有机质成气过程碳同位素分馏的动力学及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了分析水在有机质热裂解成气过程中的作用,考察加水量和水介质性质对烷烃气碳同位素分馏的影响,本文采用黄金管热模拟装置,选取纯化合物正十八烷加不同比例的蒸馏水和加水比例相同但不同的水介质进行热模拟实验,通过新的实验和系统的分析,得到一些认识和结论:(1)热模拟实验中水的存在增加了烃气的产率和稳定性,十八烷加水实验中生成大量CO2和H2,排除含水实验中CO和H2O发生水煤气反应及C与H2O发生反应造成CO2和H2产率增加的可能,证明水参与了十八烷热裂解生烃的反应。反应物中加水比例越大,上述效应越明显;(2)水介质中溶解的无机盐类能够催化有机质热裂解生烃气和CO2、H2;(3)加水与无水条件下n-C18H38裂解生成的甲烷碳同位素分馏整体差别较小,因此用有机质无水与加水热裂解模拟地质条件下的有机质热裂解生甲烷的碳同位素分馏或将其外推到地质情况下进行应用,二者的差别可能很小;(4)水介质性质对十八烷热裂解生成的烷烃气碳同位素分馏基本没有影响;(5)加水实验的CO2在生成过程中相对其他烷烃气碳同位素分馏来说不存在明显的动力学碳同位素分馏现象。
     为避免反应母质同位素分布的非均质性对有机质热裂解生气态烃碳同位素分馏的影响,选取含不同官能团的纯化合物n-C18H38、十八酸、十八胺、十氢化萘、9-苯基蒽进行热模拟实验,从实验的角度得出影响热成因甲烷碳同位素分馏的因素主要有:(1)温度;(2)各化合物热裂解生甲烷过程中存在的反应机制;(3)反应有机质的初始碳同位素组成。
     最后,将有机质热裂解生甲烷碳同位素分馏的化学动力学模拟在徐家围子断陷地区进行了简单的地质应用,得到徐深1井区源岩对该井区气藏的贡献比例约占66%,沉降中心源岩的贡献比例约为34%。
In order to analyze the role of water playing in the pyrolysis process of organic matter and investigate how the added water quantity and quality affect the alkane gas carbon isotope fractionation, this paper adopts the gold tube pyrolysis setting, and select the pure n-C18H38 to add distilled water in different n-C18H38 to water ratio and to add three kinds of water with different quality in the same n-C18H38 to water ratio to perform experiments. Through new experiments and systematic analyses, we get something new and conclusions.(1)The added water increases the yield of hydrocarbon gas and stabililty. The increase yield of CO2 and H2 caused by reactions between CO and H2O and between C and H2O are excluded. Quantity of CO2 and H2 reflect that water reacts with the organic matter in the pyrolysis process. The more the water occupies in the reactants, the more obvious of the above effect. (2)The resolved inorganic salt in water can catalyze the organic matter to pyrolyze into alkane gases, CO2 and H2. (3)Water can affect methane isotope fractionation in the process of n-C18H38 pyrolysis, and the influence is small. So the difference is very small whether use organic thermally cracking experiments without water or with water to simulate carbon isotope fractionation of methane in geological condition, and the difference is also small if the kinetic parameters of carbon isotope fractionation were applied to geological conditions. (4)The carbon isotope fractionation of alkane gas is almost not changed by different quality water. (5)Compared to carbon isotope ration of alkane gas, the carbon isotope fractionation phenomena of CO2 does not exist obviously in the hydrous thermally cracking process.
     In order to avoid the influence to carbon isotope fractionation of alkane gas by the isotopic heterogeneity of reactants, five kinds of pure compounds that are n-C18H38, stearic acid, octadecylamine, decahydronaphthalene dekalin,9-phenyl anthrecene are selected to do thermally cracking experiments. By comparing and analyzing the influencing factors to carbon isotope fractionation of thermal cracking methane of organic matters are summarized as follows: (1)temperature. (2)the existing reaction mechanisms in the thermal cracking process of different compounds. (3)the carbon isotope ratio of the reactant.
     At the end the kinetic parameters of carbon isotope fractionation of methane calculated from the organic thermally cracking into methane experiments are simply applied to Xujiaweizi fault depression. The result is that 66% of the gas reservoir of Xushen 1 well is from the source rock near Xushen 1 well, and 34% is from the depocenter stratum.
引文
[1] Rooney M.A. Modeling thermogenic gas generaion using carbon isotope ratios of natural gas hydrocarbons[J]. Chemical Geology, 1995, 126:219~232.
    [2] Berner U., Faber E., Scheeder G.., et al. Primary cracking of algal and landplant kerogens: kinetic models of isotope variations in methane, ethane and propane[J]. Chemical geology, 1995, 126:233~245.
    [3] Berner U., Faber E. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis[J]. Organic Geochemistry,1996, 24:947~955.
    [4] Tang Y., Huang Y.S., Ellis G.S. et al. A kinetic model for thermally induced hydrogen and carbon isotope fractionation of individual n-alkanes in crude oil[J]. Geochimica et Cosmochimica Acta, 2005, 69:4505~4520.
    [5] Tang Y., Perry J.K., Jenden P.D., et al. Mathematical modeling of stable carbon isotope ratios in natural gases[J]. Geochimica et Cosmochimica Acta, 2000, 64:2673~2687.
    [6] Cramer B., Faber E., Gerling P. Reaction kinetics of stable carbon isotopes in natural gas-insights from dry open system pyrolysis experiments[J]. Energy & Fuels, 2001, 15:517~532.
    [7] Gaschnitz R., Krooss B.M., et al. Pyrolysis-GC-IRMS: isotope fractionation of thermally generated gases from coals[J]. Fuel, 2001, 80:2139~2153.
    [8]帅燕华,邹艳荣,彭平安.天然气甲烷碳同位素动力学模型与地质应用新近展[J].地球科学进展,2003,18(3):405~411.
    [9]邹艳荣,帅燕华,孔枫,等.煤成甲烷碳同位素演化的数学模型与应用[J].天然气地球科学,2003,14(2):92~96.
    [10]关平,伍天洪.热成因甲烷碳同位素分布的形成机制[J].沉积学报,2003,21(1):175~182.
    [11]史基安,卢龙飞,王金鹏,等.天然气运移物理模拟实验及其结果[J].天然气工业,2004,24(12):32~34.
    [12]Valentine D.L., Chidthaisong A., Rice A., et al. Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens[J]. Geochimica et Cosmochimica Acta, 2004, 68:1571~1590.
    [13]Steinbach A., Seifert R., Annweiler E., et al. Hydrogen and carbon isotope fractionation during anaerobic biodegradation of aromatic hydrocarbons-A field study. Environ[J]. Sci. Technol 2004, 35:609~616.
    [14]卢双舫,李吉君,薛海涛,等.油成甲烷碳同位素分馏的化学动力学及其初步应用[J].吉林大学学报(地球科学版),2006,36(5):825~829.
    [15]Hesp W., Rigby D., The geochemical alternation of hydrocarbons in the presence of water[J]. Erdol Kohle-Erdgas, 1973, 26:70~76.
    [16]Hoering T.C. Thermal reactions of kerogen with added water, heavy water and pure organic substances[J]. Org. Geochem. 1984, 5:267~278.
    [17]Price L.C. Thermal stability of hydrocarbons in nature: Limits, evidence, characteristics, and possible controls[J]. Geochimica et Cosmochirnica Acta, 1993, 57: 3261~3280
    [18]Lewan M.D. Water as a source of hydrogen and oxygen in petroleum formation by hydrous pyrolysis[J]. Am. Chem. Soc. Div. Fuel Chem. 1992, 37:1643~1649.
    [19]Lewan M.D. Experiments on the role of water in petroleum formation[J]. Geochimica et Cosmochirnica Acta, 1997, 61:3691~3723.
    [20]Leif R.N., Simoneit B.R.T. The role of alkenes produced during hydrous pyrolysis of a shale[J]. Organic Geochemistry, 2000, 31:1189~1208.
    [21]Seewald J.S., Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426:327~333.
    [22]Schimmelmann A., Lewan M.D., and Wintsch R.P. D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III[J]. Geochimica et Cosmochimica Acta, 1999, 63:3751~3766.
    [23]Schimmelmann A., Boudou J.P., Michael D, et al. Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis[J]. Organic Geochemistry, 2001, 32:1009~1018.
    [24]Schimmelmann A., Sessions A.L., and Mastalerz M. Hydrogen isotopic (D/H) composition of organic matter during diagenesis and thermal maturation[J]. Earth. Planet. Sci., 2006, 34:501~533.
    [25]王兆云,程克明,张柏生.加水热模拟实验气态产物特征及演化规律研究[J].石油勘探与开发,1995,22(3):36~40.
    [26]高岗,刚文哲,郝石生.加水热模拟实验中泥灰岩气态产物特征[J].石油大学学报(自然科学版),1996,20(2):12~16.
    [27]高岗,王延斌,韩德馨.两种海相未成熟烃源岩热解气特征比较研究[J].石油实验地质,2003,25(2):197~205.
    [28]马彩霞,张荣,毕继诚.煤焦油在超临界水中的改质研究[J].燃料化学学报,2003,31(2):103~110.
    [29]王秀红,金强,胡晓庆,等.加水与不加水热模拟实验条件下煤生烃特征对比[J].断块油气田,2007,14(4):31~34.
    [30]王晓锋.天然气氢同位素地球化学及其意义[D].兰州:中国科学院兰州地质研究所,2006.
    [31]靳永斌.正构二十四烷和原油含水裂解研究[D].广州:中国科学院广州地球化学研究所,2007.
    [32]Sackett W.M. Carbon isotope composition of natural methane occurrences[J]. AAPG., 1968, 52:853~857.
    [33]Frank D.J., Sackett W.M. Kinetic isotope effects in the thermal cracking of neopentane[J]. Geochimica et Cosmochimica Acta, 1969, 33:811~820.
    [34]Frank D.J., Gormly J.R., Sackett W.M. Revaluation of carbon-isotope compositions of natural methanes[J]. AAPG, 1974. 58:2319~2325.
    [35]Behar F., Budzinski H., Vandenbroucke M. et al. Methane generation from oil cracking: kinetics of 9-methylphenanthrene cracking and composition with other pure compounds and oil fractions[J]. Energy &Fuels, 1999, 13:471~481.
    [36]Behar F., Lorant F., Budzinski H., et al. Thermal stability of alkylaromatics in natural systems: kinetics of thermal Decompositon of dodecylbenzene[J]. Energy & Fuels, 2002, 16:831~841.
    [37]Lorant F., Behar F., and Vandenboucke M., et al. Methane genenration from methylated aromatics: kinetic study and canbon isotope modeling[J]. Energy & Fuels, 2000, 14:1143~1155.
    [38]熊永强,张海祖,耿新华,等.正十八烷的裂解及其地球化学意义[J].科学通报,2004,49(增刊):72~75.
    [39]Landais P., Michels R., Elie M. Are time and temperature the only constraints to the simulation of organic maturation?[J]. Organic Geochemistry, 1994, 22:617~630.
    [40]Sajo C., McEvoy J., Wolff G.A., et al. Influence of temperature and pressure on maturation processes-(Ⅰ) preliminary report[J]. Organic Geochemistry, 1986, 10:331~337.
    [41]陈晋阳,张红,肖万生,等.有机油气形成的影响因素-模拟实验的研究进展[J].石油与天然气地质,2004,25(3):247~252.
    [42]李术元,林世静,郭绍辉,等.无机盐类对干酪根生烃过程的影响[J].地球化学,2002,31(1):15~20.
    [43]李术元,郭绍辉,刘宗玉,盐水介质中煤的早期热解生烃特征和动力学[J].石油大学学报(自然科学版),1999,23(2):71~75.
    [44]张在龙,劳永新,王培建,盐水对未熟生油岩中脂肪酸催化脱羧生烃的影响[J].石油大学学报(自然科学版),2000,24(6):57~60.
    [45]Comley E.A., Reed R.M. Catalytic processes for hydrogen manufacturing[J]. Sixth World Petrol. Congr. 1963, 4:361~372.
    [46]Wagman D.D., Kilpatrick J.E., Taylor W.J.,et al. Heats, free energies, and equilibriumconstants of some reactions involving O2, H2O, C, CO, CO2, and CH4.[J]. Res. Natl. Bureau Stand. 1945, 34:143~161.
    [47]Cabrera A.L., Heinemann H., and Somorjai G.A. Methane production from the catalyzed reaction of graphite and water vapor at low temperatures (500~600K)[J]. Catal., 1982, 75:7~22.
    [48]Yates J.T., and McKee D.W. Kinetic isotope effect in the heterogeneous reaction of graphite with H2O (D2O)[J]. Chem.Phys. 1981, 75:2711~2714.
    [49]Franks S.G. and Forester R.W. Relationships among secondary porosity, pore-fluid chemistry and carbon dioxide, Texas Gulf Coast. In Clastic Diagenesis[J]. American Association of Petroleum Geologists, Memoir 1984, 37:63~79.
    [50]Schmidt V., McDonald D.A. The role of secondary porosity in the course of sandstone diagenesis[J]. Soc. Econ. Paleontol. Mineral. Spec. Pub.1979, 26:175~207.
    [51]Lundegard P.D., Land L.S., and Galloway W.E. Problem of secondary porosity: Frio Formation (Oligocene), Texas Gulf Coast[J]. Geology. 1984, 12:399~402.
    [52]Pittman E.D. and Hathon, L.A., Material balance considerations for the generation of secondary porosity by organic acids and carbonic acid derived from kerogen, Denver Basin, Colorado, USA[M]. Springer-Verlag, Berlin Heidelberg, 1994. 115~137.
    [53]Moore C.H. and Heydari E. Burial diagenesis and hydrocarbon migration in Platform limestones: A conceptual model based on the upper Jurassic of the Gulf Coast of the USA. In Diagenesis and Basin Development[J]. AAPG, 1993, 36:213~229.
    [54]Dixon S.A., Summers D.M., and Surdam R.C. Diagenesis and preservation of porosity in Norphlet Formation (Upper Jurassic), southern Alabama[J]. AAPG. 1989, 73:707~728.
    [55]Boles J.R. and Ramseyer K. Diagenetic carbonate in Miocene sandstone reservoir, San Joaquin Basin, California[J]. AAPG Bull. 1987, 71:1475~1487.
    [56]Loucks R.G., Richmann D.L., and Milliken K.L. Factors controlling reservoir quality in Tertiary sandstones and their significance to geopressured geothermal production[R]. 1981, 111:1~47.
    [57]Tissot B.P., Welte, D.H., Petroleum formation and Occurrence[M]. Berlin; New York: Springer-Verlag, 1984.
    [58]黄第藩,秦匡宗,王铁冠,等.煤成油的形成和成烃机理[M].北京:石油工业出版社,1995.
    [59]Alexander R., Kagi R., Larcher A.V. Clay catalysis of alkyl hydrogen exchange reactions-reaction mechanisms[J]. Org. Geochem. 1984, 6:755~760.
    [60]Larcher A.V., Alexander R., Rowland S.J., and Kagi R.I. Acid catalysis of alkyl hydrogen exchange and configurational isomerisation reactions: Acyclic isoprenoidacids[J]. Org. Geochem. 1998, 60:1015~1021.
    [61]Goldstein T.P. Geocatalytic reactions in formation and maturation of petroleum[J]. AAPG, 1983, 67:152~159.
    [62]Tannenbaum E., Kaplan, I.R. Low-M, hydrocarbons generated during hydrous and dry pyrolysis of kerogen[J]. Nature, 1985, 317:708~709.
    [63]Siskin M., Brons G., Katritzky A.R., et al. Aqueous organic chemistry:1. Aquathermolysis; Comparison with thermolysis in the reactivity of aliphatic compounds[J]. Energy & Fuels, 1990, 4:475~482.
    [64]Kenneth M. Philllip B., Savage E., Hydrothermal reactions of methylaminc[J]. Supercritical Fluids, 2004, 31:301~311.
    [65]Takehiko Moriya, Heiji Enomoto Characteristics of polyethylene cracking in supercritical water compared to thermal cracking[J]. Polymer Degradation and Stability, 1999, 65:373~386.
    [66]Galimov E.M. Isotope organic geochemistry[J]. Organic Geochemistry, 2006, 37:1200~1262.
    [67]Jurg J.W., Eisma E. Petroleum hydrocarbon generation from fatty acid[J]. Science, 1964, 144:1451~1452.
    [68]Cramer B. Methane generation from coal during open system pyrolysis investigated by isotope specific Gaussian distributed reaction kinetics[J]. Organic Geochemistry, 2004, 35:379~392.
    [69]卢双舫.有机质成烃动力学理论及其应用[M].北京:石油工业出版社,1996.
    [70]Tissot B.P., Pelet R. and Ungerer P. Thermal history of sedimentary basins maturation indices, and kinetics of oil and gas generation[J]. AAPG, 71(12):1445~1466.
    [71]霍秋立.松辽盆地徐家围子断陷深层天然气来源与成藏研究[D].大庆:大庆石油学院,2007.
    [72]付广,孙建军,徐淑艳.从源盖时空匹配关系预测徐家围子断陷的天然气远景[J].天然气地球科学,2004,15(6):580~583.
    [73]赵文智,王兆云,汪泽成,等.高效气源灶及其对形成高效气藏的作用[J].沉积学报,2005,23(4):709~718.
    [74]冯子辉,任延广,王成,等.松辽盆地深层火山岩储层包裹体及天然气成藏期研究[J].天然气地球科学,2003,14(6):436~442.
    [75]任延广.松辽盆地徐家围子断陷地质特征与天然气聚集规律[D].吉林:吉林大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700