高压下单组分流体pVT性质和二元系统相平衡和临界曲线
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在自行设计制造的可变体积高压釜中,首先测定子反式十氢化萘的恒温下不同压力下的摩尔体积,温度范围从293K到446K,压力范围从10MPa到200MPa。用改进的Tait状态方程拟合摩尔体积恒温线,分别得到恒温压缩系数和热膨胀率它们分别是通过拟合的恒温线和恒压线的斜率而得到的。状态方程V_m =C_1+C_2T+C_3T_2-C4p-C_5pT中的系数也被求出,平均误差只有0.029%,最大误差不超过2.62%。
     利用上述高压釜,测定了SC CO_2+CH_3OH,SC CO_2+C_2H_5OH,SC CO_2+丙酸乙酯的高压相平衡数据,得到了不同温度、平衡压力、液相和气相组成、液相和气相密度。实验结果表明SC CO2在三种溶剂中溶解度随压力增加而明显增大,但三种溶剂在气相中含量增加却并不明显,除非接近临界点时。同时发现SC CO2在酯中溶解度明显大于醇中溶解度。根据实验数据,估算了上述三个二元系统的的临界曲线,给出它们的Tc-xc,pc- xc,Tc- pc图。
     利用一个由微扰理论导出的状态方程,根据热力学数据,计算了(CO_2+CH_3OH、CO_2+C_2H_5OH、CO_2+丙酸乙酯、N_2(1)+CH_3OH(2)、CH4(1)+ CH_3OH(2)、水与正烷烃(C1-C6))系统的临界曲线,这些系统中二组分在分子大小、极性等方面差别有明显不同。该状态方程由一个引力项和一个斥力项组成,特别适用于高压下相平衡和临界曲线的计算,计算结果以图的形式给出,方程中可调参数以表的形式给出。
     本论文所测的反式十氢化萘的高压下pVT性质的数据,对于进一步研究有机化合物的同系物熔点沸点差的理论研究提供了新的热力学数据。含超临界CO2体系的高压相平衡数据的测定和计算对于超临界CO2的应用提供必不可少的热力学数据。
A set of variable-volume autoclave with a quartz window has been made. Using this high pressure autoclave the molar volume isotherms of trans-decahydronaphthalene (C10H8) between 293K and 446K and at pressures from 10 MPa to 200MPa have been determined. A modified Tait equation of state is used to fit each experimental molar volume isotherm. The thermal expansivity (cubic expansion coefficient)αand isothermal compressibilityκwere determined by fitting the slopes of the isobaric curves and isotherms, respectively, The coefficients in equations have been fitted with average deviation of 0.029% and does not exceed 2.62%.
     The vapor-liquid equilibrium data (including compositions, densities and molar volumes of vapor phases and liquid phases) have been measured at different temperatures and pressures of the three binary systems (SC CO2 + methanol, SC CO2 + ethanol and SC CO2 + ethyl propanate). The experimental data show the solubilities of SC CO2 in three solvents increase drastically with increasing pressures at the given temperature, but the contents of three solvents in gas phases increase faintly the solubilities of SC CO2 in esters is higher than that in alcohols. The critical values pc, Tc, xc and Vc of the three binary systems were estimated.
     The critical curves are also calculated with an equation of state for binary fluid systems of partners, which differ significantly in molecular size and polarity. The equation consists of a hard body repulsion term and an additive perturbation term, which takes care of the attractive molecular interation. For the repulsion, a Carnahan-Starling-One-Fluid (CSOF) expression or suitable extensions are used. The attractive term used square well potentials. The calculated results are given in figures. The necessary three parameters for(CO2+CH3OH, CO2+C2H5OH, CH4+CH3OH , N2+ CH3OH, CO2+ EP, H2O+n-alkane (C1~C6))systems are listed.
引文
[1] Bannister F A, Lonsdale K, Laboratory synthesis of diamond, Nature, 1945, 151: 334~335
    [2] Van Der Waals, Die Kontinuitaet des Gasformigen and Flussigen Zustandes, 2nd ed., Vol. 1. Barth, Leipzig, 1900
    [3] Hirschfelder J O, Curtiss C F, Bird R B, Molecular Theory of gases and liquids. New York: wiley, 1967
    [4] Burch K J, Wakefield D K, Whitehead E G Jr, Boiling point models of alkanes, MATCH Commun. Math. Comput. Chem., 2003, 47: 25~52
    [5] Kimberly J B, Earl. G W Jr, Melting~point modes of alkanes, J. Chem. Eng Data, 2004, 49: 858~863
    [6] Crawford R K, Daniels W B, Experimeatal determination of the p-T melting Curves of Kr, Ne, and He, J. of Chem. Phys. 1971, 55 (12): 5651~5656
    [7] Tammann G, Pape A, Melting curves of elements, anorg. Chem. 1931, 200: 113~119
    [8] Dugdale J S, Simon F E, Proc. Roy. Soc. (London) 1953, A218: 291~306
    [9] Kennedy G. C., Lamor. P. N., J Geophs. Res., 1962, 67: 851~856
    [10] Pistorius C W, Pistorius M C, Blakey J P, et al, The phase diagram of water at high pressure, Chem. Phys, 1963, 38: 600~603
    [11] Wong J M, Johnston K P, Solubiligation of biomolecules in carbon dioxide based supercritical fluids, Biotechnol. Prog. 1986, 2 (1): 29~35
    [12] McHugh M A, KruKonis V J, Supercritical fluid extraction, stoneham UK, BuHerworth~Heinemann Press. 1994
    [13] Gurdial G. S, Foster N R, Yun S L, et al, Supercritical Fluid Eng. Sci., ACS symp. Series, No. 514, American Chem, Soc. Washington. DC, 1993, 99:34~35
    [14] Hubert C., Kriegel E., Application of supercritical gas extraction process on the food industry, Ger. Chem. Eng., 1984, 7:335~341
    [15] Tom J W, Debenedetti P G, Jerome R J, Precipitation of poly( -lactic acid) and composite poly( -lactic acid)-pyrene particles by rapid expansion of supercritical solutions, Supercrit. Fluids. 1994, 7: 9~29
    [16] Mawson Johuston K P, Combes J R. et al. Formation of poly(1,1,2,2-~ tetrahydroperfluorodecyl acrylate) submicron fibers and particles from supercritical carbon dioxide solutions, macromolecules 1995, 28(9): 3182~3191
    [17] Lele A K, Shime A D, Morphology of polymers precipitated from a supercritical solvent, AICHE J, 1992, 38(5): 742~752
    [18] Subra P, Jestin P, Powders elaboration in supercritical media: comparison withconventional routes, Powder Technol, 1999, 103: 2~9
    [19] Reverchon E J., Supercritical antisolvent precipitation of micro-and nano-particles, Supercrit Fluids, 1999, 15: 1~21
    [20] Schmitt W J, Salada MC, shook G G. et al., Finely-divided powders by carrier solution injection into a near or supercritical fluid, AICHE J., 1995, 41 (11) 3998~4005
    [21] Ke J, Hau B X, Geoge M W, Yan H K, How does the critical point change during a chemical reaction in supercritical fluids:A study of the hydroformation of propene in supercritical CO2, J. Am. Chem. Soc., 2001, 123: 3661~3665
    [22] Hou Z S, Han B X, zhang X G, zhang H F, Liu Z M, Pressure turning of reaction equilibrium of esterification of acetic acid with ethanol in pressured CO2., J. Phys. Chem. B, 2001, 105: 4510~4514
    [23] Hou Z S, Han B X, Gao L et al, Wacker oxidation of 1~hexene in 1-n-butyl-3-methyllimidazolium hexafluorophosphate (/[bmin] [PF6]), supercritical SC CO2 and SC CO2/[bmin] [PF6] mixed solvent, New J Chem. 2002, 26: 1246~1250
    [24] Chen Q F, Cai L C. Equation of state of fluid He+H2 mixtures under high pressure, Chinese Physics, 2001, 10: 54~58
    [25] Wyllie P J, “High pressure chemistry”, New York, Aeademic Press: 1963
    [26] 王正烈,周亚平,李松林等,物理化学上册,北京:高等教育出版社,2000
    [27] 陆世维, 燃料电池用的氢源研究,化学物理通讯,2005, 6 (5): 47~48
    [28] David R L CRC Handbook of Chemistry and Physics, 83th ed, Boca Raton, FL: CRC Press, 2003
    [29] Domalski E S, Heariry E D, Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III. J. Phys. Chem. Ref. Data., 1996, 25: 1~525
    [30] Ziegler J W, Dorsey J G, Chester T L, et al., Estimation of Liquid-Vapor Critical Loci for CO2-Solvent Mixtures Using a Peak-Shape Method, Anal. chem., 1995, 67: 456~461
    [31] Chrastil J P, Solubility of solids and liquids in supercritical gaces, J. Phys. Chem., 1982, 86: 3016~3024
    [32] 胡英,近代化工热力学,上海:上海科学技术文献出版社,1994
    [33] Heilig M, Franck E U, Calculation of thermodynamic properties of binary fluid mixtures to high temperatures and high pressures, Ber. Bunsenges. Phys. Chem., 1989, 93: 898~905
    [34] Chao K C, Robison R L(eds), Equation of state: Theory and Applications, ACS Symposium Series, Vol. 300, ACS, Washinyton DC. 1986
    [35] Carnahan N F, Starling K E., Equation of state for nonattracting rigid spheres, J. Chem. Phys., 1969, 51:635~636
    [36] Carnahan N F, Starling K E., Perturbation Theory and equation of state for fluids: The Square-Well Potential, J Chem. Phys., 1967, 47: 2856~2861
    [37] Mansoor G A, “Mixing rales for cubic equations of state” ACS Series 300, Washington: 1986
    [38] Mansoor G A., Carnahan. N F, Starling K E., Equilibrium thermodynamic properties of the mixture of hard spheres, J. Chem. Phys., 1971, 54: 1523~1525.
    [39] Powell M. J. D., “A hydrid method for nonlinear algebraic equations”, in: P. Rabinowitz, (Ed.), “Numerical methods for nonlinear algebraic equations”, London, Gordon-Breach, 1970
    [40] Donohue M D, Prausniti J M, Perturbed hard chain theory for fluid mixtures: Thermodynamic properties for mixtures in natural gas and petroleum technology, 1978, 24, 849~860
    [41] Chien C H, Greenkorn R H, Chan K C, Chain-of-rotators equation of state, AICHE J, 1983, 29:560
    [42] Christoforakos M, Franck E U, High-pressure phase equilibria and critical curve of the water + helium system to 200MPa and 723K, Ber. Bunsenges. Phys. Chem., 1986, 90:780
    [43] Heilig M, Phase diagram of fluid multcomponent system, Thesis, institute of phys. Chem. University of Karlsrube. 1988
    [44] Seung N J, Chang W Y, Han Y Sh, et al., Measurements and correlation of high-pressure VLE of binary CO2-alcohol systems, Fluid Phase equilib., 2001, 185: 219~230
    [45] Len A D, Chung S Y K, Robinson D B, The equilibrium phase properties of (carbon dioxide methanol), J. Chem. Thermodyn., 1991, 23:979~981
    [46] Kato M, Tanaka H J, Vapor-liquid equilibrium properties of carbon dioxide + ethanol mixture at high pressure, Chem. Eng. Jpn, 1995, 28: 263~266
    [47] Tian Y L, Chen L, Li M W, Calculation of gas –liquid critical curves for carbon dioxide-1-alkanol binary systems, J. Phys. Chem. A, 2003, 107: 3076~3080
    [48] Brunner E, The critical curves of binary system. J. Chem. Thermodyn., 1985, 17: 671
    [49] Brunner E, The critical curves of alkanes containing water systems, J. Chem. Thermodyn., 1990, 22: 335
    [50] Francessoni A Z, Lentz H, Franck E U., High pressure phase equilibria of CH3OH+CH4 system, J. Phys. Chem., 1981, 85: 3303
    [51] Welsch H, Ph. D Dissertation, University of Karlsruhe, German, 1993
    [52] Dennei A., Todheide H, Franck E U, High pressure phase equilibria forwater + ethane binary system, Chem. Ing. Technik, 1967, 39: 816
    [53] Tian Y L, Michel berger T H, Franck E U, High phase equilibria and critical curves of (water + n-butane) and (water + n-hexane) at temperature to 700K and pressure to 300MPa, J. Chem. Thermodyn., 1991, 23: 105~112
    [54] Tian Y L, Zhao X F, Chem L, et al, High pressure phase equilibria and critical phenomena of water + iso-butane and water + n-butane systems to 695K and 306MPa, J of Supercritical Fluids, 2004, 30:145~153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700