基于复合微反应器催化氧化脱硫研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,环保问题受到人们越来越多的关注,燃料油的深度脱硫问题就是其中之一。2006年柴油中的硫含量将限制到16ppm之内,然而传统的加氢脱硫法(HDS)已远远不能满足人们的要求。而且,加氢脱硫法反应条件苛刻,设备投资大,使燃料油的成本显著提高。因此,寻找一种能够补充或替代加氢脱硫法的脱硫工艺,是石油工业领域所关注的焦点。目前,吸附脱硫、萃取脱硫、氧化脱硫和生物脱硫等脱硫技术曾被用于燃料油脱硫。其中与液液萃取技术相结合的催化氧化脱硫法是最具潜力的深度脱硫法之一。该方法以对有机硫化物进行氧化为核心技术,选择性的将燃料油中的噻吩及其衍生物转化为相应的砜,然后利用砜较强的极性,通过萃取、吸附等分离技术将砜除去,达到深度脱硫的目的。
     以高分子水凝胶为模板制备具有特殊结构和性能的复合微球材料是当今材料科学领域研究热点之一,其优势在于模板的空间限域和调控作用可实现对复合材料的表面形貌及结构的控制,获得各种具有特异表面结构的无机—有机复合材料,从而实现纳米尺寸微粒与大尺度模板间的有效复合。本研究首次将负载有过氧杂多酸季胺盐的有机—无机复合微球催化剂用于燃料油的深度脱硫。该研究的优势在于:一方面,由于复合微球较大的尺寸可以实现催化剂与反应体系的简易分离;另一方面,由于微球具有核壳型结构,而且亲水性内核为过氧化氢的储存提供了可能,外壳负载相转移催化剂使两相反应易于界面发生。
     本论文主要对负载过氧磷钨杂多酸季胺盐(PW-HPA)的有机—无机复合微球制备、表征及其在燃料油深度脱硫中的应用进行了研究,其研究工作包括以下两个方面:
     (一)采用反相悬浮聚合法合成了PAM微凝胶微球,以此微球为模板,用磷钨酸(HPA)为溶胀液,分别在正庚烷、过氧化氢两种体系中,通过两相界面反应使过氧磷钨杂多酸季胺盐沉积于微凝胶表面,制得具有核/壳结构的PAM/PW-HPA复合微球材料。利用扫描电子显微镜(SEM)、傅立叶变换红外光谱(FTIR)和热重分析仪(TGA)对复合微球的形貌、组分和无机沉积物PW-HPA的负载量等进行了表征。
     实验结果表明:微凝胶的模板作用使得所得复合物整体上呈现球状结构,且具有微米级尺寸;PAM/PW-HPA复合微球具有一定特征的表面图案化和可逆的溶胀性;复合微球表面结构可通过改变模板溶胀度、调整无机物的沉积量等方式进行有效地调控。微米级尺寸和纳米级表面图案是这类复合微球材料最大的特点。这种特点使其同时具有易于分离和极大比表面等特性。因此,该复合材料制备方法对于构筑两相催化微反应器具有普遍的借鉴意义。
     (二)在十氢化萘、四氢化萘和正戊烷混合溶剂中,以30%H_2O_2为氧化剂,
Recently, people put a lot of attentions to the environmental problems becoming more and more serious. Deep desulfurization of fuel oil has become an environmentally urgent subject worldwide. Very stringent environmental regulations limit the sulfur levels in diesel fuels to less than 15 ppm by the year 2006. However, it is very difficult to decrease the sulfur content from several hundred ppm to a few ppm with traditional hydrodesulphurization (HDS) method. At the same time, strict operation condition and huge instrument investment make cost of oil very high. So alternation and perfection of desulfurization processes are absolutely necessary for producing clean fuels. Possible strategies to realize deep desulfurization currently include adsorption, extraction, oxidation and bioprocesses. Selective catalytic oxidation combined with extraction is one of the most promising deep desulfurization methods. Catalytic oxidation desulfurization may oxide sulfides of fuel oil into sulfones. Then the efficiency of deep desulfurization, by using either extraction or adsorption, can be completed due to the greater polarity and the higher solubility of sulfones in a polar solution than that of corresponding sulfides.Microgel template approaches on the preparation of composite materials with special structure and properties have increased interest in materials science. The main advantage of composite materials is that employing the effect of space confinement of template for guest can easily control the hybridization between template materials and guest with large difference in size as well as the surface morphology of composite microspheres. This research firstly applies the composite microspheres loaded with peroxide phosphotungsten heteropolyacid quarter ammonium salt (PW-HPA) as catalyst to deep desulfurization of fuel oil. The advantages include two aspects. One side, the micrometer size of composite microspheres makes its easy separation from the system possible. The other side, the composite microspheres have hydrophilic core and hydrophobic shell, which can store hydrogen peroxide inside and perform catalysis at the interface.This research mainly focuses on the preparation and characteristic of composite microspheres, and application to deep desulfurization of fuel oil. Based on the idea mentioned above, the research in this thesis includes the following two parts.(1) PAM microgels microspheres were prepared by reverse suspension polymerization technique. The microspheres thus prepared were employed as
    template for the deposition of PW-HPA in the n-heptane and hydrogen peroxide systems, respectively. Then the morphology ^ composition and loading amount of the composite microspheres materials PAM/PW-HPA have been characterized by the SEML FT IR and TGA, respectively.It was demonstrated that the composite materials in shape were generally microspheres with different surface morphology. The surface structures of the composite microspheres could be tailored to certain extent by varying the swelling degree of the PAM template and the amount of PW-HPA deposited. The composite microspheres have micrometer size and nanometer morphology. This characteristic makes its easy separation and big surface possible. So, the preparation method of the composite microspheres is significant in conducting the biphase catalytic microreactor.(2) For a model reaction run, dibenzothiophene (DBT) was dissolved in a mixture of decahydronaphthalene, tetrahydronaphthalene and n-pentane. 30% H2O2 as oxidant and composite microspheres as catalyst oxide the DBT into the corresponding sulfones. Then the mixture is extracted by acetonitrile. Comparing the catalytic performance of PW-HPA and PAM/PW-HPA, the results show that catalytic efficiency of PAM/PW-HPA was almost the same to that of PW-HPA. Under the best condition, the conversion of DBT is about 95%. But the PAM/PW-HPA is separated more easily than PW-HPA from the mixture and can be recycled after dehydrogenization by acetone.
引文
[1] 王恩波,胡长文等.多酸化学导论[M].北京:化学工业出版社,1998:14-16.
    [2] POPE M T. Heteropoly and Isopolyoxometalates, Inorganic Chemistry Concepts [M]. New York: Springer Verlag, 1983, Vol.8.
    [3] 杨师棣,王福民等.固载杂多酸催化剂的应用研究及进展[J].渭南师范学院学报,2003,18(2):41-44.
    [4] OKUHARA T, MIZUNO N, et al. Advances in catalysis [M]. London: Academic Press, 1996, 41: 113-252.
    [5] 张荣,陈建等.固载杂多酸催化剂的应用研究[J].化工时刊,2004,18(2):11-14.
    [6] 王恩波,胡长文等.多酸化学导论[M].北京:化学工业出版社,1998,171-174.
    [7] 朱洪法.催化剂载体[M].北京:化学工业出版社,1980.
    [8] CHU W L, YANG X G, et al. Adsorption of PMo_(12) and SiMo_(12) on Activated Carbon in Aqueous and Acidic Media [J]. Langmuir, 1996, 12:4185-4189.
    [9] LIU-CAI F X, SAHUT B, et al. Study of the acidty of carbon supported and unsupported heteropolyacid catalysts by ammonia sorption microcal orimetry [J]. Appl. Catal. A., 1999, 185(1):75-83.
    [10] 王新平,叶兴凯等.杂多酸的固载化研究(Ⅱ)[J].物理化学学报,1994,10(4):303-307.
    [11] 王新平,叶兴凯等.杂多酸在活性炭表面含氧基团上的化学键合作用[J].物理化学学报,1995,11(12):1105-1109.
    [12] DUPONT P, LEFEBVRE F. Esterification of propanoic acid by butanol and 2-ethylhexanol catalyzed by heteropolyacids pure or supported on carbon [J]. J. Mole. Catal. A., 1996, 114: 299-307.
    [13] 李光才,许良忠.新型增塑剂二甘醇二苯甲酸酯的研究[J].精细石油化工,1997,1:22-23.
    [14] 张龙,王树江等.固载杂多酸催化剂PW_(12)/C催化合成二甘醇二苯甲酸酯[J].石油化工,1998,27:564-566.
    [15] 程芝.天然树脂生产工艺学[J].北京:中国林业出版社,1996.
    [16] 谢晖,鲁重义等.活性炭固载杂多酸催化合成乙酸松油酯[J].南京林业大学学报(自然科学版),2005,29(6):65-68.
    [17] CASUSCELLI S G, CRIVELLO M E, et al. Effect of reaction conditions on limonene epoxidation with H_2O_2 catalyzed by supported Keggin heteropoly compounds [J]. Appl. Catal. A., 2004, 274:115-123.
    [18] 刘秉智.固载杂多酸催化氧化合成苯甲醛绿色新工艺[J].应用化工,2005,9:548-549.
    [19] 于大伟,柳树华.固载杂多酸PW_(12)/SiO_2催化合成对苯二甲酸二异辛酯[J].抚顺石油学院学报,1999,19(3):34-36,43.
    [20] BARTON D, OLLIS W D. Comprehensive Organic Chemistry [M]. England: Pergamon Press, 1979, Vol. 1, 641-645.
    [21] VAZQUEZ P, PIZZIO L, et al. Silica-supported heteropolyacids as catalysts in alcohol dehydration reactions [J]. J. Mole. Catal. A., 2000, 161: 223-232.
    [22] 周原,刘新玲等.硅胶固载磷钼杂多酸催化合成醋酸异戊酯[J].精细石油化工,2002,5:14-16.
    [23] 李莉,张秀芬等.纳米光催化材料H_6P_2W_(18)O_(62)/SiO_2的制备与表征[J].齐齐哈尔大学学报,2005,21(4):6-9.
    [24] YAMAGUCHI K, YOSHIDA C, et al. Peroxotungstate Immobilized on Ionic Liquid Modified Silica as a Heterogeneous Epoxidation Catalyst with Hydrogen Peroxide [J]. J. Am. Chem. Soc., 2005, 127:530-531.
    [25] 赵修松,王清遐等.中孔沸石新材料MCM-41-I合成、酸性及稳定性[J].催化学报,1995,16(5):415-419.
    [26] 孙渝,乐英红等.MCM-41负载磷钨杂多酸催化剂的性能研究[J].化学学报,1999,57(7):746-753.
    [27] RAO K M, GOBETTO P, et al. Solid state NMR and IR studies of phosphomolybdenum and phosphotungsten heteropoly acids supported on SiO_2, γ-Al_2O_3, and SiO_2-Al_2O_3 [J]. J. Catal., 1989, 119: 512-516.
    [28] KOZHEVNIKOV I V, SINNEMA A, et al. New acid catalyst comprising heteropolyacid on a mesoporous molecular sieve MCM-41 [J]. Catal. Lett., 1994, 30(1~4): 41-252.
    [29] JALIL P A, AL-DAOUS M A, et al. Characterization of tungstophoric and supported on MCM-41 mesoporous silica by using n-hexane cracking benzene adsorption and X-ray diffiraction [J]. Appl. Catal. A., 2001, 207(1,2): 159-171.
    [30] 毕颖丽,阚秋斌等.MCM-41负载型过氧磷钨杂多酸季胺盐催化剂的制备和结构性能的考察[J].燃料化学学报,2001,29.46-48.
    [31] DAMYANOVA S, CUBEIRO M L, et al. Acid redox properties of titania supported 12-Molybdophosphates for methanol oxidation [J]. Mole. Catal. A., 1999, 142(1): 85-100.
    [32] 杨水金,李臻等.TiO_2负载磷钨杂多酸催化剂催化合成缩醛(酮)[J].精细化工,2005,22(11):842-845.
    [33] 余新武,石先兴等.分子筛负载HPA/TiO_2催化剂的性能[J].湖北师范学院学报(自然科学版),2005,4(25):11-13.
    [34] 丁斌,郭向明.固载杂多酸催化精馏合成富马酸二甲酯[J].东北师大学报,2001,33(4):61-64.
    [35] 周广栋,程铁欣等.聚苯胺负载H_4PMo_(11)VO_(40)催化剂的结构和催化性能[J].催化学报,2004,25(3):189-193.
    [36] SONG I K, LEE W Y. Application of heteropoly acid catalyst in an inert polymer membrane catalytic reactor in erhanol dethyalration [J]. Catal. Lett., 1991, 9: 339-346.
    [37] ANGELIS A D, AMARILLI S, et al. Alkylation of benzene catalyzed by supported heteropoly acids [J]. J. Mol. Catal. A., 1999, 146: 37-44.
    [38] 周广栋,程铁欣等.氧化镁负载磷钼钒杂多酸催化剂的结构和催化性能[J].高等学校化学学报,2003,24(6):1043-1047.
    [39] 余新武,石先兴等.混合金属氧化物固载杂多酸的制备及催化性能[J].化学研究与应用,2005,17(4):498-500.
    [40] YADAV G D, BOKADE V V. Novelties of heteropoly acid supported on clay esteri-fication of phenethyl alcohol with alkanols [J]. Appl. Catal. A., 1997, 154: 29-53.
    [41] 罗云飞,孙建伟等.HEMT沸石负载12-钨硅酸对异丁烷与丁烯的烷基化反应的催化性能[J].催化学报,2001,22(6):550-552.
    [42] STUMPF A, TOLVAJ K, et al. Detailed analysis of sulfur compounds in gasoline range petroleum products with high-resolution gas chromatography-atomic emission detection using group selective chemical treatment [J]. Chroma. A., 1998, 819: 67-74.
    [43] YIN C L, XIA D H, et al. A study of the distribution of sulfur compounds in gasoline produced in China. Part 1. A method for the determination of the distribution of sulfur compounds in light petroleum fractions and gasoline [J]. Fuel, 2001, 80:607-610.
    [44] YIN C L, ZHU G Q, et al. A study of the distribution of sulfur compounds in gasoline fraction produced in China Part 2. The distribution of sulfur compounds in full-range FCC and RFCC naphthas [J]. Fuel. Pro. Tech., 2002, 79: 135-140.
    [45] 山红红,李春义等.FCC汽油中硫分布和催化脱硫研究[J].石油大学学报(自然科学版),2001,25(6):78-81.
    [46] 吴洪新,凌凤香等.GC-AED法研究催化裂化柴油中硫氮化合物[J].当代化工,2006,35(1):7-11.
    [47] OAE S. Organic Sulfur Chemistry [M]. Boca Raton: CRC Press, 1991.
    [48] COFFEY S. Rodd's Chemistry of Carbon Compounds, Vol.Ⅳ, Heterocyclic Compounds, Part A [M]. Elsvier Science, 1973.
    [49] NAKAYAMA J, NAGASAWA H, et al. Synthesis, Isolation, and Full Characterization of the Parent Thiophene 1,1-Dioxide [J]. J. Am. Chem. Soc., 1997, 119: 9077-9078.[50] NAGASAWA H, SUGIHARA Y, et al. Thiophene 1,1-Dioxide, Synthesis, Isolation, and Properties [J]. Bull. Chem. Soc. Jp., 1999, 72(8): 1919-1926.
    [51] VALCAREL J I, WALTON D J, et al. The sonoelectro oxidation of thiophene S-oxides [J]. Ultrason Sonochem, 2004, 11(3-4): 227-232.
    [52] BRANKO S J. Suitability of furan, pyrrole and thiophene as dienes for Diels-Alder reactions viewed through their stability and reaction barriers for reactions with acetylene, ethylene and cyclopropene. An AM1 semi empirical and B3LYP hybrid density functional theory study [J]. J. Mol. Stru(THEOCHEM)., 1998, 454:105-116.
    [53] 陈敏为.有机杂环化合物[M].北京:高等教育出版社,1990,28-35.
    [54] 邢其毅.基础有机化学[M].北京:高等教育出版社,1984,916-920.
    [55] BONDE S E, GORE W. The conversion extraction desuifurization Process: A technology update [J]. Prepr., 2001, 46(1): 69-73.
    [56] DOLBEAR G E, SKOV E R. Selective oxidation as a route to petroleum desulfurization [J]. Prepr., 2000, 45(2): 375-378.
    [57] BONDE S E, DOLBEAR G E. DMSO extraction of sulfones from selectively oxidized fuels [J]. Prepr., 1999, 44(2): 199-201.
    [58] BONDE S E, GORE W. Selctive oxidation and extraction of sulfur-containing compounds to economically achieve ultra-low proposed diesel fuel sulfur requirments[J]. Prepr., 2000, 45(2): 364-366.
    [59] SHIRAISHI Y, TACHIBANA K, et al. Desulfurization and Denitrogenation Process for Light Oils Based on Chemical Oxidation followed by Liquid-Liquid Extraction [J]. Ind. Eng. Chem. Res., 2002, 41(17): 4362-4375.
    [60] SHARIPOV A K, NIGMATULLIN V R. Catalytic oxidation of sulfides in lube oil cuts with organic hydroperoxides [J]. Chem. Technol. Fuels Oils., 2006, 42(1): 51-54.
    [61] OTSUKI S, NONAKA T, et al. Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction [J]. Energy Fuels, 2000, 14: 1232-1239.
    [62] FILIPPIS P D, SCARSELLA M. Oxidative Desulfurization, Oxidation Reactivity of Sulfur Compounds in Different Organic Matrixes [J]. Energy Fuels, 2003, 17:1452-1455.
    [63] LEVY R E. Proceedings of European Refinery Technology Conference (ERTC). 7th Annual Meeting [C]. Paris, 2002, 1.
    [64] 孔令艳,李钢等.液体燃料催化氧化脱硫[J].化学通报,2004,3:178-184.
    [65] COLLINS F M, LUCY A R, et al. Oxidative desulphurisation of oils via hydrogen peroxide and heteropolyanion catalysis [J]. J. Mol. Catal. A., 1997, 117:397-403.
    [66] YAZU K, YAMAMOTO Y, et al. Oxidation of Dibenzothiophenes in an Organic Biphasic System and Its Application to Oxidative Desulfurization of Light Oil [J]. Energy Fuels, 2001, 15(6): 1535-1536.
    [67] LI C, JIANG Z X, et al. Ultra-Deep Desulfurization of Diesel, Oxidation with a Recoverable Catalyst Assembled in Emulsion [J]. Chem. Eur. J., 2004, 10: 2277-2280.
    [68] HULEA V, MOREAU P. The solvent effect in the sulfoxidation of thioethers by hydrogen peroxide using Ti-containing zeolites as catalysts [J]. J. Mole. Catal. A., 1996, 113: 499-505.
    [69] HULEA V. FAJULA F, et al. Mild Oxidation with H_2O_2 over Ti-Containing Molecular Sieves—A very Efficient Method for Removing Aromatic Sulfur Compounds from Fuels [J]. J. Catal., 2001, 198: 179-186.
    [70] SHIRAISHI Y, HIRAI T, et al. Oxidative Desulfurization Process for Light Oil Using Titanium Silicate Molecular Sieve Catalysts [J]. J. Chem. Eng. Jp., 2002, 35(12): 1305-1311.
    [71] 孔令艳,李钢等.含钛分子筛催化氧化噻吩反应的研究[J].催化学报,2004,25(2):89-90.
    [72] JIANG Z X, LIU Y, et al. Adsorption of Dibenzothiophene on Modified Activated Carbons for Ultra-Deep Desulfurization of Fuel Oils [J]. Catal. Lett., 2003, 24(9): 649-650.
    [73] ONO Y, MATSUMURA T, et al. Formation of superoxide ion during the decomposition of hydrogen peroxide on supported metals [J]. J. Phys. Chem., 1977, 81 (14): 1307-1311.
    [74] YU G X, LU S X, et al. Oxidative Desuifurization of Diesel Fuels with Hydrogen Peroxide in the Presence of Activated Carbon and Formic Acid [J]. Energy Fuels, 2005, 19(2): 447-452.
    [75] YU G X, LU S X, et al. Diesel fuel desulfurization with hydrogen peroxide promoted by formic acid and catalyzed by activated carbon [J]. Carbon, 2005, 43: 2285-2294.
    [76] DESHPANDE A, BASSI A, et al. Ultrasound-Assisted, Base-Catalyzed Oxidation of 4, 6-Dimethyldibenzothiophene in a Biphasic Diesel-Acetonitrile System [J]. Energy Fuels, 2005, 19: 28-34.
    [77] 李英,赵得智等.在超声条件下过氧化氢—三氟乙酸对柴油氧化脱硫性能的研究[J].炼油技术与工程,2005,35(4):36-39.
    [78] SHIRAISHI Y, HARA H, et al. A Deep Desulfurization Process for Light Oil by Photosensitized Oxidation Using a Triplet Photosensitizer and Hydrogen Peroxide in an Oil/Water Two-Phase Liquid-Liquid Extraction System [J]. Ind. Eng. Chem. Res., 1999, 38: 1589-1595.
    [79] 唐晓东,税蕾蕾等.直馏柴油NOx-空气催化氧化脱硫研究[J].催化学报,2004,25(10): 789-792.
    [80] KUCKLING D, VO C D, et al. Preparation of Nanogels with Temperature-Responsive Core and pH-Responsive Arms by Photo-Cross-Linking [J]. Langmuir, 2002, 18: 4263-4269.
    [81] 杨菊香,房喻等.表面图案化CuS-P(NIPAM-co-AA)复合微球的制备和表征[J].科学通报,2004,49(18):1845-1850.
    [82] BAI C L, FANG Y, et al. Synthesis of Novel Metal Sulfide-Polymer Composite Microspheres Exhibiting Patterned Surface Structures [J]. Langmuir, 2004, 20(1): 263-265.
    [83] FANG Y, BAI C L, et al. Preparation of metal sulfide-polymer composite microspheres with patterned surface structures [J]. Chem. Commun., 2004, 20(1): 263-264.
    [84] ZHANG Y, FANG Y, et al. Preparation of spherical nanostructured poly-(methacrylic acid)/PbS composites by a microgel template method [J]. J. Colloid Interface Sci., 2004, 272(2): 321-325.
    [85] HORII Y, ONUKI H. Desulfurization and denitration of light oil by extraction [M]. US, 5494572, 1996-02-27.
    [86] 常勇慧,刘波等.分子印迹技术制备石油有机硫组分固相萃取剂的研究[J].离子交换与吸附,2003,19(5):450-456.
    [87] FUNAKOSHI, IZUMI. Process for recovering organic sulfur compounds from fuel oil: US, 5753102 [P]. 1998-05-19.
    [88] MURRAY C B, NORRIS D J H. Onuki. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. J. Am. Chem. Soc., 1993, 115(19): 8706-8715.
    [89] KUCKLING D, HOFFMANN J, et al. Photo cross-linkable poly(N-isopropylacrylamide) copolymers Ⅲ, micro-fabricated temperature responsive hydrogels [J]. polymer, 2003, 44(16): 4455-4462.
    [90] ANTONIETTI M, GOLTNER C. Superstructures of functional colloids, chemistry of the nanometer scale [J]. Angew. Chem. Int. Ed., 1997, 36: 910-928.
    [91] SHIM J W, KIM J W, et al. Zinc oxide/polymethylmethacrylate composite microspheres by in situ suspension polymerization and their morphological study [J]. Colloids Surf. A., 2002, 207(1-3): 105-111.
    [92] OZIN G A. Panoscopic materials, synthesis over "all" length scales [J]. Chem. Commun., 2000, 419-432.
    [93] LIANG Z J, SUSHA A, et al. Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof [J]. Chem. Mater., 2003, 15(16): 3176-3183.
    [94] GRAFT C., VAN B A. Metallodielectric colloidal core-shell particles for photonic applications [J]. Langmuir, 2002, 18(2): 524-534.
    [95] JI T, LIRTSMAN V G, et al. Preparation, characterization, and application of Au-shell/polystyrene beads and Au-shell/magnetic beads [J]. Adv. Mater., 2001, 13(16): 1253-1256.
    [96] CASSAGNEAU T., CARUSO F. Oligosilsesquioxanes as versatile building books for the preparation of self-assembled thin films [J]. J. Am. Chem. Soc., 2002, 124(27): 8172-8180.
    [97] MAYER A B R, CREBNER W, et al. Preparation of silver-latex composites [J]. J. Phys. Chem. B., 2000, 104(31): 7278-7285.
    [98] KIM S W, KIM M, et al. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions [J]. J. Am. Chem. Soc., 2002, 124(26): 7642-7643.
    [99] WONG M S, CHA J N, et al. Assembly of nanoparticles into hollow spheres using block copolypeptides [J]. Nano. Lett., 2002, 2(6): 583-587.
    [100] LI W H., STOVER D H. Monodisperse cross-linked core-shell polymer micros-pheres by precipitation polymerization [J]. Macromolecules, 2000, 33(12): 4354-4360.
    [101] FLEMING M S, MANDAL T K, et al. Nanosphere-microsphere assembly, methods for core-shell materials preparation [J]. Chem. Mater., 2001, 13(6): 2210-2216.
    [102] KIMURA K, KOHAMA S, et al. Preparation of poly(poxybenzoyl) microspheres having needlelike crystals on the surface [J]. Macromolecules, 2004, 37(4): 1463-1469.
    [103] GALE M T, ROSSI M, et al. Fabrication of continuous-relief micro optical elements by direct laser writing in photoresists [J]. Opt. Eng., 1994, 33: 3556-3566.
    [104] WU H K, ODOM T W, et al. Reduction photolithography using microlens arrays, applications in gray scale hotolithography [J]. Anal. Chem., 2002, 74(14): 3267-3273.
    [105] TIEN J, TERFORT A, et al. Microfabrication through electrostatic self-assembly [J]. Langmuir, 1997, 13(20): 5349-5355.
    [106] HAYWARD R C, SAVILLE D A, et al. Electrophoretic assembly of colloidal crystals with optically tunable micropatterns [J]. Nature, 2000, 404: 56-59.
    [107] KIM E, XIA Y, et al. Two-and three-dimensional crystallization of polymeric microspheres by micromolding in capillaries [J]. Adv. Mater., 1996, 8: 245-247.
    [108] JONES C D, SERPE M J, et al. Microlens formation in microgel/gold colloid composite materials via photothermal patterning [J]. J. Am. Chem. Soc., 2003, 125(18): 5292-5293.
    [109] 白超良,王姗等.微凝胶模板法制备PNIPAM/PbS有机-无机复合微球[J].陕西师范大学学报,2003,31(4):62-66.
    [110] 陈小华,陈传盛等.碳纳米管的表面修饰及其在水中的分散性能研究[J].湖南大学学报,2004,31(5):18-21.
    [111] SUN Y, WEI Z, et al. Epoxidation of olefins catalyzed by [π-C_5H_5NC_(16)H_(33)]3[PW_4O_(16)] with nolecular oxygen and a recyclable reductant 2-ethylanthrahydroquinone [J]. J. Mol. Catal. A., 2001, 166: 219-224.
    [112] 周美娟,魏长平等.磷钨杂多化合物催化H_2O_2氧化十八醇制十八酸[J].催化学报,1999,20(4):437-441.
    [113] 张乾,范晓东.丙烯酰胺反相微乳液体系的制备、聚合及表征[J].化学工业与工程,2001,18(6):316-340.
    [114] 王恩波,胡长文等.多酸化学导论[M].北京:化学工业出版社,1997,15-83.
    [115] US EPA, Regulatory announcement, heavy-duty engine and vehicle standards and highway diesel fuel sulfur control requirements [S]. December, 2000.
    [116] California Environmental Insider, Special Report: The Attack on Diesel [R]. July 31, 2000.
    [117] HAJI S., ERKEY C. Removal of Dibenzothiophene from Model Diesel by Adsorption on Carbon Aerogels for Fuel Cell Applications [J]. Ind. Eng. Chem. Res., 2003, 42: 6933-6937.
    [118] HERNANDEZ-MALDONADO A J., Yang R T. Desulfurization of Diesel Fuels by Adsorption via π-Complexation with Vapor-Phase Exchanged Cu(Ⅰ)-Y Zeolites [J]. J. Am. Chem. Soc., 2004, 126: 992-993.
    [119] LI W L, XING J M, et al. Feasibility Study on the Integration of Adsorption/Bioregeneration of π-Complexation Adsorbent for Desulfurization [J]. Ind. Eng. Chem. Res., 2006, 45: 2845-2849.
    [120] HUANG C, CHEN B, et al. Desulfurization of Gasoline by Extraction with New Ionic Liquids [J]. Energy Fuels, 2004, 18(6): 1862-1864.
    [121] ZHANG S, ZHANG Q, et al. Extractive Desulfurization and Denitroge-nation of Fuels Using Ionic Liquids [J]. Ind. Eng. Chem. Res., 2004, 43(2): 614-622.
    [122] MURATA S, MURATA K, et al. A Novel Oxidative Desulfurization System for Diesel Fuels with Molecular Oxygen in the Presence of Cobalt Catalysts and Aldehydes [J]. Energy Fuels, 2004, 18(1): 116-121.
    [123] KOMINTARACHAT C., TRAKARNPRUK W. Oxidative Desulfurization Using Polyoxometalates [J]. Ind. Eng. Chem. Res., 2006, 45(6): 1853-1856.
    [124] STEUDEL R. Mechanism for the Formation of Elemental Sulfur from Aqueous Sulfide in Chemical and Microbiological Desulfurization Processes [J]. Ind. Eng. Chem. Res., 1996, 35(4): 1417-1423.
    [125] GAO S, LI M, et al. Epoxidation of Propylene with Aqueous Hydrogen Peroxide on a Reaction-Controlled Phase-Transfer Catalyst [J]. Org. Process Res. Dev., 2004, 8:131-132.
    [126] YAMAGUCHI K, YOSHIDA C, et al. Peroxotungstate Immobilized on Ionic Liquid-Modified Silica as a Heterogeneous Epoxidation Catalyst with Hydrogen Peroxide [J]. J. Am.Chem. Soc, 2005,127: 530-531.
    [127] YADAV G D., BHAGAT R D. Synthesis of Methyl Phenyl Glyoxylate via Clean Oxidation of Methyl Mandelate over a Nanocatalyst Based on Heteropolyacid Supported on Clay [J]. Org. Process Res. Dev., 2004, 8: 879-882.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700