熔铁催化剂超临界费托合成及超临界氨合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超临界流体具有类似气相的传质速率和类似液相的溶解能力和热容,是一种理想的反应介质。至今没有人对熔铁催化剂的超临界相费托合成进行研究。本论文目的是引入超临界介质,较好地解决传统气相费托合成中存在的催化剂床层飞温和液相费托合成中合成气传质速率慢的问题,通过研究反应条件和催化剂配方的影响,进一步提高费托合成反应活性,改善产物选择性,延长催化剂寿命。
     本文在微反-色谱连续流动固定床装置上研究了熔铁催化剂费托合成反应性能,采用XRD、TPH、EDS等实验技术对催化剂进行了表征,得到以下主要结果:
     1.超临界相费托合成反应具有CO转化率高,甲烷选择性低、C_(5+)选择性增加、烯烷比高、单位合成气C_(2+)和C_(5+)的产率增加、催化剂表面积炭量少、催化剂不易失活等优点。经过48h超临界相费托合成实验,发现CO转化率、甲烷选择性、烯烷比、C_(5+)选择性、链增长因子、单位合成气C_(5+)产率等主要指标稳定,CO_2选择性下降。催化剂表面积炭略有增加,但仍远小于气相反应。说明超临界相反应催化剂寿命和反应稳定性将远大于气相反应。
     2.超临界相费托合成反应中合成气在超临界介质中扩散系数更大,使催化剂表面合成气浓度尤其是CO浓度显著提高;由于超临界介质具有类似液体的溶解能力,能及时将反应产物从催化剂表面脱附并传递出催化剂孔道,使催化剂表面活性位效率增加。这是超临界相费托合成反应性能优于气相反应的原因之一。
     3.通过对反应后催化剂表征,发现超临界相费托合成反应后的催化剂表面积炭明显小于气相反应,尤其是非活性的纤维状碳和石墨碳沉积量较小。说明超临界介质具有良好溶解性能,在反应过程中能及时带走催化剂表面非活性碳沉积的前驱体,有效避免催化剂活性位被积炭覆盖而减少,有利于延长催化剂寿命。这是超临界相费托合成反应性能优于气相反应的另一个原因。
     4.超临界相费托合成的操作温度宜在介质的临界温度附近,即T/T_c=1.0-1.1之间,过高和过低都不利于超临界相费托合成反应。介质压力低于临界压力反应性能显著变差,而高于临界压力反应性能变化不大。正构烷烃不与反应物和产物反应,不会使催化剂中毒,在合适温度范围内可以作为超临界介质。
     5.超临界介质循环使用不改变CO转化率和烯烃选择性,但甲烷选择性增加,链增长因子减小。
     6.电子助剂K和结构助剂Al的含量对超临界相费托合成的影响类似于气相反应。不同母体、不同助剂含量的熔铁催化剂在超临界相费托合成中均表现出优于气相费托合成的反应性能。
     7.实验对超临界氨合成进行了探索,实验结果表明:在现有氨合成催化剂及其反应条件下(325-425℃,10-15MPa),介质都会发生不同程度的分解,分解产物造成催化剂失活,使反应器出口氨浓度下降。催化剂的活性温度是影响超临界氨合成的关键因素。
The conventional FTS reaction has been performed in either gas phase or liquid phase reaction media. Gas phase reactions exhibit higher reaction rates and diffusivities when compared to liquid phase reactions, but are hampered by inadequate heat removal resulting in excessive methane formation. Liquid-phase reactions have superior heat removal capabilities when compared to gas phase reactions and are therefore able to maintain a constant reaction temperature without deactivation. However, liquid-phase FTS suffers from mass transfer limitations, requiring relatively large reactor volumes. The ideal FT synthesis medium would, therefore, be one with gas-like transport properties and liquid-like heat capacity and solubility characteristics. Such a desired combination of fluid properties is possible with supercritical reaction media.
     The performance of supercritical phase Fischer-Tropsch synthesis over fused iron catalysts was evaluated in the fixed bed reactor. Catalysts were characterized by means of XRD, TPH, EDS and so on to provide better insight into the relationship therein. Main results from this work were as follows.
     It has been observed that CO conversion, 1-olefin selectivity, and heavy hydrocarbon production can be enhanced in supercritical phase FTS process compared to gas phase FTS. After 48hrs' continuous running of the reaction in supercritical phase FTS, the catalyst does not show any sign of deactivation and deposition of inactive carbon on catalyst always much lower than that in gas phase FTS.
     Higher CO conversion in supercritical phase FTS results from: 1) The higher solubility and diffusivity of syngas in the supercritical phase FTS have an important role in the enhancement of concentration of syngas on catalyst active site; 2) The supercritical phase FTS operation results in the enhanced extraction of heavy hydrocarbons from catalyst pores and surfaces thereby enhancing pore diffusivity and creating more active sites; 3) The deposition of inactive carbon on fused iron catalyst in supercritical phase FTS process could be well controlled and this resulted in the creating more active site on catalyst.
     Compared to gas phase FTS, no significant different effect of temperature, pressure, syngas flow rate and syngas feed ratio on the supercritical phase FTS has been observed. Optimum reaction temperature and pressure are T/T_c=1.0-1.1 and P/P_c=1.0-1.5, respectively. Our results have also shown that paraffins are promising candidates for supercritical solvent because they do not poison the catalysts and are stable under the reaction conditions.
     Compared to the results without recycle of the solvent, CO conversion and hydrocarbon products distribution is similar to, but CH_4 selectivity is higher than those with recycle of the solvent.
     Compared to gas phase FTS, no significant different effect of the content of K and Al and the change in Fe~(2+)/Fe~(3+) on the supercritical phase FTS has been observed. But higher CO conversion and better products selectivity is achieved in the supercritical phase FTS.
     we have done supercritical ammonia synthsis research systematically using 17 differenct supercritical media, and investigated the influence of reaction conditions. It has been found that supercritical media is decomposed under reaction conditions when using Fe_(1-x)O and Ru/AC catalysis. The decomposition products deactivate the catalysts. From experimental results, we conslude that the activation temperature of catalyst is the key factor in supercdtical ammonia synthsis.
引文
[1] 朱自强.超临界流体技术[M]化学工程出版社,2000年3月,P1-10
    [2] Baiker A. Supercritical Fluids in Heterogeneous Catalysis [J]. Chem. Rev., 1999, 99:453-473
    [3] Subramaniam B, McHugh M A. Reaction in Supercritical fluids [J]. Ind. Eng. Chem. Pro. Des. Dev., 1986, 1:25-32
    [4] Cocero M J, Alonso E, Sanz M T. Supercritical water oxidation process under energetically self-sufficient operation [J]. J. Supercritical Fluids, 2002, 24:37~46
    [5] Arunajatesan V, Subramaniam B, Hutchenson K W. et al. Fixed-bed hydrogenation of organic compounds in supercritical carbon dioxide [J]. Chem. Eng. Sci. 2001, 56: 1363~1375
    [6] Jessop P G, Ikariya T, Noyori R H. Catalytic-Hydrogenation of Supercritical Carbon-Dioxide [J]. Nature, 1994, 368:31~233
    [7] Jessop P G, Ikariya T, Noyori R. Homogeneous Catalysis in Supercritical Fluids [J]. Chem. Rev., 1999, 99:475~493
    [8] Subramaniam B. Enhancing the stability of porous catalysts with supercritical reaction media [J]. Applied Catalysis A: General, 2001, 212:199~213
    [9] Wu B C, Klein M T, and Sandler S I, Solvent effects on reactions in supercritical fluids [J]. Ind. Eng. Chem. Res., 1991, 30:822-829
    [10] Eckert C A, Ziger D H, Johnston K P. et al, The use of partial molal volume data to evaluate equations of state for supercritical fluid mixture [J]. Fluid Phase Equilib, 1983, 14: 167-175
    [11] 魏伟,孙予罕,钟炳.超临界流体技术的应用基础研究[J].燃料化学学报,1999,27:41~52
    [12] Jiang T, Niu Y Q, Zhong B. Synthesis of higher alcohols from syngas over Zn-Cr-K catalyst in supercritical fluids [J]. Fuel Processing Technology, 2001, 73: 175~183
    [13] 姜涛,牛玉琴,钟柄.超临界相合成气制甲醇-异丁醇工艺条件的研究[J].天然气化工,1998,23(5):25-29.
    [14] 姜涛,牛玉琴,钟柄.超临界相CO加氢合成甲醇、异丁醇的研究[J].燃料化学学报,1999,27(2):116-120
    [15] 蔡启瑞,彭少逸 等.碳一化学中的催化作用[M].北京:化学工业出版社,1995.1~8
    [16] 刘震炎,张维竞.环境与能源科学导论[M].北京:科学出版社,2005
    [17] Der V, Laan G P, Beenackers A A. Kinetics and selectivity of the Fischer-Tropsch synthesis: A literature review [J]. Catal Rev-Sci Eng, 1999, 41(3&4): 255~318
    [18] Dry M E. Practical and theoretical aspects of the catalytic Fischer-Tropsch process [J]. Appl Calal, 1996, 138:319~344
    [19] Jacobs P A, Wouwe D V. Selective synthesis of hydrocarbons via heterogeneous Fischer-Tropsch chemistry [J]. J Mol Catal, 1982, 17:145~160
    [20] Dry M E. The fischer-tropsch process-commercial aspects [J]. Catal Today, 1990, 6(3): 183~206
    [21] Martin J. Keyser, Raymond C. Everson, Rafael L. Espinoza. Fischer-Tropsch studies with cobalt-manganese oxide catalysts: Synthesis performance in a fixed bed reactor. Applied Catalysis A: General, 1998, 171(1): 99~107
    [22] Davis B H. Fischer-Tropsch synthesis: relationship between iron catalyst composition and process variables [J]. Catalsis Today, 2003, 84(1-2): 83~98
    [23] Wender I. Reactions of synthesis gas. Fuel Proc. Tech., 1996, 48(3): 189~297
    [24] 杨霞珍.[硕士学位论文].杭州:浙江工业大学,2007
    [25] Dry M E. The Fischer-Tropsch process: 1950-2000 [J]. Catal Today, 2002, 71: 227~241
    [26] 徐杰,冯骁,王文祥.合成低碳混合醇熔铁催化剂的研究[J].天然气化工,1993,18(1):3~7
    [27] 白尔铮.费.托合成油生产技术及经济评价.中石化上海石油化工研究院,上海,2003年12月16日
    [28] Dry M E. In: Anderson J R, Boudart Meds. Catalysis Science and Technology, Vol 1 [M]. Berlin: Springer-Verlag, 1981. 159~255
    [29] Dry M E. The influence of structural promoters on the surface properties of reduced magnetite catalysts [J]. J Catal, 1966, 6:194~199
    [30] Dry M E, Shingles T, Boshoff L J et al. Heats of chemisorption on promoted iron surfaces and the role of alkali in Fischer-Tropsch synthesis [J]. J Catal, 1969, 15: 190~199
    [31] Dry M E, Oosthuizen G J. The correlation between catalyst surface basicity and hydrocarbon selectivity in the Fischer-Tropsch synthesis [J]. J Catal, 1968, 11:18~24
    [32] Ertl G, Prigge D, Schloegl R et al. Surface Characterization of Ammonia Synthesis Catalysts [J]. J Catal, 1983, 79:359~377
    [33] Bukur D B, Patel S A, Lang X. Fixed bed and slurry reactor studies of Fischer-Tropsch synthesis on precipitated iron catalyst [J]. Appl Catal, 1990, 61: 329~349
    [34] 刘化章,李小年.铁催化剂母体相形成的研究和FeO基合成氨催化剂的发现[J].中国科学(B辑),1995,25(1):1-6
    [35] 沈菊李.[博士学位论文].杭州:浙江工业大学,2005
    [36] Fan L, Yoshii K, Yan S, et al. Supercritical-phase process for selective synthesis of wax from syngas: Catalyst and process development [J]. Catalysis Today, 1997, 36(3):295-304
    [37] Jager B, Vosloo A C, Steynberg A P et al. Low temperature Fischer-Tropsch synthesis from a Sasol perspective[J]. Applied Catalysis A: General, 1999, 186:13~26
    [38] Zhaoa R, Sudsakorn K, Spivey J Jet al. Attrition resistance of spray-dried iron F-T catalysts: effect of activation conditions [J]. Catalysis Today, 2002, 71:319~326
    [39] Maitlis P M. Commentary review: Metal catalysed CO hydrogenation: hetero- or homo-, what is the difference? [J]. Journal of Molecular Catalysis A: Chemical, 2003, 204-205:55-62
    [40] W.凯姆[西德]主编,黄仲涛译.C_1化学中的催化,化学工业出版社,1989P49-51
    [41] 马文平,刘全生,赵玉龙等.费托合成反应机理的研究进展[J].内蒙古工业大学学报,1999,18(2):121-127
    [42] Davis B H. Fischer-Tropsch synthesis: current mechanism and futuristic needs [J]. Fuel Processing Technology, 2001, 71: 157-166
    [43] Yang J, Liu Y, Chang Jet al. Detailed Kinetics of Fische-Tropsch Synthesis on an Industrial Fe-Mn Catalyst [J]. Ind Eng Chem Res, 2003, 42:5066-5090
    [44] Jiang M, Koizumi N, and Yamada M. Adsorption Properties of Iron and Iron-Manganese Catalysts Investigated by in-situ Diffuse Reflectance FTIR Spectroscopy [J]. J. Phys. Chem. B, 2000, 104:7636-7643
    [45] Yokota K, Fujimoto K. Supercritical phase Fischer-Tropsch synthesis reaction [J]. Fuel, 1989, 68(2):255-256
    [46] Yokota K, Hanakata Y, Fujimoto K. Supercritical phase Fischer-Tropsch synthesis [J]. Chemical Engineering Science, 1990, 45(8):2743-2749
    [47] Yokota K, Fujimoto K. Supercritical-phase Fischer-Tropsch synthesis reaction. 2. The effective diffusion of reactant and products in the supercritical-phase reaction [J]. Industrial & Engineering Chemistry Research, 1991, 30(1): 95-100
    [48] Yokota K, Hanakata Y, Fujimoto K. Supercritical phase Fischer—Tropsch synthesis reaction: 3. Extraction capability of supercritical fluids [J]. Fuel, 1991, 70(8): 989-994
    [49] Fan L, Yokota K, Fujimoto K. Fischer-Tropsch Synthesis in Supercritical Phase [J]. Sekiyu Gakkai Shi/Journal of the Japan Petroleum Institute, 1995, 38(2): 71
    [50] Fan L, Yan S, Fujimoto K, et al. Selective synthesis of wax from syngas by supercritical phase Fischer-Tropsch reaction on ruthenium catalysts [J]. Journal of Chemical Engineering of Japan, 1997, 30(5): 923-927
    [51] Yan S, Fan L, Zhang Z, et al. Supercritical-phase process for selective synthesis of heavy hydrocarbons from syngas on cobalt catalysts [J]. Applied Catalysis A: General, 1998, 171 (2): 247-254
    [52] Fan L, Fujimoto K. Fischer-Tropsch synthesis in supercritical fluid: characteristics and application [J]. Applied Catalysis A: General, 1999, 186(1-2): 343-354
    [53] Tsubaki N, Fujimoto K. Product control in Fischer-Tropsch synthesis [J]. Fuel Processing Technology, 2000, 62(2-3): 173-186
    [54] Tsubaki N, Yoshii K, Fujimoto K. Anti-ASF Distribution of Fischer-Tropsch Hydrocarbons in Supercritical-Phase Reactions [J]. Journal of Catalysis, 2002, 207(2): 371-375
    [55] Linghu W, Li X, Asami K, et al. Fischer-Tropsch synthesis in supercritical or near critical solvents [J]. American Chemical Society, Division of Petroleum Chemistry, Preprints, 2004, 49(1): 77-80
    [56] Linghu W, Li X, Asami K, et al. Supercritical phase Fischer-Tropsch synthesis over cobalt catalyst [J]. Fuel Processing Technology, 2004, 85(8-10): 1121-1138
    [57] Linghu W, Li X, Asami K, et al. Reaction behavior of Fischer-Tropsch synthesis in supercritical n-hexane media [J]. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2005, 33(5): 520-524
    [58] Li X, Liu X, Liu Z-W, et al. Supercritical phase process for direct synthesis of middle iso-paraffins from modified Fischer-Tropsch reaction [J]. Catalysis Today, 2005, 106(1-4): 154-160
    [59] Linghu W, Li X, Asami K, et al. Process Design and Solvent Recycle for the Supercritical Fischer-Tropsch Synthesis [J]. Energy & Fuels, 2006, 20(1): 7-10
    [60] Liu X H, Linghu W Sh, Fujimoto K, et al. Effects of solvent on Fischer-Tropsch synthesis [J]. Applie Catalysis A: General, 2006, 303: 251-257
    [61] Huang X, Roberts C B. Selective Fischer-Tropsch synthesis over an Al_2O_3 supported cobalt catalyst in supercritical hexane [J]. Fuel Processing Technology, 2003, 83(1-3): 81-99
    [62] Elbashir N O, Roberts C B. Selective control of hydrocarbon product distribution in supercritical phase Fischer-tropsch synthesis [J]. American Chemical Society, Division of Petroleum Chemistry, Preprints, 2004, 49(4): 422-425
    [63] Elbashir N O, Roberts C B. Reaction pathway and kinetic modeling of Fischer-Tropsch synthesis over an alumina supported cobalt catalyst in supercritical-hexane [J]. American Chemical Society, Division of Petroleum Chemistry, Preprints, 2004, 49(2): 157-160
    [64] Huang X, Elbashir N O, Roberts C B. Supercritical Solvent Effects on Hydrocarbon Product Distributions from Fischer-Tropsch Synthesis over an Alumina-Supported Cobalt Catalyst [J]. Industrial & Engineering Chemistry Research, 2004, 43(20): 6369-6381
    [65] Elbashir N O, Dutta P, Manivannan A, et al. Impact of cobalt-based catalyst characteristics on the performance of conventional gas-phase and supercritical-phase Fischer-Tropsch synthesis [J]. Applied Catalysis A: General, 2005, 285(1-2): 169-180
    [66] Elbashir N O, Roberts C B. Enhanced Incorporation of a-Olefins in the Fischer-Tropsch Synthesis Chain-Growth Process over an Alumina-Supported Cobalt Catalyst in Near-Critical and Supercritical Hexane Media [J]. Industrial & Engineering Chemistry Research, 2005, 44(3): 505-521
    [67] Eaton A, Bukur D B, Akgerman A. Molecular Diffusion Coefficients and Effective Diffusivities of 1-Octene in Supercritical Ethane in Relation to Fischer-Tropsch Synthesis [J]. Journal of Chemical & Engineering Data, 1995, 40(6): 1293-1297
    [68] Lang X, Akgerman A, Bukur D B. Steady State Fischer-Tropsch Synthesis in Supercritical Propane [J]. Industrial & Engineering Chemistry Research, 1995, 34(1): 72-77
    [69] Bukur D B, Lang X, Akgerman A, et al. Effect of Process Conditions on Olefin Selectivity during Conventional and Supercritical Fischer-Tropsch Synthesis [J]. Industrial & Engineering Chemistry Research, 1997, 36(7): 2580-2587
    [70] Bukur D B, Lang X, Nowicki L. Comparative Study of an Iron Fischer-Tropsch Catalyst Performance in Stirred Tank Slurry and Fixed-Bed Reactors [J]. Industrial & Engineering Chemistry Research, 2005, 44(16): 6038-6044
    [71] Snavely K, Subramaniam B. On-Line Gas Chromatographic Analysis of Fischer-Tropsch Synthesis Products Formed in a Supercritical Reaction Medium [J]. Industrial & Engineering Chemistry Research, 1997, 36(10): 4413-4420
    [72] Bochnial D J, Subramaniam B. Fischer-Tropsch synthesis in near critical n-hexane: pressure-tuning effects [J]. AIChE, 1998, 44(8): 1889-1895
    [73] Subramaniam B. Enhancing the stability of porous catalysts with supercritical reaction media [J]. Applied Catalysis A: General, 2001, 212(1-2): 199-213
    [74] Jacobs G, Chaudhari K, Sparks D, et al. Fischer-Tropsch synthesis: supercritical conversion using a Co/Al_2O_3 catalyst in a fixed bed reactor~* [J]. Fuel, 2003, 82(10): 1251-1260
    [75] Shi B, Jacobs G, Sparks D, et al. Fischer-Tropsch synthesis: 14C labeled 1-alkene conversion using supercritical conditions with Co/Al_2O_3 [J]. Fuel, 2005, 84(9): 1093-1098
    [76] Iglesia E. Design synthesis and use of cobalt-based Fischer-Tropsch synthesis catalysts [J]. Applie Catalysis A: General, 1997, 161: 59~78
    [77] Liu X H. Linghu W S. Fujimoto K, et al. Effects of solvent on Fischer-Tropsch synthsis [J]. Applie Catalysis A: General, 2006, 303: 251-257
    [1] Jacobs G, Chaudhari K, Sparks D, et al. Fischer-Tropsch synthesis: supercritical conversion using a Co/Al_2O_3 catalyst in a fixed bed reactor* [J]. Fuel, 2003, 82(10):1251-1260
    [2] 沈菊李.[博士学位论文].杭州:浙江工业大学 2005,
    [3] Huang X, Roberts C B. Selective Fischer-Tropsch synthesis over an Al_2O_3 supported cobalt catalyst in supercritical hexane [J]. Fuel Processing Technology, 2003, 83(1-3):81-99
    [4] Shroff M D, Kalakad D S, Coulter K E, et al. Activation of Precipitated Iron Fischer-Tropscher Synthesis Catalysts [J]. J Catal, 1995, 156:185-207
    [5] Messner A E, Rosie D M, Argabright P A. Correlation of Thermal Conductivity Cell Response with Molecular Weight and Structure [J]. Analytical Chemistry, 1959, 31(2):230-233
    [6] Jacobs P A, Wouwe D V. Selective synthesis of hydrocarbons via heterogeneous Fischer-Tropsch chemistry [J]. J Mol Catal, 1982, 17:145~160
    [7] Xu J, Bartholomew C H. Temperature-Programmed Hydrogenation (TPH) and in Situ Molssbauer Spectroscopy Studies of Carbonaceous Species on Silica-Supported Iron Fischer-Tropsch Catalysts [J]. J Phys Chem B, 2005, 109:2392-2403
    [1] Yokota K, Fujimoto K. Supercritical phase Fischer-Tropsch synthesis reaction [J]. Fuel, 1989, 68(2):255-256
    [2] Linghu W, Li X, Asami K, et al. Process Design and Solvent Recycle for the Supercritical Fischer-Tropsch Synthesis [J]. Energy & Fuels, 2006, 20(1):7-10
    [3] Fan L, Yoshii K, Yan S, et al. Supercritical-phase process for selective synthesis of wax from syngas: Catalyst and process development [J]. Catalysis Today, 1997, 36(3):295-304
    [4] Yan S, Fan L, Zhang Z, et al. Supercritical-phase process for selective synthesis of heavy hydrocarbons from syngas on cobalt catalysts [J]. Applied Catalysis A: General, 1998, 171(2):247-254
    [5] Jacobs G, Chaudhari K, Sparks D, et al. Fischer-Tropsch synthesis: supercritical conversion using a Co/Al_2O_3 catalyst in a fixed bed reactor [J]. Fuel, 2003, 82(10): 1251-1260
    [6] Bukur D B, Lang X, Nowicki L. Comparative Study of an Iron Fischer-Tropsch Catalyst Performance in Stirred Tank Slurry and Fixed-Bed Reactors [J]. Industrial & Engineering Chemistry Research, 2005, 44(16):6038-6044
    [7] Lang X, Akgerman A, Bukur D B. Steady State Fischer-Tropsch Synthesis in Supercritical Propane [J]. Industrial & Engineering Chemistry Research, 1995, 34(1): 72-77
    [8] Subramaniam B. Enhancing the stability of porous catalysts with supercritical reaction media [J]. Applied Catalysis A: General, 2001, 212(1-2): 199-213
    [9] Snavely K, Subramaniam B. On-Line Gas Chromatographic Analysis of Fischer-Tropsch Synthesis Products Formed in a Supercritical Reaction Medium [J]. Industrial & Engineering Chemistry Research, 1997, 36(10): 4413-4420
    [10] Huang X, Roberts C B. Selective Fischer-Tropsch synthesis over an Al_2O_3 supported cobalt catalyst in supercritical hexane [J]. Fuel Processing Technology, 2003, 83(1-3): 81-99
    [11] Huang X, Elbashir N O, Roberts C B. Supercritical Solvent Effects on Hydrocarbon Product Distributions from Fischer-Tropsch Synthesis over an Alumina-Supported Cobalt Catalyst [J]. Industrial & Engineering Chemistry Research, 2004, 43(20): 6369-6381
    [12] Elbashir N O, Roberts C B. Enhanced Incorporation of a-Olefins in the Fischer-Tropsch Synthesis Chain-Growth Process over an Alumina-Supported Cobalt Catalyst in Near-Critical and Supercritical Hexane Media [J]. Industrial & Engineering Chemistry Research, 2005, 44(3): 505-521
    [13] Linghu W, Li X, Asami K, et al. Supercritical phase Fischer-Tropsch synthesis over cobalt catalyst [J]. Fuel Processing Technology, 2004, 85(8-10): 1121-1138
    [14] Fan L, Fujimoto K. Fischer-Tropsch synthesis in supercritical fluid: characteristics and application [J]. Applied Catalysis A: General, 1999, 186(1-2): 343-354
    [15] E. W. Kuipers, I. H. Vinkenburg, H. J. Oosterbeek. Chain length dependence of α-olefin readsorption in Fischer-Tropsch synthesis [J]. J Catal, 1995, 137: 152
    [16] Baiker A. Supercritical Fluids in Heterogeneous Catalysis [J]. Chem. Rev., 1999, 99: 453-473
    [17] Xu J, Bartholomew C H. Temperature-Programmed Hydrogenation (TPH) and in Situ Molssbauer Spectroscopy Studies of Carbonaceous Species on Silica-Supported Iron Fischer-Tropsch Catalysts [J]. J Phys Chem B, 2005, 109: 2392-2403
    [18] Zimmerman W H, Rossin J A, Bukur D B. Effect of particle size on the activity of a fused iron Fischer-Tropsch catalyst [J]. Ind Eng Chem Res, 1989, 28: 406-413
    [1] 朱自强.超临界流体技术[M]化学工程出版社,2000年3月,P21-23
    [2] Yokota K, Fujimoto K. Supercritical phase Fischer-Tropsch synthesis reaction [J]. Fuel, 1989, 68(2):254-256
    [3] Baiker A. Supercritical Fluids in Heterogeneous Catalysis [J]. Chem Rev, 1999, 99:453-473
    [4] Bochnial D J, Subramaniam B. Fischer-Tropsch synthesis in near critical n-hexane: pressure-tuning effects [J]. AIChE, 1998, 44(8): 1889-1895
    [5] Huang X, Roberts C B. Selective Fischer-Tropsch synthesis over an Al_2O_3 supported cobalt catalyst in supercritical hexane [J]. Fuel Processing Technology, 2003, 83(1-3):81-99
    [6] 王德生,关乃佳. New developments in research based on FT synthesis [J]. Journal of Natural Gas Chemistry, 2000, 9(3):249~260
    [7] 代小平,余长春,沈师孔.费-托合成制液态烃研究进展[J].化学进展,2000, 12(3):268~281
    [8] D.B.Bukur. Effect of particle size on the acitivity of a fused iron Fischer-Tropsch catalyst [J]. Ind Eng Chem Res, 1989, 28:406
    [9] 刘颖,杨骏,白亮,李莹,et al.Fe-Mn催化剂对费托合成反应的催化性能.Ⅰ.初期反应性能[J].催化学报,2003,24:299-304
    [10] 马文平,赵玉龙,李永旺,et al.Fe-Cu-K催化剂上费托合成选择性的实验研究[J].天然气化工,1998,23:1-6
    [11] Dry M E, Anderson J R, Boudart M. Catalysis Science and Technology, Vol 1 [J]. 1981:159~255
    [12] Subramaniam B. Enhancing the stability of porous catalysts with supercritical reaction media [J]. Applied Catalysis A: General, 2001, 212(1-2): 199-213
    [13] Bukur D B, Lang X, Akgerman A, et al. Effect of Process Conditions on Olefin Selectivity during Conventional and Supercritical Fischer-Tropsch Synthesis [J]. Industrial & Engineering Chemistry Research, 1997, 36(7):2580-2587
    [14] Jacobs G, Chaudhari K, Sparks D, et al. Fischer-Tropsch synthesis: supercritical conversion using a Co/Al_2O_3 catalyst in a fixed bed reactor* [J]. Fuel, 2003, 82(10):1251-1260
    [15] Linghu W, Li X, Asami K, et al. Process Design and Solvent Recycle for the Supercritical Fischer-Tropsch Synthesis [J]. Energy & Fuels, 2006, 20(1):7-10
    [16] Li S, Ding W, Meitzner G D, et al. Spectroscopic and Transient Kinetic Studies of Site Requirements in Iron-Catalyzed Fischer-Tropsch Synthesis [J]. J Phys Chem B, 2002, 106:84-91
    [17] Tsubaki N, Yoshi K, Michiki K, et al. Non-Schulz-flory distribution in supercritical fluid-selective synthesis of wax via fischer-tropsch reaction [J]. Kobunshi Ronbunshu, 2001, 58(10):494-501
    [1] Dry M E, Anderson J R, Boudart M. Catalysis Science and Technology, Vol 1 [J]. 1981:159~255
    [2] Loktev S M. Alcohols and Hydrocarbons from Carbon Oxides and Hydrogen on Fused Iron Catalysts: Developments of Synthesis and Mechanism [J]. J Mol Catal, 1982, 17:225~230
    [3] Li S, Ding W, Meitzner G D, et al. Spectroscopic and Transient Kinetic Studies of Site Requirements in Iron-Catalyzed Fischer-Tropsch Synthesis [J]. Phys Chem B, 2002, 106:85-91
    [4] Krishnamoorthy S, Li A, Iglesia E. Pathways for CO2 formation and conversion during Fischer-Tropsch synthesis on iron-based catalysts [J]. Catalysis Letters, 2002, 80:77-86
    [5] Harris J, Andersson S. [J]. PhysRev Lett, 1985, 55(1583-1586)
    [6] 沈菊李.[博士学位论文]杭州 浙江工业大学 2005
    [7] Itoh H, Tetal O. Properties and Product Selectivity of Iron Ultra fine Particles as a Catalyst for Liquid Phase Hydrogenation of Carbon Monoxide [J]. Appl Catal, 1988, 40:53~66
    [8] Dry M E. The influence of structural promoters on the surface properties of reduced magnetite catalysts [J]. J Catal, 1966, 6:194~199
    [9] Ertl G, Prigge D, Schloegl R. Surface Characterization of Ammonia Synthesis Catalysts [J]. J Catal, 1983, 79:359~377
    [10] Dry M E, Oosthuizen G J. The correlation between catalyst surface basicity and hydrocarbon selectivity in the Fischer-Tropsch synthesis [J]. J Catal, 1968, 11:18~24
    [11] Steen E v, Schulz H. Polymerisation kinetics of the Fischer-Tropsch CO hydrogenation using iron and cobalt based catalysts [J]. Applied Catalysis A: General, 1999, 186:309-320
    [12] Maitlis P M. Commentary review: Metal catalysed CO hydrogenation: hetero- or homo-, what is the difference? [J]. Journal of Molecular Catalysis A: Chemical, 2003, 203-205(55-62)
    [13] Erley W, Mcbreen P H, Ibach H. Evidence for CHx Surface Species after the Hydrogenation of CO over an Fe (110) Single Crystal Surface [J]. Journal of Catalysis, 1983, 84(229-234)
    [14] 马文平,刘全生,赵玉龙,et al.费托合成反应机理的研究进展[J].内蒙古工业大学学报,1999,18:121-127
    [15] Adesina. A A. Hydrocarbon synthesis via Fischer-Tropsch reaction: travails and triumphs [J]. Catalysis A: General, 1996, 138:345-367
    [16] Cao D-B, Zhang F-Q, Li Y-W, et al. Density Functional Theory Study of Hydrogen Adsorption on Fe5C2(001), Fe5C2(110), and Fe5C2(100) [J]. Phys Chem B, 2005, 109:833-844
    [17] 陈建刚,相宏伟,李永旺,et al.费托法合成液体燃料关键技术研究进展[J].化工学报,2003,54:515-523
    [18] Dry M E. The Fischer-Tropsch process: 1950-2000 [J]. Catalysis Today, 2002, 71: 227-241
    [19] Ndlovu S B, Phala N S, Hearshaw-Timme M, et al. Some evidence refuting the alkenyl mechanism for chain growth in iron-based Fischer-Tropsch synthesis [J]. Catalysis Today, 2002, 71:343-349
    [20] Michael L T, Nyoman M, Brian E M, et al. Investigations by 13C NMR Spectroscopy of Ethene-Initiated Catalytic CO Hydrogenation [J]. J Am Chem Soc, 2002, 124:10455-10472
    [21] Jiang M, Koizumi N, Yamada M. Adsorption Properties of Iron and Iron-Manganese Catalysts Investigated by in-situ Diffuse Reflectance FTIR Spectroscopy [J]. Phys Chem B, 2000, 104:7635-7643
    [22] Yang J, Liu Y, Chang J, et al. Detailed Kinetics of Fischer-Tropsch Synthesis on an Industrial Fe-Mn Catalyst [J]. Ind Eng Chem Res, 2003, 42:5065-5090
    [23] [西德]W 凯,黄仲涛译.C1化学中的催化[J].化学工业出版社,1989,P49
    [24] Tsubaki N, Fujimoto K. Product control in Fischer-Tropsch synthesis [J]. Fuel Processing Technology, 2000, 62(2-3): 173-186
    [1] 刘化章,李小年,铁催化剂母体相形成的研究和FeO基合成氨催化剂的发现[J].中国科学(B辑),1995,25(1):1-6
    [2] Aila.k., Hori.h. Ozaki.A., Activation of nitrogen by alkali metal promoted transition metal I. Ammonia synthesis over ruthenium promoted by alkali metal [J]. J.Catal, 1972, 27: 423-431
    [3] Philip.E.S,etal., Reaction at supercritical conditions[J]. AIChE 1995, 41(7): 1723-1729
    [4] Subramaniam B, Reaction in Supercritical fluids [J]. Ind. Eng. Chem. Process. Des. Dev., 1986,1: 25-32
    [5] 姜涛等,超临界相CO加氢合成甲醇、异丁醇的研究[J].燃料化学学报,1999,27(2):116-120
    [6] 姜涛等,超临界相合成气制甲醇-异丁醇工艺条件的研究[J].天然气化工,1998,23(5):25-29
    [7] Eckert C. A., Ziger D. H., Johnston K. E, et al., The use of partial molal volume data to evaluate equations of state for supercritical fluid mixture [J]. Fluid Phase Equilib, 1983, 14: 167-175
    [8] Kim S, Johnston K P. Molecular interactions in dilute supercritical fluid solutions [J]. Ind Eng Chem Res, 1987, 26:1206-1213
    [9] Fan L, Yoshii K, Yan S, et al. Supercritical-phase process for selective synthesis of wax from syngas: Catalyst and process development [J]. Catalysis Today, 1997, 36(3):295-304
    [10] Tong Clifford. Fundamentals of Supercritical Fluids [M]. the oxfard University Press, 1998。
    [11] 魏伟等,正十二烷脱氢制直链十二单烯的热力学计算[J].石油化工,2000,29:582-585
    [12] Robert, G. W., High-Temperature Slurry Reactors for Synthesis Gas Reactions. 1. Liquid Thermal Stability [J]. Ind. Eng. Chem. Res. 1997, 36:4143-4154
    [13] 张天明.[硕士毕业论文].杭州:浙江工业大学,2004
    [14] 刘光启编,化工物性算图手册[M].化学工程出版社 p643-675

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700