处置库污泥工程特性测试及其对垃圾堆体稳定性影响评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾填埋场内污泥简易填埋所形成的污泥库已经严重影响了填埋场正常运行,不仅减少了填埋库区的库容,还增加了填埋场的稳定安全隐患。随着垃圾产量的增加,造成填埋场库容日趋紧张,需对填埋场中的污泥库进行加固处置,以便在其上方填埋垃圾,恢复库容。污泥库的加固处置和填埋库容的恢复是我国目前许多垃圾填埋场亟需解决的难题。目前关于污泥库中降解污泥工程特性及加固处置的研究尚属空白。本文针对成都固体废弃物填埋场污泥库的加固处置和二期库容恢复这一工程问题,对处置库污泥的工程特性进行测试研究,评估其对垃圾堆体稳定性的影响,最后提出污泥库污泥的加固处置方法。
     本文的主要工程及研究成果如下:
     (1)对污泥库中的污泥进行钻孔取样、静力触探、十字板剪切试验等岩土工程勘察与测试,结果表明:污泥库中降解污泥可分为硬塑层、流态层及软塑层;与常规淤泥相比,污泥的强度更低,其侧摩阻力、锥尖阻力和不排水抗剪峰值强度仅为10-1~101kPa量级,且强度随深度的增加而增加;
     (2)对不同深度污泥试样进行室内土工试验,结果表明:污泥为一种高有机质含量、高含水率、高液塑性、高压缩性、低密度、低比重、低渗透性、低固结系数、低抗剪强度的有机质土;含水率、有机质含量、渗透系数随着填埋深度的增加而减小,密度、比重随着填埋深度的增加而增加;污泥的压缩固结为典型的非线性固结特性;抗剪强度随竖向压力的增加亦为非线性;
     (3)污泥真空预压模型试验结果表明:真空度在污泥中传递困难,真空度沿塑料排水板衰减,径向方向传递距离有限;常规真空预压加固处理污泥固结沉降缓慢,改进后的增压式真空预压的固结沉降及强度增长效果明显好于传统真空预压,并将抗剪强度实测值与计算值进行对比分析,得到污泥库强度增长计算的合理抗剪强度指标;
     (4)根据Hansbo计算方法和非线性固结度计算方法的计算结果与模型试验测试结果的对比分析,提出利用非线性固结计算方法分析污泥库固结沉降和强度增长,得到污泥库在不同真空压力下、排水板间距、预压时间等工况下的固结沉降值和强度值;
     (5)利用GEO-Slope软件分析污泥库对垃圾堆体稳定性的影响,结果表明:在未加固处理的污泥坑上堆填垃圾会引发堆体管涌滑移失稳,本工程污泥库由于库底防渗衬垫系统薄弱界面的存在,即使污泥库加固处理强度足够,上覆堆体仍然会沿污泥库底滑移失稳,需对污泥库上覆堆体进行降水和坡形优化,并得出坡形优化后污泥加固处理的强度要求;
     (6)根据污泥真空预压模型试验后所测得的抗剪强度,污泥库污泥固结沉降后的强度增长计算值以及污泥库上覆堆体稳定性所需加固处理的强度,建议采用真空预压联合堆载预压对污泥库进行加固处置。
The operation of many landfills has been seriously influenced by the sludge reservoir simply trenched in the landfill which reduces storage capacity of the landfill and will trigger waste mass instability. As the disposal of MSW, increases available storage of landfill is limited. Nowadays different treatment measures are undertaken in many landfills to assure subsequent disposal on the sludge reservoir. The predecessors have mainly researched into the geotechnical characteristics of fresh sludge and ultra-soft soil reinforcement disposal The improvement of the sludge in the reservoir and storage restoration is an unsolved problem by which many landfills in China are confronted, In this paper, for solving the problems of reinforcement disposal of sludge reservoir and restoring the capacity of Phase II project in Chengdu MSW landfill, the geotechnical properties of the sewage sludge taken from the disoposal site were measured, then the its influence on slope stability of MSW landfill were evaluated. Finally, the reinforce disposal methods of sludge reservoir was proposed.
     The major studies and achievements in this thesis are as following:
     (1)A thorough geotechnical investigation consisted of borehole sampling, laboratory tests, cone penetration tests and vane shear tests were conducted to get the engineering properties of sludge in the reservoir, the result showed that: the sludge could form hard crust layer, fluid layer and fluid plastic layer with different geotechnical characteristic, to place in the sludge reservoir for a considerable period. The sludge had much lower strength than the muddy soil. The sleeve friction, tip resistance and shear strength was of the order 10-1-101kPa, as well showed an increasing trend with depth.
     (2)The geotechnical test was conducted on the sewage sludge with different depth, the study founded that: the sewage sludge with biodegradation was an organic soil with the characteristic of high values in organic content, water content, plasticity index, compressibility as well as the low values in permeability, consolidation coefficient and shear strength. The organic content and water content of sludge in the sludge reservoir showed a decreasing trend with the depth; specific gravity and density showed an increasing trend with depth. The consolidation of the sewage sludge showed a non-linear behavior.
     (3)A conventional and air-boosted vacuum-preloading model tests were conducted to explore the consolidation settlement, strength improvement of degraded sewage sludge with vacuum preloading technique and its feasibility.
     (4)Experiments results of large-scale model tests were compared with that of conventional consolidation theory and non-linear consolidation theory, and a new design method suitable for sewage sludge was proposed, which was applied to subsequent analysis of consolidation settlement and strength improvement of sludge in Chengdu landfill reservoir.
     (5)The software Geo-Slope was made used to analyze the second phase design plan of storage capacity restoration of Chengdu landfill, and two optimized design schemes on waste mass slope angle and corresponding controlling measures on stability were obtained, based on which required undrained shear strength of sludge after treatment was proposed.
     (6)According to gain in undrained shear strength of sludge in model tests and required strength to assure slope stability of second phase storage restoration project, the method of vacuum preloading combined with surcharge load on sludge reservoir was proposed.
引文
[1]. Ahmet H. Aydilek, Tuncer B. Edil, Patrick J. Fox. Consolidation characteristics of wasterwater sludge[J].Geotechnics of High Water Content Materials,2000, 309-323.
    [2]. Achari,G.., Joshi, R.C. Disscusssion of permeability behavior of a water treatment sludge[J]. Journal of Geotechnial Engineering, ASCE,1996,121 (1):99-101.
    [3]. Brendan C. O'Kelly. Geotechnical properties of municipal sewage sludge[J]. Geotechnical and Geological Engineering,2006,24:833-850.
    [4]. Brendan C. O'Kelly. Geotechnical properties of a municipal water treatment sludge incorporating a coagulant[J]. Canadian Geotechnical Journal,2008, 45:715-725.
    [5]. Brendan C. O'Kelly. Consolidation properties of a dewatered municipal sewage sludge[J]. Canadian Geotechnical Journal,2005,42:1350-1358.
    [6]. Brendan C. O'Kelly. Mechanical properties of dewatered sewage sludge[J]. Waste Management,2005,25:47-52.
    [7]. Brendan C. O'Kelly. Effect of biodegradation on the consolidation properties of a dewatered municipal sewage sludge. Waste Management, in press.
    [8]. Buddhima Indraratna, Cholachat Rujikiakamjorn, Iyathurai Sathananthan. Radial consolidation of clay using compressibility indices and varying horizontal permeability[J]. Canada Geotechnical,2002,42:1330-1341.
    [9]. Barron R A. Consolidation of fine-grained soils by drain wells[J]. Trans. ASCE, 1948,113:718-754.
    [10].Geuzens, P., Dieltjens, W. Mechanical strength determination of cohesive sludge-a Belgian research project on sludge consistency. In Recent developments in sewage sludge processing.pp.14-23
    [11].Hansbo S. Consolidation of fine-grained soils by prefabricated drains[C]//Proccedings of 10th International Conference on Soil Mechanics and Foundation Engineering. Sweden:[s.n.].1981:677-682.
    [12].Hansbo S. Consolidation of clay by band-shaped prefabricated vertical drains. Ground Engineering,1979,12(5):16-25.
    [13].Hanso S. Aspects of vertical drain design:Darcian or non-Darcian flow. Geotechnique,1997,47(5):983-992.
    [14].Irene M.C Lo, W.W. Zhou, K.M.Lee. Geotechnical characterization of dewatered sewage sludge for landfill disposal[J]. Canadian Geotechnical Journal,2002, 39:1139-1149.
    [15].Jonas Diliunas, Kastytis Dundulis, Saulius Gadeikis, Arunas Jurevicius, Mykolas Kaminskas. Geotechnical and hydrochemical properties of sewage sludge[J]. Bull Eng Geol Environment,2010,69:575-582.
    [16].Klein, A., Kay, J.N, Wan, I.M. Physical properties of dewatered wastewater sludge for landfilling[J]. Water Science and Technology,1996,34:533-540.
    [17].Kraus, J.F., Benson, C.H., Maltby, C.V., Wang, X. Laboratory and field hydraulic conductivity of three compacted paper mill sludges. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1997,123(7):654-662.
    [18].Klein, A., Sarsby, R.W. Problems in defining the geotechnical behavior of wastewater sludges. In geotechnics of high content materials ASTM STP 1374.
    [19].Klein, A., Kay, J.N. Geotechnical characterization of dewatered sludge from wastewater treatment plants. in proceedings of the 3 rd international Symposium on Environmental Geotechnology, San Diego, Calif,10-12 Jane, pp.73-82.
    [20].Lim, S., Jeon, W., Lee, J., K, Kim, N.Engineering properties of water/wastewater-treatment sludge modified by hydrated lime, fly ash and loess[J].Water Research.36:4177-4184.
    [21].L.Boersma, I. Murarka, Solid Waste Treatment of Municipal Wastewater, CRC Press, Inc., Boca Raton, Florida,1987.
    [22]. Moo-Young, H.K., Zimmie, T.F. Geotechnical properties of paper mill sludge for use in landfill covers. Journal of Geotechnial Engineering ASCE,1996, 122(9):768-775.
    [23].M. C. Wang, J. Q. Hull, M. Jao, B. A. Dempsey, D. A. Cornwell. Engineering behavior of water treatment sludge[J]. Journal of Environmental Engineering, 1992.
    [24].Miah M. Hussainuzzaman, Hiroshi Yokota. Efficiency of arsenic removal unit working in Bangladesh and cement stabilization of its sludge[J]. Journal of ASTM International,2006,3(7):1-9.
    [25].Noval, J.T., Calkins, D.C. Sludge dewatering and its physical properties. Journal of the American Water Works Association.67:42-45
    [26].Peryaiz MA, Levis KH. Geotechnical properties of industrial sludge[J]. Proc Int Symp Environ Geotechnol 2:57-76.
    [27].Wang, M.C, Tseng, W. Permeability behavior of a water treatment sludge[J]. Journal of Geotechnial Engineering ASCE,1993,119(10):1672-1677
    [28].Wang, M.C., Hull, J.Q., Jao, M., Dempsey, B.A., Cornwell, D.A.Engineering treatment sludge. Journal of Environmental Enginnering, ASCE,1992, 118(6):848-864.
    [29].RAGHU, D., Hsieh, H-N. Material properties of water treatment plant sludges. The International Journal of Civil Engineering for practicing and Design Engineers,5(5):927-941.
    [30]. Yin, J.H., Properties and Behavior of raw sludge mixed with pulverized fuel ash and lime[J]. Geotechnical Testing Journal,2001,24(3):299-307.
    [31].Yoshikuni H, Nakanodo H. Consolidation of soils by vertical drain wells with finite permeability[J]. Soils and Foundations,1974, (2):35-47.
    [32].曹永华.市政污泥的固化填埋处理研究[D].天津:天津大学.2005.
    [33].曹永华,闫澍旺,赵乐军.固化污泥的工程性质及微观结构特征[J].岩土力学,2006,27(5):740-744.
    [34].查甫生,崔可锐,席培胜.污泥的处置及利用技术探讨[J].岩土力学2008,29(增):555-558.
    [35].车丹承,朱南文,李艳林,赵玲,叶清.城市污水处理厂污泥固化处理技术研究[J].安全与环境学报,2008,8(3):56-59.
    [36].陈环,鲍秀清.负压条件下图的固结有效应力[J].岩土工程学报,1984,6(5):39-47.
    [37].陈平山,房营光,莫海鸿,张功新,董志良.真空预压法加固软基三维有限 元计算[J].岩土工程学报,2009,31(4):564-570.
    [38].程寅,李战国,邓晓轩,黄新.一种新固化材料固化海滨氯盐渍土的试验研究[J].岩土工程学报,2011,33(8):506-516.
    [39].岑仰润.真空预压加固地基的试验及理论研究[D].杭州:浙江大学,2003.
    [40].蔡国军.刘松玉.邵光辉.童立元.杜广印.基于电阻率静力触探的海相粘土成因特征分析[J].岩土工程学报,30(4):529-535.
    [41].蔡国军,刘松玉,邵光辉,童立元,杜广印.基于孔压静力触探的连云港海相粘土的固结和渗透特性研究.岩石力学与工程学报[J],2007,26(4):864-852.
    [42].陈云敏,詹良通,凌道盛,陈仁朋,管仁秋.深圳市下坪固体废弃物填埋场堆体稳定性评价及加固措施研究(R).杭州:浙江大学岩土工程研究所,2009.
    [43].高志义.真空预压法的机理分析[J].岩土工程学报,1989,11(4):45-55.
    [44].高志义,张美燕,刘玉钰.真空预压加固的离心模型试验研究[J].港口工程,1988,(3):45-50
    [45].龚晓楠,岑仰润.真空预压加固软土地基机理探讨[J].哈尔滨建筑大学学报,2002,35(2):7-10.
    [46].龚晓南.地基处理手册[M].北京:中国建筑工业出版社,2008.
    [47].管仁秋.城市固体废弃物填埋体边坡稳定分析及工程控制措施[D].杭州:浙江大学,2010.
    [48].环境保护部.城镇污水处理厂污泥处理处置技术规范[S].北京:中国计划出版社,2010.
    [49].何品晶,顾国维,李笃中.城市污泥处理与利用[M].北京:科学出版社,2003.
    [50].金亚伟,金亚军,蒋君南.增压真空预压固结处理软土地基/尾矿渣/湖泊淤泥装置:中国,CN201272966[P].2009-07-15.
    [51].金亚伟,金亚军,蒋君南.增压真空预压固结处理软土地基/尾矿渣/湖泊淤泥的方法:中国,CN101418566[P].2009-04-29.
    [52].金艳,繁永,朱南文,郭婷婷.不同固化剂对城市污水处理厂污泥固化效果的研究[J].环境污染与防治,2011,33(2):74-78.
    [53].简文彬,吴振祥,刘慧明,陈志波,张敏霞.闽东南沿海地区软土静力触探参数相关分析[J].岩土力学,2005,26(5):733-798.
    [54].简文彬,吴振祥,刘慧明,陈志波,张敏霞.福建沿海地区土层的静力触探参数[J].岩土力学与工程学报,2004,23(增1):4414-4417.
    [55].李磊.污泥固化处理技术及重金属污染控制研究[D].南京:河海大学,2006.
    [56].李磊,朱伟,林城,大木宜章.干湿循环条件下固化污泥的物理稳定性研究[J].岩土力学,2009,30(12):1778-1782.
    [57].李仕文,宁寻安,邓忠良,宋金有,余雅旋,张凝,苏伟健.造纸污泥固化/稳定化处理技术研究[J].环境工程学报.2010.
    [58].李时亮.真空预压加固软土地基作用机理分析[J].岩土力学,2008,29(2):479-482.
    [59].李丽慧,王清,王年香,王剑平,易晓华.立体式真空降水法分层加固吹填土的可行性研究.岩土工程学报,2002,24(4):522-524.
    [60].李青松,吴爱祥,黄继先,习永,张杰.真空渗流场作用下的渗透固结[J].中南大学学报(自然科学版),2005,36(4):689-693.
    [61].李丽慧,王清,王年香,王剑平,易晓华.立体式真空降水法分层加固吹填土的可行性研究.岩土工程学报,2002,24(4):522-524.
    [62].李洪增.电测式十字板剪切试验的研究与应用[J].岩石力学与工程学报,2004,23(增1):4446-4449.
    [63].李俊才,赵泽三,高国瑞.水泥土的微结构特征及分析[J].成都理工学院学报(自然科学版),2000,27(4):45-50.
    [64].刘汉龙,李豪,彭勣.真空-堆载联合预压加固软基室内试验研究[J].岩土工程学报,2004,26(1):145-149.
    [65].刘汉龙,李豪,彭劫.真空堆载联合预压加固软基室内试验[J].岩土工程学报,2004,26(1):145-149.
    [66].刘凤松,刘耘东.真空一电渗降水一低能量强夯联合软弱地基加固技术在软土地基加固中的应用.中国港湾建设,2008,157:43-47.
    [67].娄炎.真空排水预压法加固软土技术[M].北京:人民交通出版社,2002.
    [68].林城.以膨润土为辅助添加剂固化/稳定化污泥的试验研究[D].南京:河海大学.2007.
    [691.明经平,赵维柄.真空预压法加固软基的排水机制研究[J].岩土工程学报, 2008,30(12):1821-1825.
    [70].屈志云,黄文雄,周友华.成都市固体废弃物卫生处置场二期库区污泥真空预压处理工程可行研究报告.城市建设研究院,2011.
    [71].时亚飞,杨家宽,李亚林,刘欢,毛苇.基于骨架构建的污泥脱水/固化研究进展[J].环境科学与技术.2011.
    [72].孙立强.超软吹填土地基真空预压理论及模型试验的研究[D].天津:天津大学,2010.
    [73].沈宇鹏,余江,刘辉,李治.增压式真空预压处理站场软基效果试验研究[J].铁道学报,2011,33(5):97-103.
    [74].汤怡新,刘汉龙,朱伟.水泥固化土工程特性试验研究[J].岩土工程学报,2000,22(5):549-554.
    [75].翁焕新.污泥无害化、减量化、资源化处理新技术[M].北京:科学出版社,2009.
    [76].吴健.饱和软土复杂非线性大变形固结特性及应用研究[D].杭州:浙江大学,2008
    [77].吴占寿.刘琼玲.深圳湾近岸软土静力触探与十字板剪切试验成果相关分析[J].岩土工程技术,1998,(3):48-50.
    [78].谢立全,牛永昌,刘芳,刘曙光.真空联合注气降水机理的数值分析.地下空间与工程学报.2009,5(增刊):1590-1593.
    [79].谢新宇,夏建中,朱向荣,潘秋元.饱和土体一维大变形固结系数研究[J].浙江大学学报(自然科学版),1998,32(3):319-323.
    [80].谢新宇,刘育民,潘秋元.渗透系数变化对一维大变形固结性状的影响[J].岩土工程学报,2000,22(4):509-511.
    [81].谢新宇,朱向荣,谢康和,潘秋元.饱和土体一维大变形固结理论新进展[J].岩土工程学报,1997,19(4):30-38.
    [82].许晓萍.我国市政污泥处理现状与发展探析[J].江西化工,2010,3:24-32.
    [83].许胜,王媛.真空预压法加固软土地基理论研究现状及展望[J].岩土力学,2006,27(增):943-947.
    [84].闫澎旺,陈环.真空预压加固软土的机制与计算方法[J].岩土工程学报,1986,8(2):35-44.
    [85].闫澍旺,傅海峰,刘润.真空预压模拟装置及典型示范结果[J].天津大学学报,2005,38(7):511-614.
    [86].闫澍旺,孙立强,李伟,吴坤标.真空加固超软土工艺的室内模型试验研究[J]岩土工程学报,2011,33(3):341-347.
    [87].闫澍旺,张丽丽,孙立强,纪玉诚.真空预压中通入气流加快排水方法的试验研究[J].公路交通科技(应用技术版),2011,1:30-33.
    [88].闫澎旺,封晓伟,侯晋芳,李伟.用十字板强度推算软粘土抗剪强度指标的方法及应用[J].岩土工程学报,2009,31(12):1805-1810.
    [89].杨韬,余承华,赵钧,洪魁,王建军.真空降水联合冲压法在软基处理中的试验研究.中外公路,2010,30(1):65-69.
    [90].杨永荻,汤怡新.疏浚土的固化处理技术[J].水运工程,2001,327(4):12-15.
    [91].赵丽君,杨意东,胡振苓.污泥处理与处置技术的进展[J].中国给水排水,2001,17(6):23
    [92].赵乐军,戴树桂,辜显华.污泥填埋技术应用进展[J].中国给水排水,2004,20(4):27
    [93].赵乐军,杨津义.污泥填埋技术综述[J].天津市政设计,2003,3(4):13
    [94].住房和城乡建设部科技发展促进中心.城镇污水处理厂污泥处理处置技术指南[M].北京:中国计划出版社,2010.
    [95].郑修军,朱伟,李磊,徐志荣,屈阳.污泥固化材料优选试验研究[J].岩土力学,2008,29(增):571-574.
    [96].郑刚,龚晓南,谢永利.地基处理[J].第十一届土力学及岩土工程学术会议,中国.兰州,2011.
    [97].张华,范建军,赵由才.基于填埋处置的污水厂脱水污泥土工性质研究[J].同济大学学报(自然科学版),2008,36(3):361-365.
    [98].朱伟,李磊,林城.生物化学作用对污泥固化体渗透性的影响[J].岩土力学,2006,27(6):933-936.
    [99].张敬,刘爱民.水下真空预压的加固机理分析,岩土工程学报,2007,29(5):644-649.
    [100].张仪萍,严露,俞亚南,刘伟超.真空预压加固软土地基变形与固结计 算研究[J].岩土力学,2011,32(增刊):149-154.
    [101].张春雷,汪顺才,朱伟,刘青松,大木宜章.初始含水率对水泥固化淤泥效果的影响[J].岩土力学,2008,29(增刊):567-570.
    [102].周承刚,高俊良.水泥土强度的影响因素分析[J].煤田地质与勘探,2001,29(1):45-48.
    [103].赵维炳.排水固结加固软基技术指南[M].北京:人民交通出版社,2005.
    [104].中国建筑科学研究院.建筑地基处理技术规范(JGJ 79-2002)[S].北京:中国建筑工业出版社,2002.
    [105].詹良通,管仁秋,陈云敏,刘钊.某填埋场垃圾堆体边坡失稳过程监测与反分析[J].岩土力学与工程学报,2010,29(8):1697-1705.
    [106].中华人民共和国建设部.城市污水处理厂污泥检验方法(CJ/T221-2005)[S].北京:中国计划出版社,2005.
    [107].浙江大学.生活垃圾卫生填埋场岩土工程技术规范(CJJ176-2012)[S].北京:中国建筑工业出版社,2012.
    [108].浙江大学岩土工程研究所.成都市固体废弃物处置场库区堆体稳定性评估项目一库容恢复工程方案稳定性评价及安全控制措施.浙江大学建筑设计研究院,2012.
    [109].浙江大学岩土工程研究所.成都市固体废弃物处置场库区堆体稳定性评估项目——、二期堆体现状稳定分析报告.浙江大学建筑设计研究院,2011.
    [110].浙江大学岩土工程研究所.成都市固体废弃物卫生处置场库区堆体稳定性评估项目—污泥库岩土工程勘察报告.浙江大学建筑设计研究院,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700