孤束核味觉区脑啡肽和γ-氨基丁酸对味觉信息的调制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
孤束核吻侧段(rostral nucleus of the solitary tract,rNST)与味觉信息的传递及整合有密切关系。rNST不仅接受来自于面、舌咽及迷走神经的味觉传入,而且与味觉调控关系密切的核团(臂旁核、下丘脑、丘脑、中央杏仁核、味觉皮质等)之间具有往返的纤维联系。rNST内含有多种神经递质和调质。其中,谷氨酸和P物质主要发挥兴奋性调节作用,而脑啡肽(enkephalin,ENK)和γ-氨基丁酸(γ-aminobutyric acid,GABA)主要对味觉感受神经元产生抑制作用。rNST内分布有密集的ENK阳性(ENK-ir)纤维和终末及大量的μ型和δ型阿片受体(μopioid receptor,MOR和δopioid receptor, DOR)。GABA阳性(GABA-ir)神经元也大量存在于rNST内。Malanga等发现GABA的活性受到阿片类物质的抑制,而Echo等则证实阿片与GABA存在功能上的协同作用,但其作用机制的形态学基础目前仍未见报道。且孤束核内的GABA能神经元是否呈MOR阳性,这些尚都缺乏直接的形态学证据。为此,本研究利用脑立体定位仪并应用光、电镜免疫组织化学方法,对大鼠摄食变化及rNST内ENK-ir与GABA-ir结构之间的相互联系以及MOR-ir神经元与ENK-ir终末的联系进行了观察。
     第一部分孤束核内微量注射脑啡肽和γ-氨基丁酸引起大鼠摄食改变的行为学研究
     目的
     利用脑立体定位仪向孤束核内微量注射脑啡肽和γ-氨基丁酸,观察大鼠摄食变化。
     方法
     1.测量基础摄食量SD大鼠22只。分为三组,GABA组10只、ENK组10只和对照组2只。均单笼饲养在消毒后的笼子中,自由进水、饮食,室温22±2℃,12 h光照/黑暗转换。连续喂养5日,以适应环境。并测量累积摄食量。
     2.外科手术
     2.1用2%戊巴比妥钠(45 mg/kg)腹腔麻醉后,将动物头部固定在立体定位仪上,根据Paxinos和Watson[Paxinos and Watson, 1999]图谱经颅骨在rNST将一带芯不锈钢导管(外径0.9mm)插入rNTS上方2.0 mm处(Bregma向尾段12.80mm,中线旁开1.2mm,Bregma点水平向下6mm。Bregma点是大鼠的前囟门位置)手术后,每天给予肌肉注射青霉素20万单位,连续四天,以防伤口和颅内感染。2.2脑内注射:动物轻微麻醉后,将一微量注射器针头(外径0.4 mm)经导管插入脑内,使其尖端在导管尖端下方2.0 mm处,以到达rNTS(Bregma向尾段12.80mm,中线旁开1.2mm,Bregma点水平向下8mm)。将0.2(每侧)μl的药物或生理盐水缓慢地注入rNTS。
     3.术后测量基础摄食量
     在注药后4小时、8小时、12小时按同一方法记录大鼠累积进食量。
     4.注射区的组织学定位
     实验结束时,在深度麻醉下,将动物用生理盐水和4%多聚甲醛液中相继经升主动脉进行灌注。取出脑并将其在4%多聚甲醛溶液中后固定1-2 d。用冰冻切片机切成大约60μm厚的切片,HE染色。然后将注射位点按组织学图谱进行组织学定位。
     结果
     1.注药部位检查:切片检查显示,rNST微量注射的部位(即针道的顶端)处于孤束核吻端内,双侧对称。
     2.GABA组10只,其中有1只出现了术后感染,弃去不用。从分别在注药后4小时、8小时、12小时测量摄食量,剩余9只与对照组相比,均出现摄食量降低。
     3.ENK组10只分别在注药后4小时、8小时、12小时测量摄食量,与对照组相比,均出现摄食量降低。
     结论
     分别向孤束核内微量注射GABA和ENK,均可引起大鼠基础摄食量降低,这主要是由于二者均可抑制孤束核内的味觉神经元活性,从而影响大鼠的基础摄食量。
     第二部分大鼠延髓孤束核吻侧段内脑啡肽阳性终末与γ-氨基丁酸阳性神经元联系的形态学研究
     目的
     观察大鼠孤束核吻侧段(rNTS)内脑啡肽阳性(ENK-ir)终末与γ-氨基丁酸阳性(GABA-ir)神经元之间的联系。
     方法
     1.组织材料的处理
     SD大鼠10只。将大鼠在腹腔内注射过量戊巴比妥钠(100 mg/kg)的深麻醉状态下开胸,经升主动脉插管,先用80 ml生理盐水冲净血液,再灌注以500 ml含4%多聚甲醛、0.05%戊二醛和2%苦味酸的0.1 mol/L磷酸缓冲液(PB,pH 7.4)。灌注完毕立即取脑并置于上述新鲜固定液中后固定4h,再移入含30%蔗糖的0.1 mol/L PB(4℃)内至沉底。将材料切块,分离出低位脑干并切片。
     2.免疫荧光染色法
     将光镜组切片置于含小鼠抗ENK(1:500)及兔抗GABA(1:5000)的反应液内(含5%正常山羊血清及0.5% Triton X-100)室温孵育24小时。之后浸入含Biotin标记的绵羊抗小鼠IgG(1:200)的反应液内于室温下孵育8小时。最后入含Texas Red标记的Avidin(1:200)及Fluorescein标记的驴抗兔IgG(1:200)反应液,室温下避光孵育6小时。将上述切片裱于载玻片上,使用SlowFade抗荧光衰减剂封片后于激光扫描共聚焦显微镜(Leica TCS-SP2)下观察。
     3.包埋前染色免疫电镜法
     电镜组切片在进行免疫组化染色之前,置于液氮中速冻数秒,放置前、后将切片浸于冰冻保护液中。将切片置于30%正常山羊血清中30 min,之后浸入含小鼠抗ENK(1:500)及兔抗GABA(1:5000)的反应液内(含5%正常山羊血清),室温孵育24 h。随后浸入含Biotin标记的绵羊抗小鼠IgG(1:200)及纳米金标记的山羊抗兔IgG的反应液内,室温下过夜。在1%戊二醛内固定10 min后将切片用银加强试剂盒进行银加强染色,染色前后使用双蒸水清洗。之后使用ABC复合物孵育2 h并进行常规二氨基联苯胺(DAB)反应。上述各步骤之间均用PBS彻底清洗。随后将经上述免疫组化双重染色的切片置入1%锇酸溶液固定1 h,在70%酒铀中浸泡4 h,梯度酒精及环氧丙烷脱水,Epon-812平板包埋。取rNTS位置的组织片做超薄切片,枸橼酸铅染色后于电镜(H-7500,Hitachi)下观察。
     结果
     1.在激光共聚焦扫描显微镜下
     1.1 rNTS内分布着红色标示的ENK-ir结构,以密集分布的终末为主,阳性纤维呈中等密度分布。
     1.2 rNTS内分布着绿色标示的GABA-ir结构,以散在分布且直径为10~15μm的小神经元为主,纤维和终末样结构则稀疏地分布于阳性胞体之间。
     1.3部分ENK-ir终末与GABA-ir胞体以及阴性的胞体(直径10~35μm)之间形成密切接触。
     2.在电镜下
     2.1 rNTS内存在许多ENK-ir轴突和终末。在ENK-ir终末内,可见DAB反应产物主要沉积于圆形清亮囊泡表面及线粒体等细胞器表面,在部分终末内还可见到阳性的大颗粒囊泡。
     2.2 rNTS内存在GABA-ir结构,可见数目及大小不等的黑色金颗粒散在分布于胞体、树突及少量轴突内。GABA-ir产物主要分布于粗面内质网及核糖体表面等结构。
     2.3电镜下可见到ENK-ir轴突终末形成以下突触关系:
     2.3.1与GABA-ir阳性胞体、树突及树突棘形成对称(62%)及非对称性(38%)轴-体(26%)及轴-树(74%)突触。
     2.3.2与GABA-ir阴性的胞体、树突及树突棘形成对称(73%)及非对称性(27%)轴-体(18%)及轴-树(82%)突触;
     2.3.3与GABA-ir阴性的轴突之间还可见到少量对称性轴-轴突触,ENK-ir轴突终末为突触前或后成分。
     结论
     rNTS内的ENK-ir终末可能通过抑制或增强GABA能神经元活性或者直接抑制味觉感受神经元活性的方式参与NTS内味觉信息的感受和调节。
     第三部分大鼠延髓孤束核吻侧段内GABA和MOR共存神经元及ENK阳性终末与MOR阳性神经元联系的实验研究
     目的
     观察延髓孤束核吻侧段(rNST)内是否存在γ-氨基丁酸(GABA)与阿片μ受体(MOR)共存的神经元,以及MOR阳性(MOR-ir)神经元与脑啡肽阳性(ENK-ir)终末的突触联系。
     方法
     1.组织材料的处理
     SD大鼠22只。将大鼠在腹腔内注射过量戊巴比妥钠(100 mg/kg)的深麻醉状态下灌注,取材。方法同上。
     2免疫荧光染色法
     方法同上。光镜组第一套切片用豚鼠抗MOR(1:500)及兔抗GABA(1:5000)代替原一抗,用Fluorescein标记的驴抗豚鼠IgG(1:500)和Cy3标记的绵羊抗兔IgG(1:500)代替原二抗。光镜组第二套切片用小鼠抗ENK(1:500)及豚鼠抗MOR(1:500)代替原一抗,用Biotin标记的绵羊抗小鼠IgG(1:200)及Texas Red标记的Avidin(1:200)及Fluorescein标记的驴抗豚鼠IgG(1:500)代替原二抗。余反应步骤同。
     3.包埋前染色免疫电镜法
     将电镜组第一套切片用小鼠抗ENK(1:500)及豚鼠抗MOR(1:500)代替原一抗,用Biotin标记的绵羊抗小鼠IgG(1:200)及纳米金标记的山羊抗豚鼠IgG代替原二抗。将电镜组第二套切片用豚鼠抗MOR(1:500)及兔抗GABA(1:5000)代替原一抗,用Biotin标记的绵羊抗兔IgG(1:200)及纳米金标记的山羊抗豚鼠IgG代替原二抗。余反应步骤同。
     结果
     1.在激光共聚焦扫描显微镜下
     1.1 GABA/MOR双标反应可见:可见rNTS内分布着GABA-ir、MOR-ir结构。GABA-ir(红色)和MOR-ir(绿色)结构均以散在分布且直径为10-15μm的小型神经元为主。可见同时呈GABA和MOR免疫反应阳性的神经元。
     1.2 ENK/MOR双标反应可见:可见rNTS内分布着ENK-ir(红色)终末与MOR-ir神经元(绿色)。ENK-ir终末与MOR-ir神经元的胞体及突起形成密切接触。
     2.在电镜下
     2.1 GABA/MOR双标反应可见:GABA与MOR共存于胞体及树突内,GABA阳性(GABA-ir)产物主要分布于粗面内质网及核糖体表面等结构,MOR阳性(MOR-ir)产物位于树突膜、线粒体膜、内质网膜等结构表面。GABA-ir与MOR-ir共存神经元与免疫反应阴性的终末形成对称性及非对称性突触,以对称性突触为主。
     2.2 ENK/MOR双标反应可见:可见到大量的ENK-ir轴突和终末和MOR-ir胞体和树突。在ENK-ir终末内,可见DAB反应产物主要沉积于圆形清亮囊泡表面及线粒体等细胞器表面,在部分终末内还可见到阳性的大颗粒囊泡。ENK-ir终末与MOR-ir神经元的胞体及树突形成以对称性为主的突触联系。部分MOR-ir产物存在于轴突末端,且与ENK-ir产物共存,并且与免疫反应阴性树突形成对称性突触。
     结论
     rNST内的GABA能神经元表达MOR,而ENK-ir终末可能通过与MOR结合调节GABA能神经元的活性,从而参与味觉信息的感受和调节。
The rostral portion of the nucleus of the solitary tract (rNST) is closely related to process and regulate effects on gustatory input. rNST receives visceral afferent fibers consisting of the primary afferent fibers from the facial, glossopharyngeal and vagus nerve, and gustatory information from NST is further converyed to the parabrachial nuclei,the hypothalamus, the thalamus, central nucleus of the amygdale and insular cortex.
     The NST is rich in neuroaction substance. Some experiments have demonstrated the excitatory influence of glutamate, SP and the inhibitory effect of GABA, ENK on cells in gustatory region of the NST.
     The NST is a region known to express GABA. Previous studies have shown an extensive network of ENK-immunoreactive fibers and terminal within the gustatory zone of NST,μ-opoid receptors andδ- opoid receptors have also shown intense expression in NST.
     Malanga proposed opoids inhibit GABA-mediated synaptic transmission .But Echo confirmed there is synergism between opoids and GABA. Both the modulatory effects of opioid peptides on GABA-induced inhibition and the studies that GABA-immunopositive nearons also exhibited MOR in NST are still deficient of morphological eviedence.
     According to these hints, the present study was principally designed to observe the change of food intake following administration of GABA and ENK into rNST rigion by stereotaxic apparatus and investigate the connection among ENK-ir terminals, GABA-ir neurons and MOR-ir nearons in NST by using immunoflouorescence histochemical double-staining and immuno-electronmicroscrope double- staining technique.
     Part 1 Alterations in food intake elicited by GABA and ENK administered into the rostral portion of the nucleus tractus solitarious of rats
     Objective
     To observed the change of food intake following administration of GABA and ENK into rNST rigion by stereotaxic apparatus.
     Methods
     1. Food intake measurements: 22 adults Sprague-Dawley rats weighing 200-300g were divided into 3 groups: There were 10 in GABA group, 10 in ENK group and 2 in control group. The rats were individually housed in wire-mesh cages and maintained on a 12-hour light/ 12- hour dark cycle with Durine rat chow and water available ad libitum.
     All animals were allowed at least 5 days to accommodate the environment, and calculate food intake.
     2. Surgery
     Each rat was pretreated with 2% pentobarbital sodium (45mg/kg.ip). The animal was mounted in a stereotaxic instrument with the use of a non-traumatic head holder. Bilateral stainless steel guide was aimed stereotaxically at the rNST region using the following coordinates: 12.80mm posteriorto the bregma suture, 1.2 mm lateral to either side of the sagittal suture and 6.0 mm from the top of the skull. Each rat was treated with Penicillin (20u/kg.i.m.) for 4 days. All animals were allowed at least 1 week to recover from stereotaxic surgery before behavioral testing began.
     GABA and ENK were dissolved in buffered physiological saline microinjections were administered bilaterally into the NST in 0.2 ul volumes over 30s. Physiological saline was initially used as a control injection for these experiments.
     3. Food intake measurements after surgery
     Cumulative intakes were assessed 4, 8 and 12h following the microinjection.
     4. Histology
     At the end of each experiment,males were deeply anesthetized with sodium pentobarbital (80mg/kg.i.p.) and perfused transcardially with 4% paraformadehyde in 0.1 M sodium phosphate-buffered saline (PBS,PH7.4).the brainstem were separated from the whole brain, post-fixed in the same fresh fixative for 1-2 days. The lower brainstem was cut into 20um thick frontal sections with a freezing microtome, and the sections were used in HE staining.
     Result
     1. Histological examination showed that the cannulae placements of all animals participating in the protocols were found to be within the region of the rNST.
     2. One rat of group GABA appeared postoperative infection, and was disused. GABA significantly decreased food intake.
     3. Rats of group ENK significantly decreased food intake.
     Conclusion
     Food intake was significantly decreased by local microinjection of GABA and ENK, because taste-responsive neurons of the NST were inhibited by GABA and ENK.
     Part 2 A morphological studies of conection between ENK immunoreactive terminals and GABA immunoreactive neurons in the rostral portion of the nucleus tractus solitarious of the rat
     Objective
     To observe the connections between enkephalin immunoreactive (ENK-ir) terminals andγ-aminobutyric acid immunoreactive (GABA-ir) neurons in the rostral portion of the nucleus tractus solitarious (rNTS) of the rat.
     Methods
     1. Materials and methods:
     10 adult Sprague-Dawley rats weighing 200-300g were used. All rats were performed under anesthesia by intraperitoned injection of sodium pentobarbital (80mg/kg,i.p.), and perfused transcardially with 500ml of 0.1 M phosphate butter (PB, PH 7.4) containing 4% (W/V) paraformaldehyde and 75%(V/V)–saturated picric acid. After the perfueion, the brains were removed, post-fixed in the same fresh fixative and placed in 0.1 M PB containing 30%(W/V) sucrose overnight at 4℃. The lower brainstems were cut into 20um thick frontal sections with a freezing microtome and cut into 50um thick frontal sections with a microslicer.
     2. Double-immunofluorescent labeling
     The sections were used for immunofluorescence histochemical double-staining for ENK/GABA: Mouse anti ENK (1:500) and rabbit anti GABA (1:5000) in PBS over night; biotinylated sheep anti-moouse IgG (1:200) in PBS for 8 hours; a mixture of Texas Red-labled avidin and Fluorescein- labled donkey anti-ribbit IgG in PBS for 6 hours; the sections were mounted onto clean glass slides, air-dried and cover slipped with PBS containing anti-fading reagent. All sections were observed with a confocal laser-scaning microscope.
     3. Electron microscopic immunohistochemical double-staining
     Sections were placed in 0.05 M PB containing 25% sucrose and 10% glycerol for 30 mintues for cryoprotection,followed by freeze-thawing with liquid nitrogen.Subsequently, the sections were incubated with 0.05M Tris-Hcl buffered-saline containing 30% normal goat serum for 30 mintues, and then processed for immunohistochemical double-staining, the immunogold-silver method for GABA was combined with the ABC method for ENK. The sections were incubation with first anti bodies for 24 hours.The sections incubated over night at room temperature with a mixture of coat anti-rabbit IgG conjugated to gold particle and biotinylated sheep anti-mouse IgG.
     The sections were postfixation with glutaraldehyde, silver enhancement with Silver kit, incubation with ABC Elite Kit, visualization of GABA and ENK-immunoreactivity with DAB, osmification ,counterstaining with uranyl acetate, flat-embeddingin Epon812 after dehydration and mounting onto silicon-coated glass slides.Then The sections were prepared for electron microscopy.
     Results
     1. Under the laser scanning confocal microscope
     1.1 There were dense ENK-ir fibers and terminals in the rNTS, they presented red.
     1.2 Some GABA-ir neurons were observed in the rNTS, they presented green.
     1.3 Close connections between ENK-ir terminals and GABA-ir cell bodies were also detected.
     2. By using the electron microscopic technique
     2.1 ENK-ir reaction products were mainly localized on the surface of round clear vesicles and dense-cored vesicles in the axon terminals.
     2.2 GABA-ir reaction products were mainly localized on the surface of rough endoplasmic reticulum and ribosome in dendrites.
     2.3 Synaptic connections between DAB staining ENK- immunoposi- tive terminals and nanogold labeling GABA- immunopositive or immunonegative dendrites or terminal in the rNTS:
     2.3.1 Symmetric (62%) and asymmetric synaptic (38%) connections were observed between ENK-immunopositive terminals and GABA-immunopositive cell bodies (26%) and dendrites (74%).
     2.3.2 Symmetric (73%) and asymmetric synaptic (27%) connections were observed between ENK-immunopositive terminals and GABA -imunonegative cell bodies (18%) and dendrites (82%).
     2.3.3 Slight symmetric synaptic connections were observed between ENK-ir terminals and GABA-imunonegative terminals, ENK-immunopositive terminals were presynaptic or postsynaptic components.
     Conclusion
     The ENK-ir terminals might take part in the transmission and regulation of the taste information in the rNTS through inhibiting, exciting the GABAergic neurons or inhibit directly the activity of neurons within the rNTS.
     Part 3 An experimental study on GABA / MOR co-existed neurons and the connections between ENK immunoreactive terminals and MOR immunoreactive neurons in the rostral portion of the nucleus tractus solitarious of the rat
     Objective
     To observe whetherγ-aminobutyric aicd (GABA) andμopioid receptor (MOR) co-exist in neurons of the rostral segment of the nucleus tractus solitarious (rNTS) in the rat, and the connections between Enkephalin immunoreactive (ENK-ir) terminals and MOR immunoreactive (MOR-ir) neurons.
     Methods
     1. Materials and methods
     All rats were performed under anesthesia by intraperitoned injection of sodium pentobarbital (80mg/kg, i.p.), and transcardially perfused.It was same with the above-mentioned method.
     2. Double-immunofluorescent labeling
     The sections were used for immunofluorescence histochemical double-staining for MOR/GABA: It was same with the above-mentioned method. Guinea pig anti MOR (1:500) and rabbit anti GABA (1:5000) replace virgin first anti bodies. Cy3-labled donkey anti- guinea pig IgG(1:500) And Fluorescein- labled sheep anti-ribbit IgG(1:500) replace virgin second anti bodies.
     The sections were used for immunofluorescence histochemical double-staining for MOR/ENK: It was same with the above-mentioned method. Mouse anti ENK (1:500) and Guinea pig anti MOR (1:500) replaced virgin first anti bodies. Biotinylated sheep anti-mouse IgG (1:200), Texas Red-labled avidin (1:200), Fluorescein-labled donkey anti-guinea pig IgG (1:500) replaced virgin second anti bodies.
     3. Electron microscopic immunohistochemical double-staining
     The sections were used for Electron microscopic immunohisto-chemical double-stainingfor MOR/GABA: It was same with the above-mentioned method. Guinea pig anti MOR (1:500) and rabbit anti GABA (1:5000) replace virgin first anti bodies. Biotinylated sheep anti-rabbit IgG and gold particle-labled coat anti-guinea pig IgG replaced virgin second anti bodies.
     The sections were used for immunofluorescence histochemical double-staining for MOR/ENK: It was same with the above-mentioned method. Mouse anti ENK (1:500) and Guinea pig anti MOR (1:500) replaced virgin first anti bodies. Biotinylated sheep anti-mouse IgG and gold particle-labled coat anti-guinea pig IgG eplaced virgin second anti bodies.
     Results
     1. Under laser scanning confocal microscope
     1.1 The sections were used for immunofluorescence histochemical double-staining for MOR/GABA: Some GABA-ir neurons (red) and MOR-ir neurons (green) were observed in the rNTS; GABA/MOR co-existed neurons were also observed, and they were small-sized neurons.
     1.2 The sections were used for immunofluorescence histochemical double-staining for MOR/ENK: There were dense ENK-ir fibers and terminals in the rNTS, they presented red; Close connections between ENK-ir terminals and MOR-ir cell bodies or dendrites were also detected.
     2. By using the electron microscopic technique
     2.1 The sections were used for Electron microscopic immunohisto- chemical double-stainingfor MOR/GABA : GABA and MOR co-exist in cell body and dendrites, GABA-ir reaction products were mainly localized on the surface of rough endoplasmic reticulum and ribosome in dendrites, MOR-ir reaction products were mainly localized on the membrane of dendrites and mitochondria, and GABA and MOR co-existed neurons formed symmetric synaptic(mainly) and asymmetric synaptic connections with the imunonegative terminals.
     2.2 The sections were used for immunofluorescence histochemical double-staining for MOR/ENK: ENK-ir reaction products were mainly localized on the surface of round clear vesicles and dense-cored vesicles in the axon terminals; ENK-ir terminals formed symmetric synaptic (mainly) and asymmetric synaptic connections with MOR-ir cell bodies and dendrites; Slight MOR-ir reaction products were localized in the axon terminal, ENK-ir and MOR-ir reaction products co-existed,and formed symmetric synaptic connections with the imunonegative dendrite.
     Conclusion
     These results indicate that ENK might have regulatory effects on GABAergic neurons in rNTS by bonding with MOR.
引文
1 Kalia M, Mesulma MM. Brainstem projection of sensory and motor component of the vagus complex in the cat. I. The cervical vagus and nodose ganglion. Comp Neurol, 1980, 193:453~465
    2 Kalia M, Mesulma MM. Brain stem projection of sensory and motor component of the vagus complex in the cat. Comp Neurol, 1980, 193:467~508
    3 Cho YK, Li CS, Smith DV. Gustatory projections from the ster.Chem Senses, 2002, 27:81~90
    4 Smith DV, Li CS, Davis BJ. Excitatory and inhibitory modulation of taste responses in the hamster brainstem. Ann N Y Acad Sci,1998;855:450~ 456
    5 Shimura T, Grigson PS, Norgren R. Brainstem lesions and gustatory function. Behav Neurosci, 1997, 111:155~168
    6 Smith DV, Li C. Tonic GABAergic inhibition of taste-responsive nucleus of the solitiry tract . Chem Senses, 1998, 23:159~169
    7 Smith DV, Liu H, Vogt MB. Natual coding of aversive and appetitive gustaory stimuli:Interactions in the hamster brain stem. P siol Behav,1994;56:1189~1196
    8 Smith DV, Li CS. GABA-mediated corticofugal inhibition of taste responses in the neurons in the nucleus of the solitary tract. Brain Res, 2000, 858:408~415
    9 RM Bradley, MS King, L Wang, X Shu. Neurotransmitter and neuromodulator activity in the gustatory zone of the nucleus tractus solitarius, Chem. Senses 21, 1996:377~385
    10 BJ Davis, GD Burd, F Macrides, Localization of methionine- enkephalin, substance P, and somatostatin immunoreactivities in the main olfactory bulb of the hamster, J. Comp. Neurol. 2004 ;1982: 377~383
    11 CM Kotz, CJ Billington, AS Levine, Opioids in the nucleus of the solitary tract are involved in feeding in the rat, Am. J. Physiol , 1997,272:R1028~1032
    12 VP Bakshi, AE Kelley, Feeding induced by opioid stimulation of the ventral striatum: role of opioid receptor subtypes, J. Pharmacol.Exp, 1993, 265:1253~1260
    13 C Bishop, PJ Currie, DV Coscina, Effects of three neurochemical stimuli on delayed feeding and energy metabolism, Brain Res. 2000,865: 139~147
    14 CM Kotz, MJ Glass, AS Levine, CJ Billington, Regional effect of naltrexone in the nucleus of the solitary tract in blockade ofNPY-induced feeding, Am. J. Physiol. 2000, 278:R499~503
    1 Beckstead RM, Norgren R. An autoradiographic examination of the central distribution of the trigeminal, facial, glossopharyngeal and vagal nerves in the monkey. J Comp Neurol, 1979, 184:455~472
    2 Cho YK, Li CS, Smith DV. Taste responses of neurons of the hamster solitary nucleus are enhanced by lateral hypothalamic stimulation. J Neurophysiol, 2002, 87:1981~1992
    3 Di Lorenzo PM, Monroe S. Corticofugal influence on taste responses in the nucleus of the solitary tract in the rat. J Neurophysiol, 1995, 74:258~272
    4 Moga MM, Herbert H, Hurley KM, et al. Organization of cortical, basal forebrain, and hypothalamic afferents to the parabrachial nucleus in the rat. J Comp Neurol, 1990, 295:624~661
    5 Bradley RM, King MS, Wang L, et al. Neurotransmitter and neuromodulator activity in the gustatory zone of the nucleus tractus solitarius. Chem Senses, 1996, 21:377~385
    6 Smith DV, Li CS. Tonic GABAergic inhibition of taste-responsive neurons in the nucleus of the solitary tract. Chem Senses, 1998, 23:159~169
    7 Uteshev VV, Smith DV. Cholinergic modulation of neurons in the gustatory region of the nucleus of the solitary trac. Brain Res, 2006, 1084:38~53
    8 Li CS, Davis BJ, Smith DV. Opioid modulation of taste responses in the nucleus of the solitary tract. Brain Res, 2003, 965:21~34
    9 Malanga CJ, Meng J, Fleming WW, et al. Chronic morphine treatment of guinea pigs induces nonspecific sensitivity changes in the nucleus tractus solitarius in vitro. J Pharmacol Exp Ther, 1997, 280:16~23
    10 Echo JA, Lamonte N, Ackerman TF, et al. Alterations in food intake elicited by GABA and opioid agonists and antagonists administered into the ventral tegmental area region of rats. Physiol Behav, 2002, 76:107~116
    11 Ottersen OP. Glutamate and GABA containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique.CompNeurol,1999,229:374~392
    12 Davis BJ, Kream RM. Distribution of tachykinin- and opioid- and forebrain expressing neurons in the hamster solitary nucleus: an immuno- and in situ hybridization histochemical study. Brain Res, 1993, 616:6-16
    13 Leonard NL, Renehan WE, Schweitzer L. Structure and function of gustatory neurons in the nucleus of the solitary tract. Neuroscience, 1999, 92:151~162
    14 Cheng LW, Rao ZR, Shi JW. The distribution of Enkephalin-like immunoreactive structures and the synaptic connection of the axon terminals in the nucleus tractus solitarious of the rat. Chin J Histochem Cytochem, 1994, 3:107~111 陈良为,饶志仁,施际武. 大鼠孤束核内脑啡肽样免疫反应阳性结构及其轴突终末的突触联系. 中国组织化学与细胞化学杂志, 1994, 3:107~111
    15 Znamensky V, Echo JA, Lamonte N, et al. GABA receptor subtype antagonists differentially alter opioid induced feeding in the shell region of the nucleus accumbens. Brain Res, 2001, 906:84~91
    16 Malanga CJ, Meng J, Fleming WW, et al. Chronic morphine treatment of guinea pigs induces nonspecific sensitivity changes in the nucleus tractus solitarius in vitro. J Pharmacol Exp Ther, 1997, 280:16~23
    17 Heinricher, MM and HJ Kaplan (1991) GABA-mediated inhibition in rostral ventromedial medulla: Role in nociceptive modulation in the lightlyanesthetized rat. Pain2000, 47:105~113
    18 Kalyuzhny AE, U Arvidsson, W Wu, MW Wessendorf. μ-Opioid and d-opioid receptors are expressed in brainstem antinocecptivecircuits: Studies using immunocytochemistry and retrograde tracttracing. Neurosci, 2001, 16:6490~6503
    1 Li CS, Davis BJ, Smith DV. Opioid modulation of taste responses in the nucleus of the solitary tract. Brain Res, 2003, 965:21~34
    2 Grud TJ,Henderson G. Gyeine and GABA receptor-mediated synaptic transmission in rat Substantia mgelatinosa: inhibition by opiod and GABA agonists. J Physiol, 1998, 507:473~483
    3 Malanga CJ, Meng J, Fleming WW, et al. Chronic morphine treatment of guinea pigs induces nonspecific sensitivity changes in the nucleus tractus solitarius in vitro. J Pharmacol Exp Ther, 1997, 280:16~23
    4 Beckstead RM, Norgren R. An autoradiographic examination of the central distribution of the trigeminal, facial, glossopharyngeal and vagal nerves in the monkey. J Comp Neurol, 1979, 184:455~472
    5 Lupica CR. Delta and mu enkephalins inhibit spontaneous GABAmediated IPSCs via a cyclic AMP-independent mechanism in the rat hippocampus. J. Neurosci, 1999, 15:737~749
    6 Chen Y, A Mestek, J Liu, JA Hurley, L Yu. Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol. Pharmacol, 2000, 44:8–12
    7 Chieng B, MJ Christie. Inhibition by opioids acting on mu-receptors of GABAergic and glutamatergic postsynaptic potentials in single rat periaqueductal gray neurons in vitro. Br. J. Pharmacol, 1998, 113:303–309
    8 Liu Ling, Yan YL, Zhao JP. A morphological study of connections between Enkephalin immunoreactive terminals and γ-aminobutyric acid immunoreactive neurons in the rostral portion of the nucleus tractus solitarious of the rat ACTA ANATOMICA SINICA, 2007, 38:158~162 刘玲, 闫蕴力, 赵金平. 大鼠延髓孤束核吻侧段内脑啡肽阳性终末与 γ-氨基丁酸阳性神经元联系的形态学研究. 解剖学报, 2007, 38:158~162
    9 Kemp T, RC Spike, C Watt. The mu-opioid receptor (MOR1) is mainly restricted to neurons that do not contain GABA or glycine in the superficial dorsal horn of the rat spinal cord. Neuroscience, 1999, 75:1231~1238
    10 Kalyuzhny AE, U Arvidsson, W Wu. μ-Opioid and d-opioid receptors are expressed in brainstem antinocecptivecircuits: Studies using immunocytochemistry and retrograde tracttracing. Neurosci, 2002, 16:6490~6503
    11 Caudle M, Chavkin. Mu opioid receptor activation reduces inhibitorypostsynaptic potentials in hippocampal CA3 pyramidal cells of rat and guinea pig. Pharmacol. Exp. Ther. 2001, 252:1361~1369
    12 Cho YK, Li CS, Smith DV. Taste responses of neurons of the hamster solitary nucleus are enhanced by lateral hypothalamic stimulation. J Neurophysiol, 2002, 87:1981~1992
    13 Smith AP, Luo H. Opiate receptors and opiate peptides.In: Han JS, Ed. Shenjing Kexue Yuanli (Essentials of neuroscience). Beijing: Beijing Medical University and China U nion Medical University Combination Press, 1993: 458~470.
    14 Chen J, Koyama N, Kaneko T, Mizuno N. Distribution ofμopioid receptor like immuno reactivity in the brain of the Japanese monkey (macaca fuscata). I. Diencephalon and brain stem. Shenjing Jiepaoxue Za zhi (Chin J Neuroanat), 1998:14: 101~110
    15 Lu CL. Basics and Clinic of opioid peptide, ShangHai: The Twice Military Medical University Press, 2000:105~106 路长林 阿片肽基础与临床,上海:第二军医大学出版社,2000:105~106
    16 Kemp T, RC Spike, C Watt, The mu-opioid receptor (MOR1) is mainly restricted to neurons that do not contain GABA or glycine in the superficial dorsal horn of the rat spinal cord. Neuroscience, 2001, 75:1231~1238
    17 Simantov M, Sessle BJ, Henry JL. Efferents of enkephalin and 5-htdroxytryptamine on solitary trace neurons involved in respiratory and respiratory reflexes. Brain Res, 1985, 327:221~224
    18 Minami, T. Onogi, T. Toya, Y. Katao.Molecular cloning and in situ hybridization histochemistry for rat mu-opioid receptor, Neurosci Res, 1994, 18:315~322
    19 Jessell TM, Lversen LL.opiate analgesics inhibit substance P release from rat trigeminal nucleus. Nature (Lond), 1977, 268:245~247
    20 Uhl GR,et al. Immunohistochemical mapping of enkephalin containing cell bodies,fibers and nerve terminals in the brain stem of the rat.Brain Res 1979,142:75~75
    1 Kalia M, Mesulma MM. Brain stem projection of sensory and motor component of the vagus complex in the cat. The cervical vagus and nodose ganglion. J Comp Neurol, 1980, 193:453~465
    2 Kalia M, Mesulma MM. Brain stem projection of sensory and motor component of the vagus complex in the cat. J Comp Neurol, 1980, 193:467~508
    3 Herbert H, Moga MM, Saper CB. Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol, 1990, 293:540~580
    4 Kalia M,Mesulma MM. Brainstem projection of sensory and motorcomponents of the vagus complex in the cat. J ComP Neuor, 1980, 193:453~465
    5 Kalia M,Mesulma MM. Brainstem projection of sensory and motor components of the vagus complex in the cat.J ComP Neuorl, 1980, 193:467~508
    6 Hebrert H, Moga MM, Saper CB.Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular of formation in the cat.J ComP Neuorl,1990,293:540~580
    7 Contreasr RJ, Beekstead RM, NorgrenR. The central projections of the trigeminal,facial,glossopharyngeal and vagus nerves. J Auton Nerv Syst, 1982, 6:303~322
    8 Hayakawa T,Takanaga A,Maeda S. Subnuclear distribution of afferents from the oral,pharyngeal and laryngeal regions in the nucleus tractus solitary of the cat.Neurosei Res,2001,39:221~232
    9 Altsehuler SM,Boa XM,Bieger D. Viscerotopic Representation of the upper alimentary tract in the cat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts.J ComP Neurol,1989,283:248~268
    10 Maehdeo BH, Muaad H, Chinaea Junior DA.Autonomicprocessing of the cardiovascular reflexes in the nucleus tracts solitarii. Braz J Med Res, 1997, 30:533~543
    11 Li YQ,Zeng SL,Roa ZR,Shi JW.Serotonin-,substance P-and tyrosinehydroxylase-like immunoreactive neurons Projecting from the midbrainperiaqueductal gray to the nucleus tracts solitarii in the cat. Neurosci Lett, 1992, 134:175~179
    12 党小荣,张文斌. 大鼠脑干5一轻色胺能和儿茶酚胺能神经元向孤束核的投射一荧光金标记结合免疫荧光技术研究.神经解剖学杂志,1999,15:343~346
    13 Carter DA, Lighmtan SL.Cardio-respiratory actions of substance P, TRH and 5-HT in the nucleus tracts solitarius of cats: evidence of functional interactions of neuropeptides and amine neurotransmitters. Neuropeptides, 1985, 6:425~436
    14 Buamna NM,Wnag D,Lusehei ES,Talmna WT. Eeffct of substance P injection into the nucleus tracts solitarius of rats on cricothyroid and thyroarytenoid motor activity and cardiovascular and respiratory sysetms. Ann Otol Rhinol Layrngol, 2002, 111:875~883
    15 Bbaie T, Ciriello J. Medullary and spinal cord projeetions from cardiovaseular responsive sites in the rostral ventromedial medulla. J ComP Neurol, 2004, 469:391~412
    16 Ma WL,Zhnag WB,Feng G,Cai YL.Calbindin D28k一containing neurons in the paratrigeminal nucleus receive convergent nociceptive information and projects to nucleus of the solitary tract in rat. Brain Res,2005,1038: 132~140
    17 Menetrey D, Basbuam Al. Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate of rosmatoviceral and visceorvisceral reflex activation. J ComP Nuerol, 1987, 255:439~450
    18 TerHosrt GJ, deBoer P, Jiten PG,vnaWilligen DJ. Ascending projections from the solitary tract nucleus to the hypothalamus. A Phaseolus vulgaris lectin tracting study in the rat.Neuorseienee, 1989, 31:785~797
    19 VnaBoeksaetle EJ, PeoPIesJ, TelegnaP. Eefferent projections of the nucleus of the solitary tract to peri一locus coeruleus dendrites in rat brain: evidence of a monosynaptic pathway.J ComP Neurol, 1999, 412:410~428
    20 Agassnadina K,Fazna VP,Adnaina V,Talman WT.Direct projections from the cardiovascular nucleus tractus solitarii to pontine perganglionia parasympathetic neurons:a link to cerebrovascular regulation. J Comp Neuro, 2002, 452:242~254
    21 Talman WT, Dargon DN, Dhta H. Baroreflexes influence autoregulation of cerebral blood flow during hypertension. Am J Physiol, 1994, 267: 1183~1189
    22 OkumaY, OmiY.Central cholingernic descending pathway to the dorsal motor nucleus of the vagus in regulation of gastric functions. J PnJ Phamraeol, 1986, 41:373~379
    23 Smith OA,DeVito JL.Central neural integration of the control ofautonomic responses associated with emotion.Annu Rev Neuorsei, 1984, 7:43~65
    24 pertov T, Krukoff TL, Jhmanadas HJ. Branching projections of cat echolmainergie brainstem neurons to the paraventricular hypothalamic nucleus and the central nucleus of the amrygdale in the rat.Brain Res,1993,609:81~92
    25 Riehe D,DePommeyr J,Menetrey D.Neuorpeptides and catecholmainesin Efferent projections of the nuelei of the solitary tract in the rat.JComP Neurol,1990,293:399~424
    26 Li YQ, Rao ZR, Shi JW. Substnace P-like immunoreaetive neurons in the nucleus tracuts solitarii of the rat send the irxaons to the nucleus accumbens.Neurosei Lett, 1990, 120:194~196
    27 Amend tK, Czaehurski J, Dembowsky K, SellerH. Bulbospinal projections to the intemedio lateral celleolumn: a neuronanotomical study. J Auton Nerv Syst, 1979, l1:103~107
    28 Gamboa-Esteves FO, McWilliam PN, Batten TF. Substance P (NK1) and stomatostain (sstzaA) receptor immunoreactivity in NTS-projecting rat dorsal horn neurons activated by nociceptive input. J Chem Neuroanat, 2004, 27:251~266
    29 张文斌,李继硕,李惠民.三叉神经躯体传入成分向孤束核的间接投射途径 一 HRP 即 跨 节 和 逆 行 追 踪 技 术 的 光 镜 和 电 镜 研 究 . 解 剖 学报,1992,23:253~259
    30 ImbeH, DubnerR, RenK.Masseteric inflammation-induced Fos protein expression in the trigeminal interpolaris/caudal is transition zone: Contribution of somatosensory-vagal-adrenal integration. BrainRes, 1999, 845:165~175
    31 Cho YK, Li CS,Smith DV.Gustatory projections from the nucleus of the solitary tract to the parabrachial nuclei in the hamster.Chem Senses, 2OO2, 27:81~90
    32 Smith DV,Li CS,Davis BJ.Excitatory and inhibitory modulation of taste responses in the hamster brainstem .Ann N Y AcadSci,1998,855:450~ 456
    33 Shimura T,Grigson PS,Norgren R.Brainstem lesions and gus-tatory function.The role of the nucleus of the solitary tract during a brief intake test in rats.Behav Neurosci,1997,111:155~168
    34 Macdonald RL, Olsen RW.GABAA receptor channels.Annu R EV Neurosci, 1994, 17:569~ 602
    35 Misgeld U, Bijak M, arolimek W.A physiological role for GABAB and the effects of baclofen in the mammalian central nevrous system. Prog Neurobiol, 1995, 46:423~462
    36 Johnston GA.GABAc receptors: Relatively simple transmitter gatedion channels.Trends Pharmacol Sci, 1996, 17:319~323
    37 Wassemrna AM, Ferreiar MJ, Shaibzdaa N, Hemnadez YM,Gillis RA. GABA-mediated neurotransmission in the ventrolateral NTS play a role in respiratory regulation in the rat. AmJ Physiol Regul Integr ComP Physiol, 2002, 283:R1423~1441
    38 Wang L, Bradley RM.Influence of GABA on neurons of the gustatory zone of the rat nucleus of the solitary tract .Brain Res, 1993, 616:144~153
    39 Wang L,Bradley RM.In vitro study of afferent synaptic transmission in the rosrtal gustatory zone of the rat nucleus of the solitary tract .Brain Res,1995,702:188~198
    40 Liu H,Behbehani MM,Smith DV.The influence of GABA on cells in the gustatory region of the hamster solitary nucleus .Chem Senses,1993,18:285~305.
    41 Smith DV, Li C.Tonic GABAergic inhibition of taste responsive nucleus of the solitiry tract .Chem Senses, 1998, 23:159~169
    42 Smith DV, Liu H, Vogt MB.Natual coding of aversive and appetitive gustaory stimuli: Interactions in the hamster brain stem.P siol Behav, 994, 6:1189~1196
    43 Smith DV, Li CS.GABA-mediated corticofugal inhibition of taste -responses in the neurons in the nucleus of the solitary tract.Brain Res, 2000, 858:408~415
    44 Lasiter PS,Kachele DL.Organization of GABA and GABA-transaminase containing neurons in the gustatory zone of the nucleus of the solitary tract.Brain Res Bull,1998,21:623~636
    45 Wetherton BM,Leonard NL,Renehan WE,Schweitzer L.Structure and function of gustatory neurons in the nucleus of the solitary tract. Classification of terminals and GABAergic synapses using postembedding immunoelectronmicroscopy. Biotech Histochem, 1998, 98:164~173
    46 Bradley RM.Neurotransmitter and neuromodulator activity in the gustatory zone of the nucleus tractus solitarius. Hem Senses, 1996, 2:377~385.
    47 Beart PM ,Summers RJ,Stephenson JA,Christie MJ.Exeitatory amino acid projects to the nucleus of the solitary tract in the rat:A retrograde transport study utilizing D一[H]aspartate a GABA.J Automom Nerv Sys, 1994, 50:109~122
    48 Torrealba F,Muller C.Glutamate immunoreactivity of insularcortex afferents to the nucleus solitarius in the rat:A quantita tive electron microscopic study .Neuroscience, 1996, 71:77~87
    49 Leonard NL,Renehan WE,Schweizer L.Structure and function of gustatory neurons in the nucleus of the solitary tract.The morphology and synaptology of GABA-immunoreactive terminals.Neuroscience, 1999,92:151~162
    50 Kelly I, Rothstein I, Grossman SP.GABA and hypothalamic feeding systems.Topographic analysis of the effects of microiniections of muscimo1.PhysiofBehav, 979, 3:1123~1134
    51 Rno TL,Kokare DM,Sarkar S,Khisti RT,Chopde CT.Subhedar GABAergic agents prevent alphamelan ocyte stimulating hormone in duced anxietyn and an orexia in rats.Pharmacol Biochem Behav ,2003,76:417~423
    52 Bowery NG, Hudson AL, Price GW.GABAA and GABAB receptor site distribution in the rat central nervous system.Neuroscience, 1987, 14:365~383
    53 Kelly J,Grossman SP.GABA and hypothalamic feding systems.II.A comparison of GABA,glycine and actylcholine agonists and theirantagonists.Pharmacol Biochem Behav ,1979,11:647~652
    54 Tsuiii S, Bray GA.GABA-related feeding control in genetically obese rats.Brain Res, 1991, 540:48~54
    55 Alheid GF, Heimer L.New perspectives in basal forebrain organization of special relevance for neuropsvchiatric disordersthe striatopaUidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience, 1988, 27:1~39
    56 Sutin I,McBride RL,Thalmann RH,Van Atta EL.Organization of some brainstem and limbic connections of the hypothalam us.Pharmacol Biochem Behav, 1975,3:49~59
    57 Minano FJ Meneres Sancho MS Sancibrian M Salinas P,M yers RD.GABAA receptors in the amygdala:role in feeding in fasted and satiated rats.Brain Res, 1992,586:104~110
    58 Smith DV, Li C.Tonic GABAergic inhibition of taste responsive nucleus of the solitiry tract E.Chem Senses, 1998, 23:159~169
    59 Moga MM, Herbert H, et a1.Organization of cortical, basal Forebrain and hypothalamic afferentsto the parabrachial nuleus in the rat. Neurol, 1990, 295:624~661
    60 Grabauskas G, Bradley RM.Posmatal development of inhibitory synaptic transmission in the rostra1 nucleus of the solitary tract .J Neurophysiol, 2001, 85:2203~2212
    61 DiLorenzo PM, Monroe S.Corticofugal influence on taste responses in the nucleus of the solitary tract in the rat .J Neurophysiol, 1995, 74:258~272
    62 Smith DV, Li CS.GABA-mediated corticofugal inhibition of taste responses in the neurons in the nucleus of the solitary tract.Brain Res, 2000, 858:408~415
    63 Liu H, Behbehani MM, Smith DV.The influence of GABA on cells in the gustatory region of the hamster solitary nucleus .Chem Senses, 1993, 18:285~305
    64 Leonard NL, Renehan WE, Schweizer L.Structure and function of gustatory neurons in the nucleus of the solitary tract.1V The morphologyand synaptology of GABA-immunoreactive terminals.Neuroscience, 1999, 92:151~162
    65 Kandov Y,Israel Y,Kest A,Dostova I.GABA receptor subtype antagonists in the nucleus accum bens shell and ventral tegm ental area differentiallv alter feeding responses induced by deprivation , glucoprivation and lipoprivation in rats.Brain Res, 2006, 1082:86~97
    66 方秀斌 内阿片肽 方秀斌主编.神经肽与神经营养因子.北京:人民卫生出版社,2002,23~41
    67 金文桥 内阿片肽 邹冈主编.基础神经药理学(第二版).北京:科学出版社,1999,288~322
    68 王 蕾 , 欧 可 群 . 内 源 性 阿 片 肽 的 研 究 进 展 . 四 川 解 剖 学 杂 志 , 2000,8:227~230
    69 KempT, RC Spike, C Watt. The mu-opioid receptor (MOR1) is mainly restricted to neurons that do not contain GABA or glycine in the superficial dorsal horn of the rat spinal cord. Neuroscience, 75:1231~1238
    70 Atweh S, Kuhar M. Autoradiographic localization of opiate receptor in rat brain spinal cord and lower madullar.Brain Res, 1977, 24:53~55
    71 Sessle BJ, Henry JL. Efferents of enkephalin and 5-htdroxytryptamine on solitary trace neurons involved in respiratory and respiratory reflexes. Brain Res, 1985, 327:221~224
    72 Mansour CA. Fox RC. Thompson H.Mu-opioid receptor mRNA expression in the rat CNS. Comparison Res, 2000, 858: 408~415
    73 Minami T, Onogi T. Toya Y. Molecular cloning and in situ hybridization histochemistry for rat mu-opioid receptor.Neurosci Res, 1994, 354:315~322
    74 董元祥,等. 大鼠孤束核迷走神经的初级传入纤维向孤束核投射的定位、定性研究. 神经解剖学杂志, 1989,5:241~243
    75 Jessell TM, Lversen LL.Opiate analgesics inhibit substance P release from rat trigeminal nucleus. Nature (Lond), 1977, 268:245~248
    76 Uhl GR,et al. Immunohistochemical mapping of enkephalin containing cell bodies,fibers and nerve terminals in the brain stem of the rat.Brain Res,1979,75:75~79
    77 Kotz MJ, Glass AS. Regional effect of naltrexone in the nucleus of the solitary tract in blockade of NPY-induced feeding, Am. J. Physiol, 278 2000, 278:499~503
    78 YK Cho, CS Li, DV Smith. Taste responses of neurons of the hamster solitary nucleus are enhanced by lateral hypothalamic stimulation, J. Neurophysiol, 2002, 87: 1981~1992
    79 CS Li, YK Cho. Taste responses of neurons in the hamster solitary nucleus are modulated by the central nucleus of the amygdale.J. Neurophysiol, 2003, 53: 731~734
    80 安珂,田玉科,杨辉,等. 人前脑啡肽原基因修饰的永生化大鼠星形胶质细胞株的构建. 中国疼痛医学杂志,2005 ,11:167~170
    81 Masciullo V, Ferrandina G, Pucci B, et al. p27kip1 expression isassociated with clinical outcome in advanced epithelial ovarian cancer: multivariate analysis. Clin Cancer Res, 2000, 6:4816~4822
    82 Jean A, Hurteau MD,Bernadette M,et al. Expression and subcelluar localization of the cyclin2 dependent kinase inhibitorp27kip1 in epithelial ovarian cancer. Gynecologi Oncology, 2001, 87:2982~2987
    83 Carrano AC, Eyean E, Hershko A,et al. Sip2 is required for Ubiquitin- mdeiated degradation of the CDK inhibitor p27.Wat Cell Biot,1999,1:193~199
    84 Daniel G, Rosen, Gong Y, t al. Subcellular localization of p27 expression predicts poor prognosis in human ovarian cancer.Clinican Cancer Research , 005,11:632~637
    85 Li Sui, YouY Dong ,Masayuki Ohno, et al. Implication of malignancu and prognosis of p27kip1 , cyclinE , and Cdk2 expression in epit helial ovarian tumors . Gynecologic Oncology, 2001, 3:56~63
    86 Li Sui, Masaaki Tokuda, Masayuki Ohno, t al. The concurrent expression of p27kip1 and CyclinD1 in epit helial ovarian tumors. Gynecologic Oncology, 1999, 73: 202~209
    87 Shigemasa K, Shiroyama Y, Sawasaki T, et al .Underexpression ofcyclin2dependent kinase inhibitor p27 is associated wit h poor prognosis in serous ovarian carcinomas. Int J Oncol, 2001, 8:953~958
    88 Mark Baekelandt, Rut h Holm, Claes G, et al. Lack of independent prognostic significance of p21 and p27 expression in advanced ovarian cancer: an immunohistochemical study. Clinical CancerResearch, 1999, 5:2848~2853
    89 Newcomb EW, Sosnow M,Demopoulos RI,et al. Expressionof the cell cycle inhibitor p27kip1 is a new prognostic marker associated with survival in epit helial ovarian tumors.Am JPat hol, 1999, 154:119~125
    90 Sui L, Dong Y, Watanabe Y, t al.Clinical significance of skp2 expression,alone and combined wit h J ab1 and p27 in epit helial ovarian tumors. Oncol Rep, 2006, 15:765~771
    91 Donna K, Grace S, Lees, et al. Expression of cyclinE in gynecologic malignancies.Gynecol Oncol , 1999 ,72:32~36
    92 高娜,王阿敬,杨渝珍,等. 阿片受体介导大鼠海马内脑啡肽对细胞免疫功能的调节.生理学报,1999 ,51:106~109
    93 Shan ZZ, Dai SM, Fang F, et al. Changes of central norepinephrine, beta2endorphin ,L- EU2enkephalin , peripheral arginine2vasopressin , and angiotensin II levels in acute and chronic phases of sino2aortic denervation in rats. J Cardiovasc Pharmacol, 2004, 43:234~241
    94 Will MJ, Franzblau EB, Kelley AE. Amygdale is critical for opioid-mediated binge eating of fat.Neuroreport, 2004, 15:1857~1860
    95 Khaim ova E, Kandov Y, Israel Y.Opioid receptor subtype antagonists differentiallv alter GABA agonist-induced feeding elicited from either the nucleus accumbe ns shell or yentral termental area reoils in rats.Brain Res, 2004, 26:284~294
    96 Echo JR,Lamonte N,Ackerman TF,Bodnar RJ,AIterations in food intake elicited by GABA and opioid agonists and antagonists administered into the ventral tegmental area region of rats.Physiol Behav 2002,76:107~116
    97 王 蕾 , 欧 可 群 . 内 源 性 阿 片 肽 的 研 究 进 展 . 四 川 解 剖 学 杂志,2000,8:227~230
    98 Ruda MA.Opiates and painpathways: demonstration of enkephalin synapses on dorsal horn projection neurons.Seienee, 1982, 215:1523~1525
    99 Ruda MA, Coffield J, DubnerR. Demonstration of postsynaptic opioid modulation of thalamic projection neurons by the combined techniques of retrograde horseradish peroxidase and Enkephalin immunocytochemistry. J Neurosei, 1984, 4:2117~2132
    100 Luo C,Kunanoto E,Furue H,etal.Nociceptin-induced outward current in substantia gelatinosa neurons of the adult rat spinal cord.Neuroseie nce,2001,108:323~330
    101 Jeftinija S.Enkephalins modulate excitatory synaptic transmission in the superficial dorsal horn by acting mu-opioid receptor sites. Brain Res, 1988, 460:260~268
    102 Yoshimura M, North RA. Substantia gelatinosa neurons hyperpolarized in vitro by enkephalin. Nature, 1983, 305:529~530
    103 Grudt TJ, Willians JT.kappa-opioid receptors also increase potassium conductance. Proc Natl Acad Sci USA, 1993, 90:11429~11432
    104 Rusin Kl, Randic M.Modulation of NMDA-induced currents by mu-opioid receptor agonist DAGO in acutely isolated rat spinal dorsal horn neurons. Neurosci Lett, 1991, 124:208~212
    105 Kolaj M, Randie M. Mu-opioid receptor-mediated reduction of Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-activated current indorsal horn neurons. Neurosci Lett, 1996, 204:133~137
    106 Randie M, Clleng Q, Kojie L.KaPPa-opioid receptor agonists: modulate exeitatory transmission in substantia gelatinosa neurons of the rat spinal cord. J Neurosei, 1995,15:6809~6826
    107 Chen L, Gu Y, Huang LY. The mechanism of action for the block of NMDA receptor channels by the opioid peptide dynorphin.J Neurosei, 1995, 15:4602~4611
    108 Todd AJ, Spike RC, Russell G, et al.Inmunohistochemical evidence that Met-enkephalin and GABA coexist in some neurons in rat dorsal horn.Brain Res, 1992, 584:149~156
    109 Wang RA, Randie M.Activation of mu-opiod receptor modulates GABAA receptor-mediated currents in isolated spinal dorsal horn neurons. Neurosei Lerts, 1994, 180:109~113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700