(3):868-876.
    [34]Kotetishvili M, Stine OC, Chen Y, et al. Multilocus sequence typing has better discriminatory ability for typing Vibrio cholerae than does pulsed-field gel electrophoresis and provides a measure of phylogenetic relatedness[J]. J Clin Microbiol,2003,41(5):2191-2196.
    [35]Johnson JK, Arduino SM, Stine OC, et al. Multilocus Sequence Typing Compared to Pulsed-Field Gel Electrophoresis for Molecular Typing of Pseudomonas aeruginosa[J]. J Clin Microbiol,2007,45(11):3707-3712.
    [36]Gil-Lamaignere C, Roilides E, Hacker J, et al. Molecular typing for fungi: a critical review of the possibilities and limitations of currently and future methods [J]. Clin Microbiol Infect,2003,9(3):172-185.
    [37]Taylor JW, Geiser DM, Burt A, el al. The evolutionary biology and population genetics underlying fungal strain typing [J]. Clin Microbiol Rev,1999,12(1): 126-146.
    [38]Deplano A, Denis O, Poirel L, et al. Molecular characterization of an epidemic clone of panantibiotic-resistant.Pseudomonas aeruginosa [J]. J Clin Microbiol,2005, 43(3):1198-1204.
    [39]Speijer H, Savelkoul PH, Bomten MJ, et al. Application of different genotyping methods for Pseudomonas aeruginosa in a setting of endemicity in an intensive care unit[J].J Clin Microbiol,1999,37(11):3654-3661.
    [40]Deplano A, Denis O, Poirel L, et al. Molecular Characterization of an epidemic clone of panantibiotic-resistant Pseudomonas aeruginosa [J]. J Clin Microbiol,2005, 43(3):1198-1204.
    [41]Prevost G, Jaulhac B, Piemont Y. DNA fingerprinting by pulsed-field gel electrophoresis is more effective than ribotyping in distinguishing among methicillin-resistant Staphylococcus aureus isolates[J]. J Clin Microbiol,1992,30(4): 967-973.
    [42]Naas T, Fortineau N, Snanoudj R, et al. First nosocomial outbreak of vancomycin-resistant Enterococcus faecium expressing a VanD-like phenotype associated with a vanA genotype [J]. J Clin Microbiol,2005,43 (8):3642-3649.
    [43]van Mansfeld R, Jongerden I, Bootsma M, et al. The population genetics of Pseudomonas aeruginosa isolates from different patient populations exhibits high-level host specificity[J]. PLoS One,2010,5(10):e13482.
    [44]陈薇,曹阳.天津地区老年患者院内感染耐亚胺培南铜绿假单胞菌耐药性探究[J].中国老年保健医学,2009,7(2):35-36.
    [45]周明锦,石红娜,陈宁,等.铜绿假单胞菌感染分布及抗生素耐药分析[J].中国小儿急救医学,2007,14(5):431-432.
    [46]Goossens H. Susceptibility of multi-drug-resistant Pseudomonas aeruginosa in intensive care units:results from the European MYSTIC study group [J]. Clin Microbiol Infect,2003,9(9):980-983.
    [47]Fukushima Y, Fukushima F, Kamiya K, et al. Relation between the antimicrobial susceptibility of clinical isolates of Pseudomonas aeruginosa from respiratory specimens and antimicrobial use density (AUD) from 2005 through 2008 [J]. Intern Med,2010,49(14):1333-1340.
    [48]董方,徐樨巍,宋文琪,等.2003-2008年儿科临床分离菌的分布变迁及耐药性监测[J].中国感染与化疗杂志,2009,9(6):440-445.
    [49]Paterson DL. The epidemiological profile of infections with multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species [J]. Clin Infect Dis,2006, 43(Suppl 2):43-48.
    [50]Stover CK, Pham XQ, Erwin AL, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen[J]. Nature,2000, 406(6799):959-964.
    [51]Lambert PA. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa[J]. J R Soc Med,2002,95(Suppl 41):22-26.
    [52]Farra A, Islam S, Stralfors A, et al. Role of outer membrane protein OprD and penicillin-binding proteins in resistance of Pseudomonas aeruginosa to imipenem and meropenem[J]. Int J Antimicrob Agents,2008,31(5):427-433.
    [53]Giske CG, Buar L, Sundsfjord A, et al. Alterations of porin, pumps, and penicillin-binding proteins in carbapenem resistant clinical isolates of Pseudomonas aeruginosa[J]. Microb Drug Resist,2008,14(1):23-30.
    [54]Hocquet D, Roussel-Delvallez M, Cavallo JD, et al. MexAB-OprM and MexXY--overproducing mutants are very prevalent among clinical strains of Pseudomonas aeruginosa with reduced susceptibility to ticarcillin[J]. Antimicrob Agents Chemother,2007,51(4):1582-1583.
    [55]Green SL, Maddox JC, Huttenbach ED. Linezolis and reversible myelosuppression[J]. JAMA,2001,285(10):1291.
    [56]Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms:from the natural environment to infectious diseases [J]. Nat Rev Microbiol,2004,2(2):95-108.
    [57]Wood LF, Leech AJ, Ohman DE. Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruglnosa:roles of sigma (AlgT) and the AlgW and Prc proteases[J]. Mol Micmbiol,2006,62(2):412-426.
    [58]Macia MD, Borrell N, Perez JL, et al. Detection and susceptibility testing of hypermutable Pseudomonas aeruginosa strains with the Etest and disk diffusion[J]. Antimierob Agents Chemother,2004,48(7):2665-2672.
    [59]Macia MD, Blanquer D, Togores B, et al. Hypermutation is a key factor in development of multiple-antimicobial resistance in Pseudomonas aeruginosa stains causing chronic lung infections [J]. Antimicrob Agents Chemother,2005,49(8): 3382-3386.
    [60]Kimura S, Ishii Y, Yamaguchi K. Evaluation of dipicolinic acid for detection of IMP-or VIM-type metallo-beta-lactamase-producing Pseudomonas aeruginosa clinical isolates[J]. Diagn Microbiol Infect Dis,2005,53(3):241-244.
    [61]National Nosocomial Infections Surveillance System. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004[J]. Am J Infect Control,2004,32(8): 470-485.
    [62]汪广杰,张晓兵,罗阳,等.2005-2006年铜绿假单胞菌医院感染及耐药性分析[J].中华医院感染学杂志,2008,18(3):434-436.
    [63]李万华,张泓,孔青,等.儿童患者中分离的铜绿假单胞菌耐药性分析[J].中国感染与化疗杂志,2009,9(1):63-66.
    [64]Carmeli Y, Troillet N, Eliopoulos GM, et al. Emergence of antibiotic-resistant Pseudomonas aeruginosa:comparison of risks associated with different antipseudomonal agents [J]. Antimicrob Agents Chemother,1999,43(6):1379-1382.
    [65]钟兴美,代树均,李方,等.434株铜绿假单胞菌的耐药性分析检验[J].中华医院感染学杂志,2003,13(5):476-478.
    [66]Walsh F, Amyes SG. Carbapenem resistance in clinical isolates of Pseudomonas aeruginosa[J]. J Chemother,2007,19(4):376-381.
    [1]Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis [J].Clin Microbiol Rev,2002,15(2):194-222.
    [2]Wagner VE, Iglewski BH. P. aeruginosa Biofilms in CF Infection [J]. Clinic Rev Allergy Immunol,2008,35(5):124-134.
    [3]宋世会,田德英,陈安群,等.三株黏液型铜绿假单胞菌的生物学特性研究[J].中华检验医学杂志,2007,30(11):1281-1283.
    [4]Mah TF, Pitts B, Pellock B, et al. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance[J]. Nature,2003,426:306-310.
    [5]O'May CY, Reid DW, Kirov SM. Anaerobic culture conditions favor biofilm-like phenotypes in Pseudomonas aeruginosa isolates from patients with cystic fibrosis[J]. FEMS Immunol Med Microbiol,2006,48(3):373-380.
    [6]冯志山,侯天文.粘液型铜绿假单胞菌的检出及其临床意义[J].中国综合临床,2007,23(9):835-836.
    [7]Borlee BR, Goldman AD, Murakami K, et al. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix[J]. Mol Microbiol,2010,75(4):827-842.
    [8]Bayston R, Penny SR. Excessive production of mucoid substance in staphylococcus SIIA:a possible factor in colonisation of Holter shunts[J]. Dev Med Child Neurol Suppl,1972,27:25-28.
    [9]Allesen-Holm M, Barken KB, Yang L, et al. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms [J]. Mol Microbiol,2006,59(4): 1114-1128.
    [10]Matsukawa M, Greenberg EP. Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development[J]. J Bacteriol,2004, 186(14):4449-4456.
    [11]Ma L, Lu H, Sprinkle A, et al. Pseudomonas aeruginosa Psl is a galactose-and mannose-rich exopolysaccharide[J]. J Bacteriol,2007,189(22):8353-8356.
    [12]Ma L, Jackson KD, Landry RM, et al. Analysis of Pseudomonas aeruginosa conditional Psl variants reveals roles for the Psl polysaccharide in adhesion and maintaining biofilm structure postattachment[J]. J Bacteriol,2006,188(23): 8213-8221.
    [13]Vasseur P, Vallet-Gely I, Soscia C, et al. The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation[J]. Microbiology,2005,151(3):985-997.
    [14]Starkey M, Hickman JH, Ma L, et al. Pseudomonas aeruginosa rugose small colony variants have adaptations likely to promote persistence in the cystic fibrosis lung[J].J Bacteriol,2009,191(11):3492-3503.
    [15]de-Silva GD, Kantzanou M, Justice A, et al. The ica operon and biofilm production in coagulase negative Staphylococci associated with carriage and disease in a neonatal intensive care unit[J]. J Clin Microbiol,2002,40(2):382-388.
    [16]Pamp SJ, Tolker-Nielsen T. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa[J]. J Bacteriol,2007,189(6):2531-2539.
    [17]Davey ME, Caiazza NC. O'Toole GA. Rhamnolipid surfactant production affect biofilm architecture in Pseudomonas aeruginosa PA01[J]. J Bacteriol,2003,185(3): 1027-1036.
    [18]Rasmussen TB, Givskov M. Quorum sensing inhibitors:a bargain of effects [J]. Microbiology,2006,152(4):895-904.
    [19]McKnight SL, Iglewski BH, Pesci EC. The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa[J]. J Bacteriol,2000, 182(10):2702-2708.
    [20]de Kievit TR, Kakai Y, Register JK, et al. Role of the Pseudomonas aeruginosa las and rhl quorum-sensing systems in rhlI regulation[J]. FEMS Microbiol Lett 2002,212(1):101-106.
    [21]吴会玲,田德英,陈安群,等mucA基因突变的黏液型铜绿假单胞菌PA17与PD0300生物被膜形态观察和耐药性比较[J].中国组织化学与细胞化,2009,18(5):572-575.
    [22]Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms:from the natural environment to infectious diseases IJ]. Nat Rev Microbiol,2004,2(2):95-108.
    [23]Mah TF, Pitts B, Brett Pellock, et al. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance[J]. Nature,2003,426(20):306-310.
    [24]曾吉,吴正学,郗娟.铜绿假单胞菌生物膜的抵抗性研究[J].中华医院感染学杂志,2004,14(3):496-498.
    [25]Gacesa P. Bacterial Alginate Biosynthesis-recent Progress and Future Prospects[J]. Microbiology,1998,144(5):1133-1143.
    [26]Wozniak DJ, Wyckof TJ, Starkey M, et al. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms[J]. Proc Nail Acad Sci USA,2003,100(13): 7907-7912.
    [27]Mathee K, Ciofu O, Sternberg C, et al. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide:a mechanism for virulence activation in the cystic fibrosis lung[J]. Microbiology,1999,145(6):1349-1357.
    [28]Marcns H. Baker NR. Quantitation of adherence of mucoid and nonmucoid Pseudomonas aeruginosa to hamster tracheal epithelium[J]. Infect Immun, 1985.47(3):723-729.
    [29]Martin DW, Schurr MJ, Mudd MH, et al. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients[J]. Proc Nail Acad Sci U S A,1993,90(18):8377-8381.
    [30]Bragonzi A, Wiehlmann L, Klockgether J, et al. Sequence diversity of the mucABD locus in Pseudomonas aeruginosa isolates from patients with cystic fibrosis[J]. Microbiology,2006,152(11):3261-3269.
    [31]Wood LF, Leech AJ, Ohman DE. Cell wall-inhibitory antibiotics activate the alginate biosynthesis opemn in Pseudomonas aeruglnosa:roles of sigma (AlgT) and the AlgW and Prc proteases[J]. Mol Micmbiol,2006,62(2):412-426.
    [32]Boyd A, Chakrabany AM. Pseudomouas aerugiuosa biofilms:role of the alginate exopoJysaccharide[j]. J Ind Microbiol,1995,15(3):162-168.
    [33]孙淑红,胡晓峰,刘晓红,等.黏液型和非黏液型铜绿假单胞菌耐药性比较[J].中华临床感染病杂志,2009,12,2(6):345-348.
    [34]杨烨建,黄星华,蔡惠兴.粘液型铜绿假单胞菌耐药特性的实验研究[J].江西医学检验,2005,23(3):211-212.
    [35]Hoffmann N, Lee B, Hentzer M, et al. Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary growth phase killing of P. aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr-/--mice[J]. Antimicrob Agents Chemother,2007,51(10): 3677-3687.
    [36]Singh PK, Parsek MR, Griinberg EP, et al. A component of innate immunity prevents bacterial biofilm development[J]. Nature,2002,417(6888):552-555.
    [37]D'Argenio DA, Calfee MW, Bainey PB, et al. Autolysis and autoaggregation in Pseudononas aeruginosa colony morphology mutants[J]. J Bactcterial,2002, 184(23):6481-6489.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700