胚胎心脏流出道的分隔与重塑
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胚胎早期单管状心脏流出道连于动脉囊和原始心室之间。随发育,流出道经复杂的分隔和结构重建,参与心包内主、肺动脉与所属动脉瓣膜以及左右心室流出道的发育。有关不同种属动物胚胎心脏流出道发育和分隔机理已有大量研究,但目前尚有许多争议。探讨胚胎早期心脏流出道的正常发育和分隔机理可以为流出道发育和分隔异常导致的先天性心脏病的发病机理提供理论依据。
     心脏神经嵴是指从耳板中部到第3对体节之间的神经嵴细胞,迁移进入胚胎心脏,参与主肺动脉隔、流出道心内膜垫的形成与流出道的分隔。迁移前去除心脏神经嵴,可表现为永久性动脉干等畸形。因此,有关神经嵴细胞在流出道的分布与功能成为研究焦点之一,但由于种属差异和实验方法不同,对心脏神经嵴在流出道分隔中的作用仍存在分歧。
     流出道嵴融合形成间充质性流出道隔与其肌性化相伴随,间充质组织肌性化的机制仍存在争议。有学者认为流出道壁心肌细胞不断向隔内生长,同时募集相邻间充质细胞向心肌细胞分化共同完成流出道隔的肌性化。而本课题组观察到流出道嵴及其融合形成的流出道隔内存在间充质细胞的原位分化。因此,流出道心肌性隔的形成机制有待进一步研究。
     本实验通过观察α-平滑肌肌动蛋白(α-SMA)、α-横纹肌肌节肌动蛋白(α-SCA)、肌球蛋白重链(MHC)在C10期~C19期人胚心脏的表达规律,探讨流出道嵴、主肺动脉隔的形成与动脉囊、心肌性流出道的分隔过程;阐明α-SMA在流出道心肌与心内膜垫内的表达规律及其意义。通过观察胚龄10~14d小鼠胚胎心脏流出道内PlexinA2、α-SMA阳性细胞分布规律与流出道嵴内致密细胞团融合过程中间充质细胞超微结构变化,探讨PlexinA2、α-SMA时空表达特点及其对间充质细胞超微结构的影响。通过观察胚龄12~16d小鼠胚胎心脏流出道心肌性隔的形成过程,探讨流出道心肌性隔的形成机制。
     第一章人胚早期心脏流出道的分隔
     对32例C10期~C19期[Carnegie stage 10~Carnegie stage 19, Carnegie分期法,排卵后(22±1~47)d]人胚心脏连续切片,经抗α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)、抗α-横纹肌肌节肌动蛋白(α-sarcomeric actin,α-SCA)、抗肌球蛋白重链(myosin heavy chain, MHC)抗体免疫组织化学染色,观察进入流出道嵴的α-SMA阳性细胞的迁移路线、动脉囊的演变及其与心肌性流出道的分隔过程。结果显示:人胚C10期~C13期,动脉囊位于心包腔外,与心肌性流出道的界限位于流出道与心包腔背侧壁反折处;人胚C14期~C15期,第4弓动脉以下的动脉囊逐渐降入心包腔内,动脉囊壁心肌化成为流出道的远端,使心肌性流出道增长;人胚C16期,第4弓动脉水平的动脉囊也降入心包腔内,但未发生心肌化,动脉囊与心肌性流出道界限移至心包腔内。人胚C12期~C15期,α-SMA阳性细胞逐渐在流出道心内膜垫聚集,参与形成螺旋状流出道嵴;C16期,α-SMA阳性主肺动脉隔形成,流出道嵴缩短。人胚C14期,心包腔外的动脉囊分隔。人胚C16期,进入心包内的动脉囊分隔为心包内升主动脉和肺动脉干,心肌性流出道远端可见两动脉瓣膜原基,流出道嵴尚未融合。人胚C19期,瓣膜水平流出道嵴开始融合形成流出道隔,分隔心肌性流出道,来自两侧嵴内α-SMA阳性细胞在隔中央聚集。由此我们认为:流出道嵴的形成早于主肺动脉隔的出现,流出道嵴的远端、近端界限与心肌性流出道的远端、近端界限始终保持一致。动脉囊首先在心包腔外分隔,进入心包腔后由主肺动脉隔分隔形成心包内升主动脉、肺动脉干,流出道嵴远端形成两动脉瓣膜。流出道嵴大部融合分隔瓣膜以下的心肌性流出道。
     第二章人胚早期心脏流出道内α-SMA阳性细胞的发育
     用抗α-平滑肌肌动蛋白(α-SMA)、抗α-横纹肌肌节肌动蛋白(α-SCA)、抗肌球蛋白重链(MHC)抗体对29例C10期~C16期[Carnegie stage 10~Carnegie stage 16,排卵后(22±1~37)d]人胚心脏连续切片进行免疫组织化学染色。结果显示:人胚发育C10期~C13期,与流出道反折处的心包腔背侧壁中胚层上皮细胞部分呈α-SMA阳性,而α-SCA和MHC表达较弱。提示心包腔背侧壁上皮不断分化为心肌细胞添加至流出道远端使其增长,这些心肌细胞α-SMA的表达早于α-SCA和MHC。人胚C14期~C15期,进入心包腔的动脉囊壁α-SMA染色为强阳性,而α-SCA和MHC仅在左侧壁表达较强。提示动脉囊壁正在心肌化。人胚C12期~C15期,α-SMA阳性细胞由咽部间充质逐渐迁入流出道心内膜垫内,同时可见流出道心内膜的部分内皮细胞由α-SMA阴性转为阳性,向间充质细胞分化。不同来源的间充质细胞在流出道心内膜垫内聚集,参与形成流出道嵴。随着α-SMA阳性细胞不断进入,流出道嵴体积逐渐增大。人胚C16期,流出道嵴缩短,嵴内大部分间充质细胞α-SMA表达减弱,而在流出道嵴近心肌处出现成行排列的α-SMA强阳性细胞,相邻的心肌细胞伸出突起与其相连。由此我们认为:α-SMA可作为心肌细胞早期分化的标志;流出道嵴表面内皮细胞向间充质细胞分化时表达α-SMA;主肺动脉隔与流出道嵴内的α-SMA阳性细胞参与动脉囊分隔。
     第三章小鼠胚胎心脏流出道嵴的发育
     用抗α-平滑肌肌动蛋白(α-SMA)、抗α-横纹肌肌节肌动蛋白(α-SCA)单克隆抗体
     对胚龄10~14d小鼠胚胎心脏连续切片进行免疫组织化学染色;用原位杂交方法显示PlexinA2阳性细胞向胚龄10~14d小鼠胚胎流出道的迁移与分布;透射电镜观察胚龄12.5d心脏流出道嵴融合过程。结果显示:胚龄10~11d,神经管及其周围、动脉囊和弓动脉壁可见PlexinA2阳性细胞,并沿动脉囊壁迁入流出道嵴内,部分细胞同时表达α-SMA。胚龄12d,PlexinA2阳性细胞分布在脊神经节、咽前间充质、主肺动脉隔以及主、肺动脉壁。主肺动脉隔显α-SMA强阳性,但动脉壁仅见少量α-SMA阳性细胞。胚龄12.5d,两侧流出道嵴内致密间充质细胞团形成,并在瓣膜水平开始融合,PlexinA2表达较弱,α-SMA表达呈强阳性。在流出道嵴融合开始后,嵴表面的内皮细胞带形成继而断裂消失,由含微丝少、排列稀疏的间充质细胞取代。两侧致密细胞团逐渐靠拢、融合。有的间充质细胞内含较多线粒体和微丝,细胞之间形成细胞连接点;有的间充质细胞含微丝少,细胞膜间断融合。还可见内皮细胞或间充质细胞融合形成双核细胞。由上述结果可得出以下结论:流出道心内膜垫内α-SMA阳性间充质细胞来自神经嵴;内皮细胞-间充质细胞转化参与流出道嵴融合;致密细胞团内间充质细胞富含微丝束和细胞连接点或发生细胞膜局部融合,增加了细胞之间连接的牢固性,有助于流出道嵴的融合;PlexinA2表达减弱可能有助于间充质细胞的粘附与聚集。
     第四章小鼠胚胎心脏流出道间充质隔的肌性化
     用抗α-平滑肌肌动蛋白(α-SMA)、抗结蛋白(Desmin)、抗α-横纹肌肌节肌动蛋白(α-SCA)单克隆抗体对胚龄12~16d小鼠胚胎心脏连续切片进行染色。用TUNEL染色对胚龄13~15d小鼠胚胎心脏切片进行染色。结果显示:胚龄12d,小鼠胚胎心脏流出道嵴尚未融合,一侧嵴内观察到少量α-SMA、Desmin、α-SCA阳性的心肌细胞,并可见流出道壁心肌细胞开始向嵴内延伸。胚龄12.5~14d,动脉瓣膜及其以下流出道嵴融合形成间充质性流出道隔。流出道壁α-SCA阳性的心肌细胞进一步向间充质隔内长入。隔中央可见α-SMA、α-SCA阳性细胞独立存在。胚龄13~15d,流出道隔中央可见α-SMA阳性细胞聚集形成漩涡状结构,隔内更多间充质细胞由心肌细胞取代,仅在其中央呈α-SCA阴性。胚龄16d流出道心肌性隔形成。胚龄13~15d,间充质隔中央凋亡细胞逐渐增多。因此我们认为:流出道心肌性隔形成的机制包括心肌化、募集与间充质细胞的原位分化。在此过程中,部分α-SMA阳性细胞凋亡;未凋亡的α-SMA阳性细胞可能原位转分化为心肌细胞。
The single tubular outflow tract of early embryonic heart connects primary ventricle with the aortic sac, which wall is composed of primary myocardium and endothelium with cardiac jelly in between. With development, the outflow tract undergoes complex septation and remodeling to form intrapericardial ascending aorta and pulmonary trunk and their valves and the outlets of the two ventricles. Many debates remain to be elucidated though there have been plenty of studies about the outflow tract development and its septation mechanism of embryonic heart of different species. The investigation about these questions could provide theory foundation for the congenital heart disease pathogenesis resulting from the abnormality of the outflow tract development and septation.
     The neural crest cells between the mid-otic placode and the third somite are called as cardiac neural crest, which can migrate into embryonic heart and play important role in the formation of the aorto-pulmonary septum and endocardial cushion and the outflow tract septation. Ablating the cardiac neural crest prior to its migration could lead to cardiac deficiency such as persistent truncus arteriosus. Thus the studies about cardiac neural crest distribution in embryonic heart and its function become one of the focuses. Because of the differences in the species and experimental methods, the debates still exist on the cardiac neural crest function during the septation of the outflow tract.
     The fusion of the outflow tract ridges to form mesenchymal septum is accompanied with its musculization. But the musculization mechanism remains to be elucidated. Some scholars reported that cardiomyocytes of the outflow tract wall progressively extended into the septum and recruited neighboring mesenchymal cells differentiating towards cardiomyocytes to complete the myocardiac septum formation. But at the same time, we also observed in situ differentiation of the mesenchymal cells in the outflow tract ridges and the septum except myocardialization and recruitment. So the formation mechanism of myocardiac septum is open to be explored.
     In this study, we observed the expression patterns ofα-SMA (α-smooth muscle actin),α-SCA (α-sarcomeric actin) and MHC (myosin heavy chain) in embryonic human heart from Carnegie stage 10 to Carnegie stage 19 to explore the formation of the outflow tract ridge and the aorto-pulmonary septum and the septation of the aortic sac and the outflow tract, and also to elucidateα-SMA expression significance in the myocardium and endocardial cushion of the outflow tract. We observed the distribution of PlexinA2 positive cells andα-SMA positive cells in the outflow tract of embryonic mouse heart from ED(embryonic day)10 to ED14 and the celluar ultrastructure change of the condensed mesenchymal cell masses during their fusion to explore the spacio-temporal exression patterns of PlexinA2 andα-SMA and their influence on the mesenchymal cell ultrastructure. We observed the myocardial septum formation of the outflow tract in ED12 to ED16 embryonic mouse heart to investigate the formation mechanism of the myocardial septum.
     Chapter I The septation of the outflow tract in the early embryonic human heart
     Serial sections of thirty-two human embryonic hearts from Carnegie stage 10 to Carnegie stage 19 (C10~C19, 22±1~47 postovulatory day) were stained immunohistochemically with antibodies againstα-SMA (α-smooth muscle actin),α-SCA (α-sarcomeric actin) and MHC (myosin heavy chain) to observe the migrating route of theα-SMA positive cells to the outflow tract ridge, the development of the aortic sac and the septation mechanism of the aortic sac and the outflow tract. The results showed that from C10 to C13, the aortic sac was situated outside of the pericardial cavity and the demarcation between the aortic sac and the outflow tract was located at the reflection of the dorsal wall of pericardial cavity to the outflow tract. Between C14 and C15, the proximal part of the aortic sac began to progressively protrude into pericardial cavity and its wall gradully myocardialized to become the distal pole of the myocardial outflow tract leading to lengthening of the latter. At C16, the aortic sac at the fourth aortic arch level invaginated into the pericardial cavity, but its wall was not myocardialized. So the demarcation between the aortic sac and the myocardial outflow tract became to be located in the pericardial cavity. From C12 to C15,α-SMA positive cells aggregated in the endocardial cushion of the outflow tract and took part in forming the two opposite spiral ridges. At C16,α-SMA positive aorto-pulmonary septum could be observed and the outflow tract ridge shortened. The aortic sac was septated before protruding into the pericardial cavity at C14. In the pericardial cavity, although the outflow tract ridges were not fused, the aortic sac had been divided into the ascending aorta and pulmonary trunk by the aorto-pulmonary septum at C16. The valve anlagen could be seen at the distal pole of the myocardial outflow tract. At C19, the outflow tract ridges began to fuse with each other at the valve level to form the outlet septum and septate the outflow tract. Theα-SMA positive cells from the two ridges aggregated in the centre of the septum. The results suggest that the formation of the outflow tract ridge is earlier than the aorto-pulmonary septum. The distal and proximal ends of the ridge keep at the same level with the two poles of the myocardial outflow tract. The aortic sac has been septated when it is embeded in the pharyngeal mesenchyme. After descending into the pericardial cavity, the aortic sac is septated into the ascending aorta and pulmonary trunk by the aorto-pulmonary septum. The distal poles of the outflow tract ridges form the valve anlagen of the two arteries. The main part of the ridges fuses to septate the outflow tract under the valves.
     Chapter II The development of theα-SMA positive cells in the outflow tract of the early embryonic human heart
     Serial sections of twenty-nine human embryonic hearts from Carnegie stage 10 to Carnegie stage 16 (C10~C16, 22±1~37 postovulatory day) were stained immunohistochemically with antibodies againstα-SMA (α-smooth muscle actin),α-SCA (α-sarcomeric actin) and MHC (myosin heavy chain). It was observed that during C10 to C13, a few of the pericardial splanchnic epithelium cells showedα-SMA positive and expressedα-SCA, MHC weakly, which meant that the pericardial splanchnic epithelium progressively differentiated into myocardial cells and these new cardiomyocytes were added to the distal pole of the outflow tract to make it lengthen. The expression ofα-SMA of these cells was earlier than the expression ofα-SCA and MHC. At C14 and C15, the aortic sac wall was stainedα-SMA strongly when protruding into the pericardial cavity. But the expression ofα-SCA and MHC was strong only on the left wall, which suggested that the aortic sac was myocardializing. From C12 to C15,α-SMA positive cells gradually migrated into the endocardial cushion from the pharyngeal mesenchyme. At the same time, the endocardial cells of the outflow tract began to expressα-SMA and differentiate towards mesenchymal cells. Mesenchymal cells of different origins aggregated in the endocardial cushion to form the outflow tract ridge. Withα-SMA positive cells progressively migrating into the ridge, the ridge became larger. At C16, the outflow tract was shortened and most of the mesenchymal cells in the ridge expressedα-SMA weakly. But a few of positive cells expressedα-SMA strongly aligning with the myocardial cells of the outflow tract wall. The cardiomyocytes linked with theseα-SMA positive cells by their protrusion. We conclude thatα-SMA could be regarded as an early marker of cardiomyocytes differentiation. The endocardial cells of the outflow tract ridge expressα-SMA when differentiating towards mesenchymal cells.α-SMA positive cells in the ridge and the aorto-pulmonary septum take part in the septation of the aortic sac.
     Chapter III The development of the outflow tract ridge in the embryonic mouse heart
     Serial sections of ED(embryonic day)10 to ED14 mouse embryonic hearts were stained by monoclonal antibodies againstα-SMA (α-smooth muscle actin) andα-SCA (α-sarcomeric actin). In situ hybridization was performed on the sections of ED10 to ED14 embryos to visualize the migration and distribution pattern of PlexinA2 positive cells in the outflow tract. The outflow tract ridges fusion was observed by transmission electron microscope at ED12.5. The results showed that from ED10 to ED11, PlexinA2 positive cells were seen in the neural tube, the mesenchyme around it, the aortic sac and aortic arch. These cells also migrated into the outflow tract ridge along the aortic sac wall. Some of them expressedα-SMA. At ED12, PlexinA2 was expressed in the dorsal ganglia, the pharyngeal mesenchyme, the aorto-pulmonary septum and the ascending aorta and pulmonary trunk. The septum was shownα-SMA strongly positive. But only a few ofα-SMA positive cells were observed in the ascending aorta and pulmonary trunk. At ED12.5, two clusters of condensed mesenchymal cells in the outflow tract ridges formed and began to merge at the semilunar level expressing PlexinA2 weakly andα-SMA strongly. When the ridges began to fuse, the endothelial cells formed a cellular seam, which rapidly broke into pieces and disappeared and were replaced by the sparsed mesenchymal cells containing a few of microfilaments. Two clusters of condensed mesenchymal cells gradully moved to merge. It was noted that some mesenchymal cells contained plenty of microfilament bundles, mitochondria and unmatured focal contacts between them. Some mesenchymal cells only had a few of microfilaments and plasma membrane fusion was seen between them. Cell fusion of endothelial cells or mesenchymal cells was also observed to form double nuclus cells. From the results we conclude thatα-SMA positive cells in the outflow tract cushion may be derived from cardiac neural crest. The endothelial cells participate in the fusion of the outflow tract ridges by endothelial-mesenchymal transformation. Mesenchymal cells of the condensed cell mass contain plenty of microfilament bundles and focal contacts or membrane fusion, which increase connection firmness between cells and contribute to the ridges fusion. PlexinA2 down-regulation may facilitate the mesenchymal cell adhesion and aggregation.
     Chapter IV Musculization of the mensenchymal septum of the outflow tract in embryonic mouse heart
     Serial sections of mouse embryonic hearts from ED(embryonic day)12 to ED16 were stained by monoclonal antibodies againstα-SMA (α-smooth muscle actin), Desmin andα-SCA (α-sarcomeric actin) to investigate the mechanism of the myocardial septum formation in the outflow tract of embryonic mouse heart. Apoptosis was determined by TUNEL assay. We found that at ED12, the outflow tract ridges were not fused yet and a few ofα-SCA positive cells had been observed in one of the ridges. The cardiomyocytes of the outflow tract wall began to extend into the ridge. From ED12.5 to ED14, the outflow tract ridges fused to form the mensenchymal septum at and under the semilunar valve level.α-SCA positive cardiomyocytes could be observed progressively migrating from the wall of the outflow tract into the mesenchymal septum. It needed to be stressed that a few ofα-SMA andα-SCA positive cardiomyocytes independently existed in the centre of the septum. During ED13 to ED15,α-SMA positive cells aggregated to form the whorl in the centre of the septum. More mesenchymal cells in the septum were replaced by cardiomyocytes. Soα-SCA negative area only lied in the centre of the septum. At ED16, the septum was filled with cardiomyocytes to form the myocardial septum. From ED13 to ED15, the apoptosed cells in the centre of the septum gradually increased. The conclusions could be drawed that myocardialization is not the single mechanism to explain the transforming of the mesenchymal septum to the myocardial septum. Transdifferentiation and recruitment of the mesenchymal cells in the septum may also be reasons for it. The formation of the myocardial septum is companied by apoptosis of part of theα-SMA positive cells in the septum. Theα-SMA positive cells without being apoptosed may transdifferentiate into cardiomyocytes and take part in the formation of the myocardial septum.
引文
[1] Restivo A, Piacentini G, Placidi S, et al. Cardiac outflow tract: a review of some embryogenetic aspects of the conotruncal region of the heart[J]. Anat Rec A Discov Mol Cell Evol Biol, 2006, 288(9):936~43
    [2] Rothenberg F, Fisher SA, Watanabe M. Sculpting the cardiac outflow tract[J]. Birth Defects Res C Embryo Today, 2003, 69(1):38~45
    [3] Armstrong EJ, Bischoff J. Heart valve development: endothelial cell signaling and differentiation[J]. Circ Res, 2004, 95(5):459~70
    [4] Webb S, Qayyum SR, Anderson RH, et al. Septation and separation within the outflow tract of the developmenting heart[J]. J Anat, 2003, 202(4):327~42
    [5] Lamers WH, Moorman AF. Cardiac septation: a late contribution of the embryonic primary myocardium to heart morphogenesis[J]. Circ Res, 2002, 91(2):93~103
    [6] Flagg AE, Earley JU, Svensson EC. FOG-2 attenuates endothelial-to-mesenchymal transformation in the endocardial cushions of the developing heart[J]. Dev Biol, 2007, 304(1):308~16
    [7] Waldo K, Miyagawa-Tomita S, Kumiski D, et al. Cardiac neural crest cells provide new sight into septation of the cardiac outflow tract: aortic sac to ventricular septal closure[J]. Dev Biol, 1998, 196(2):129~44
    [8] Orts-Llorca F, Puerta Fonolla J, Sobrado J. The formation, septation and fate of the truncus arteriosus in man[J]. J Anat, 1982, 134(Pt 1):41~56
    [9] Waldo KL, Hutson MR, Ward CC, et al. Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart[J]. Dev Biol, 2005, 281(1):78~90
    [10] Laugwitz KL, Moretti A, Caron L, et al. Islet1 cardiovascular progenitors: a single source for heart lineages[J]? Development, 2008, 135(2):193~205
    [11] Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, et al. The outflow tract of the heart is recruited from a novel heart-forming field[J]. Dev Biol, 2001, 238(1):97~109
    [12] Kelly RG, Brown NA, Buckingham ME. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm[J]. Dev Cell, 2001, 1(3):435~40
    [13] Black BL. Transcriptional pathways in second heart field development[J]. Semin Cell Dev Biol, 2007, 18(1):67~76
    [14] Qayyum SR, Webb S, Anderson RH, et al. Septation and valvar formation in the outflow tract of the embryonic chick heart[J]. Anat Rec, 2001, 264(3):273~83
    [15] Kirby ML, Waldo KL. Neural crest and cardiovascular patterning[J]. Circ Res, 1995, 77(2):211~5
    [16] Sánchez Gómez C, Pliego Pliego L, Contreras Ramos A, et al. Histological study of the proximal and distal segments of the embryonic outflow tract and great arteries[J]. Anat Rec A Discov Mol Cell Evol Biol, 2005, 283(1):202~11
    [17] Watanabe M, Jafri A, Fisher SA. Apoptosis is required for the proper formation of the ventriculo-arterialconnections[J]. Dev Biol, 2001, 240(1):274~88
    [18] Yelbuz TM, Waldo KL, Kumiski DH, et al. Shortened outflow tract leads to altered cardiac looping after neural crest ablation[J]. Circulation, 2002, 106(4):504~10
    [19] Boot MJ, Gittenberger-De Groot AC, Van Iperen L, et al. Spatiotemporally separated cardiac neural crest subpopulations that target the outflow tract septum and pharyngeal arch arteries[J]. Anat Rec A Discov Mol Cell Evol Biol, 2003, 275(1):1009~18
    [20] Snider P, Olaopa M, Firulli AB, et al. Cardiovascular development and the colonizing cardiac neural crest lineage[J]. ScientificWorldJournal, 2007, 3(7):1090~113
    [21] Jiang X, Rowitch DH, Soriano P, et al. Fate of the mammalian cardiac neural crest[J]. Development, 2000, 127(8):1607~16
    [22] Hutson MR, Kirby ML. Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations[J]. Semin Cell Dev Biol, 2007, 18(1):101~10
    [23] Chan WY, Cheung CS, Yung KM, et al. Cardiac neural crest of the mouse embryo: axial level of origin, migratory pathway and cell autonomy of the splotch(Sp2H) mutant effect[J]. Development, 2004, 131(14):3367~79
    [24] Mishima N, Mikawa T, Kirby ML. Smooth muscle alpha-actin downregulation in cultured chick aortic smooth muscle and neural crest cells is associated with altered cell shape[J]. Exp Cell Res, 1996, 224(1):204~7
    [25] Beall AC, Rosenquist TH. Smooth muscle cells of neural crest origin form the aorticopulmonary septum in the avian embryo[J]. Anat Rec, 1990, 226(3):360~6
    [26] O’Rahilly R, Müller F. Developmental stages in human embryos[M]. Washington, DC: Carnegie Institution of Washington Publication, 1987
    [27] Stottmann RW, Choi M, Mishina Y, et al. BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium[J]. Development, 2004, 131(9):2205~18
    [28] Van den Hoff MJ, Moorman AF. Cardiac neural crest: the holy grail of cardiac abnormalities[J]? Cardiovasc Res, 2000, 47(2):212~6
    [29] Anderson RH, Webb S, Brown NA, et al. Development of the heart: (3) formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks[J]. Heart, 2003, 89(9):1110~8
    [30] Yamauchi Y, Abe K, Mantani A, et al. A novel transgenic technique that allows specific marking of the neural crest cell lineage in mice[J]. Dev Biol, 1999, 212(1):191~203
    [31] Fananapazir K, Kaufman MH. Observations on the development of the aortico-pulmonary spiral septum in the mouse[J]. J Anat, 1988, 158:157~72
    [32] Délot EC, Bahamonde ME, Zhao M, et al. BMP signaling is required for septation of the outflow tract of the mammalian heart[J]. Development, 2003, 130(1):209~20
    [33] Waller BR 3rd, McQuinn T, Phelps AL, et al. Conotruncal anomalies in the trisomy 16 mouse: an immunohistochemical analysis with emphasis on the involvement of the neural crest[J]. Anat Rec, 2000, 260(6):279~93
    [34] Bartman T, Walsh EC, Wen KK, et al. Early myocardial function affects endocardial cushion development in zebrafish[J]. PLoS Biol, 2004, 2(5):673~81
    [35] de la Pompa JL, Timmerman LA, Takimoto H, et al. Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum[J]. Nature, 1998, 392(6672):182~6
    [36] Wagner M, Siddiqui MA. Signal transduction in early heart development (II): ventricular chamber specification, trabeculation, and heart valve formation[J]. Exp Biol Med (Maywood), 2007, 232(7):866~80
    [37] Bergwerff M, Verberne ME, DeRuiter MC, et al. Neural crest cell contribution to the developing circulatory system: implications for vascular morphology[J]? Circ Res, 1998, 82(2):221~31
    [38] Waldo KL, Lo CW, Kirby ML. Connexin 43 expression reflects neural crest patterns during cardiovascular development[J]. Dev Biol, 1999, 208(2):307~23
    [39] Gruber PJ, Kubalak SW, Pexieder T, et al. RXR alpha deficiency confers genetic susceptibility for aortic sac, conotruncal, atrioventricular cushion, and ventricular muscle defects in mice[J]. J Clin Invest, 1996, 98(6):1332~43
    [40] Bartelings MM, Gittenberger-de Groot AC. The arterial orifice level in the early human embryo[J]. Anat Embryol (Berl), 1988, 177(6):537~42
    [41] Rosenquist TH, Fray-Gavalas C, Waldo K, et al. Development of the musculoelastic septation complex in the avian truncus arteriosus[J]. Am J Anat, 1990, 189(4):339~56
    [42] Sharma PR, Anderson RH, Copp AJ, et al. Spatiotemporal analysis of programmed cell death during mouse cardiac septation[J]. Anat Rec A Discov Mol Cell Evol Biol, 2004, 277(2):355~69
    [43] Vincentz JW, Barnes RM, Rodgers R, et al. An absence of Twist1 results in aberrant cardiac neural crest morphogenesis[J]. Dev Biol, 2008, 320(1):131~9
    [44] Bartelings MM, Gittenberger-De Groot AC. The outflow tract of the heart-embryologic and morphologic correlations[J]. Int J Cardiol, 1989, 22(3):289~300
    [45] Pérez-Pomares JM, Phelps A, Sedmerova M, et al. Epicardial-like cells on the distal arterial end of the cardiac outflow tract do not derive from the proepicardium but are derivatives of the cephalic pericardium[J]. Dev Dyn, 2003, 227(1):56~68
    [46] Rana MS, Horsten NC, Tesink-Taekema S, et al. Trabeculated right ventricular free wall in the chicken heart forms by ventricularization of the myocardium initially forming the outflow tract[J]. Circ Res, 2007, 100(7):1000~7
    [47] Singh A, Mehmood F, Romp RL, et al. Live/Real time three-dimensional transthoracic echocardiographic assessment of aortopulmonary window[J]. Echocardiography, 2008, 25(1):96~9
    [48] Park SY, Joo HC, Youn YN, et al. Berry syndrome: two cases of successful surgical repair[J]. Circ J, 2008, 72(3):492~5
    [49] Kruithof BP, van den Hoff MJ, Tesink-Taekema S, et al. Recruitment of intra- and extracardiac cells into the myocardial lineage during mouse development[J]. Anat Rec A Discov Mol Cell Evol Biol, 2003, 271(2):303~314
    [50] Phillips HM, Murdoch JN, Chaudhry B, et al. Vangl2 acts via RhoA signaling to regulate polarized cell movements during development of the proximal outflow tract[J]. Circ Res, 2005, 96(3):292~9
    [1] Kelly RG, Brown NA, Buckingham ME. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm[J]. Dev Cell, 2001, 1(3):435~40
    [2] Waldo KL, Kumiski DH, Wallis KT, et al. Conotruncal myocardium arises from a secondary heart field[J]. Development, 2001, 128(16):3179~88
    [3] Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, et al. The outflow tract of the heart is recruited from a novel heart-forming field[J]. Dev Biol, 2001, 238(1):97~109
    [4] Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells[J]. Nat Rev Genet, 2005, 6(11):826~35
    [5] Chen YH, Ishii M, Sun J, et al. Msx1 and Msx2 regulate survival of secondary heart field precursors and post-migratory proliferation of cardiac neural crest in the outflow tract[J]. Dev Biol, 2007, 308(2):421~37
    [6] Niessen K, Karsan A. Notch signaling in cardiac development[J]. Circ Res, 2008, 102(10):1169~81
    [7] Waldo KL, Hutson MR, Ward CC, et al. Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart[J]. Dev Biol, 2005, 281(1):78~90
    [8] Brade T, M?nner J, Kühl M. The role of Wnt signalling in cardiac development and tissue remodelling in the mature heart[J]. Cardiovasc Res, 2006, 72(2):198~209
    [9] Laugwitz KL, Moretti A, Caron L, et al. Islet1 cardiovascular progenitors: a single source for heart lineages[J]? Development, 2008, 135(2):193~205
    [10] Cai CL, Liang X, Shi Y, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart[J]. Dev Cell, 2003, 5(6):877~89
    [11] van den Hoff MJ, Moorman AF, Ruijter JM, et al. Myocardialization of the cardiac outflow tract[J]. Dev Biol, 1999, 212(2):477~90
    [12] Kruithof BP, van den Hoff MJ, Tesink-Taekema S, et al. Recruitment of intra- and extracardiac cells into the myocardial lineage during mouse development[J]. Anat Rec A Discov Mol Cell Evol Biol, 2003, 271(2):303~14
    [13] van den Hoff MJ, Kruithof BP, Moorman AF, et al. Formation of myocardium after the initial development of the linear heart tube[J]. Dev Biol, 2001, 240(1):61~76
    [14] Eisenberg LM, Markwald RR. Cellular recruitment and the development of the myocardium[J]. Dev Biol, 2004, 274(2):225~32
    [15] Kruithof BP, van den Hoff MJ, Wessels A, et al. Cardiac muscle cell formation after development of the linear heart tube[J]. Dev Dyn, 2003, 227(1):1~13
    [16] Lincoln J, Alfieri CM, Yutzey KE. Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos[J]. Dev Dyn, 2004, 230(2):239~50
    [17] Rivera-Feliciano J, Tabin CJ. Bmp2 instructs cardiac progenitors to form the heart-valve-inducing field[J]. Dev Biol, 2006, 295(2):580~8
    [18] Schleiffarth JR, Person AD, Martinsen BJ, et al. Wnt5a is required for cardiac outflow tract septation in mice[J]. Pediatr Res, 2007, 61(4):386~91
    [19] Komatsu K, Wakatsuki S, Yamada S, et al. Meltrin beta expressed in cardiac neural crest cells is required for ventricular septum formation of the heart[J]. Dev Biol, 2007, 303(1):82~92
    [20] Hakim ZS, DiMichele LA, Doherty JT, et al. Conditional deletion of focal adhesion kinase leads to defects in ventricular septation and outflow tract alignment[J]. Mol Cell Biol, 2007, 27(15):5352~64
    [21] Wirrig EE, Snarr BS, Chintalapudi MR, et al. Cartilage link protein 1 (Crtl1), an extracellular matrix component playing an important role in heart development[J]. Dev Biol, 2007, 310(2):291~303
    [22] Wagner M, Siddiqui MA. Signal transduction in early heart development (II): ventricular chamber specification, trabeculation, and heart valve formation[J]. Exp Biol Med (Maywood), 2007, 232(7):866~80
    [23] Kim RY, Robertson EJ, Solloway MJ. Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart[J]. Dev Biol, 2001, 235(2):449~66
    [24] Sakabe M, Ikeda K, Nakatani K, et al. Rho kinases regulate endothelial invasion and migration during valvuloseptal endocardial cushion tissue formation[J]. Dev Dyn, 2006, 235(1):94~104
    [25] Nakajima Y, Mironov V, Yamagishi T, et al. Expression of smooth muscle alpha-actin in mesenchymal cells during formation of avian endocardial cushion tissue: a role for transforming growth factor beta3[J]. Dev Dyn, 1997, 209(3):296~309
    [26] Boot MJ, Gittenberger-De Groot AC, Van Iperen L, et al. Spatiotemporally separated cardiac neural crest subpopulations that target the outflow tract septum and pharyngeal arch arteries[J]. Anat Rec A Discov Mol Cell Evol Biol, 2003, 275(1):1009~18
    [27] Snider P, Olaopa M, Firulli AB, et al. Cardiovascular development and the colonizing cardiac neural crest lineage[J]. ScientificWorldJournal, 2007, 3(7):1090~113
    [28] Kirby ML, Waldo KL. Neural crest and cardiovascular patterning[J]. Circ Res, 1995, 77(2):211~5
    [29] Richarte AM, Mead HB, Tallquist MD. Cooperation between the PDGF receptors in cardiac neural crest cell migration[J]. Dev Biol, 2007, 306(2):785~96
    [30] Xu X, Francis R, Wei CJ, et al. Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells[J]. Development, 2006, 133(18):3629~39
    [31] de la Pompa JL, Timmerman LA, Takimoto H, et al. Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum[J]. Nature, 1998, 392(6672):182~6
    [32] Kang P, Svoboda KK. Epithelial-mesenchymal transformation during craniofacial development[J]. J Dent Res, 2005, 84(8):678~90
    [33] Niessen K, Fu Y, Chang L, et al. Slug is a direct Notch target required for in itiation of cardiac cushion cellularization[J]. J Cell Biol, 2008, 182(2):315~25
    [34] Sakabe M, Sakata H, Matsui H, et al. ROCK1 expression is regulated by TGFbeta3 and ALK2 duringvalvuloseptal endocardial cushion formation[J]. Anat Rec (Hoboken), 2008, 291(7):845~57
    [35] Waller BR 3rd, McQuinn T, Phelps AL, et al. Conotruncal anomalies in the trisomy 16 mouse: an immunohistochemical analysis with emphasis on the involvement of the neural crest[J]. Anat Rec, 2000, 260(3):279~93
    [36] Délot EC, Bahamonde ME, Zhao M, et al. BMP signaling is required for septation of the outflow tract of the mammalian heart[J]. Development, 2003, 130(1):209~20
    [37] Beall AC, Rosenquist TH. Smooth muscle cells of neural crest origin form the aorticopulmonary septum in the avian embryo[J]. Anat Rec, 1990, 226(3):360~6
    [38] Mishima N, Mikawa T, Kirby ML. Smooth muscle alpha-actin downregulation in cultured chick aortic smooth muscle and neural crest cells is associated with altered cell shape[J]. Exp Cell Res, 1996, 224(1):204~7
    [39] O’Rahilly R, Müller F. Developmental stages in human embryos[M]. Washington DC: Carnegie Institution of Washington Publication, 1987:637
    [40] Sugishita Y, Watanabe M, Fisher SA. The development of the embryonic outflow tract provides novel insights into cardiac differentiation and remodeling[J]. Trends Cardiovasc Med, 2004, 14(6):235~41
    [41] Clément S, Stouffs M, Bettiol E, et al. Expression and function of alpha-smooth muscle actin during embryonic-stem-cell-derived cardiomyocyte differentiation[J]. J Cell Sci, 2007, 120(2):229~38
    [42] Clément S, Pellieux C, Chaponnier C, et al. Angiotensin II stimulates alpha-skeletal actin expression in cadiomyocytes in vitro and in vivo in the absence of hypertension[J]. Differentiation, 2001, 69(1):66~74
    [43] Ehler E, Fowler VM, Perriard JC. Myofibrillogenesis in the developing chicken heart: role of actin isoforms and of the pointed end actin capping protein tropomodulin during thin filament assembly[J]. Dev Dyn, 2004, 229(4):745~55
    [44] Porras D, Brown CB. Temporal-spatial ablation of neural crest in the mouse results in cardiovascular defects[J]. Dev Dyn, 2008, 237(1):153~62
    [45] Hutson MR, Kirby ML. Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations[J]. Semin Cell Dev Biol, 2007, 18(1):101~10
    [46] Waldo K, Miyagawa-Tomita S, Kumiski D, et al. Cardiac neural crest cells provide new sight into septation of the cardiac outflow tract: aortic sac to ventricular septal closure[J]. Dev Biol, 1998, 196(2):129~44
    [1] Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to normal aorticopulmonary septation[J]. Science, 1983, 220(4601):1059~61
    [2] Kirby ML, Waldo KL. Neural crest and cardiovascular patterning[J]. Circ Res, 1995, 77(2):211~5
    [3] Sieber-Blum M. Cardiac neural crest stem cells[J]. Anat Rec A Discov Mol Cell Evol Biol, 2004, 276(1):34~42
    [4] Hutson MR, Kirby ML. Neural crest and cardiovascular development: a 20-year perspective[J]. Birth Defects Res C Embryo Today, 2003, 69(1):2~13
    [5] Stoller JZ, Epstein JA. Cardiac neural crest[J]. Semin Cell Dev Biol, 2005, 16(6):704~15
    [6] Todorovic V, Frendewey D, Gutstein DE, et al. Long form of latent TGF-βbinding protein 1 (Ltbp1L) is essential for cardiac outflow tract septation and remodeling[J]. Development, 2007, 134(20):3723~32
    [7] Waldo K, Miyagawa-Tomita S, Kumiski D, et al. Cardiac neural crest cells provide new insight into septation of the cardiac outflow tract: aortic sac to ventricular septal closure[J]. Dev Biol, 1998, 196(2):129~44
    [8] Kirby ML, Waldo KL. Role of neural crest in congenital heart disease[J]. Circulation, 1990, 82(2):332~40
    [9] Martinsen BJ. Reference guide to the stages of chick heart embryology[J]. Dev Dyn, 2005, 233(4):1217~37
    [10] Yelbuz TM, Waldo KL, Kumiski DH, et al. Shortened outflow tract leads to altered cardiac looping after neural crest ablation[J]. Circulation, 2002, 106(4):504~10
    [11] Snider P, Olaopa M, Firulli AB, et al. Cardiovascular development and the colonizing cardiac neural crest lineage[J]. ScientificWorldJournal, 2007, 3(7):1090~113
    [12] Hutson MR, Kirby ML. Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations[J]. Semin Cell Dev Biol, 2007, 18(1):101~10
    [13] Serbedzija GN, Bronner-Fraser M, Fraser SE. A vital dye analysis of the timing and pathways of avian trunk neural crest cell migration[J]. Development, 1989, 106(4):809~16
    [14] Keyes WM, Sanders EJ. Regulation of apoptosis in the endocardial cushions of the developing chick heart[J]. Am J Physiol Cell Physiol, 2002, 282(6):C1348~60
    [15] Lo CW, Waldo KL, Kirby ML. Gap junction communication and the modulation of cardiac neural crest cells[J]. Trends Cardiovasc Med, 1999, 9(3-4):63~9
    [16] Waldo KL, Lo CW, Kirby ML. Connexin 43 expression reflects neural crest patterns during cardiovascular development[J]. Dev Biol, 1999, 208(2):307~23
    [17] Li J, Chen F, Epstein JA. Neural crest expression of Cre recombinase directed by the proximal Pax3 promoter in transgenic mice[J]. Genesis, 2000, 26(2):162~4
    [18] Li J, Zhu X, Chen M, et al. Myocardin-related transcription factor B is required in cardiac neural crest forsmooth muscle differentiation and cardiovascular development[J]. Proc Natl Acad Sci U S A, 2005, 102(25):8916~21
    [19] Yamauchi Y, Abe K, Mantani A, et al. A novel transgenic technique that allows specific marking of the neural crest cell lineage in mice[J]. Dev Biol, 1999, 212(1):191~203
    [20] Brown CB, Feiner L, Lu MM, et al. PlexinA2 and semaphorin signaling during cardiac neural crest development[J]. Development, 2001, 128(16):3071~80
    [21] Yang YP, Li HR, Jing Y. Septation and shortening of outflow tract in embryonic mouse heart involve changes in cardiomyocyte phenotype and alpha-SMA positive cells in the endocardium[J]. Chin Med J (Engl), 2004, 117(8):1240~5
    [22] Ya J, van den Hoff MJ, de Boer PA, et al. Normal development of the outflow tract in the rat[J]. Circ Res, 1998, 82(4):464~72
    [23]李海荣,李素云,杨艳萍,等.人胚早期心脏流出道的发育[J].解剖学报,2008,39(3):400~5
    [24] Waller BR 3rd, McQuinn T, Phelps AL, et al. Conotruncal anomalies in the trisomy 16 mouse: an immunohistochemical analysis with emphasis on the involvement of the neural crest[J]. Anat Rec, 2000, 260(3):279~93
    [25] Mishima N, Mikawa T, Kirby ML. Smooth muscle alpha-actin downregulation in cultured chick aortic smooth muscle and neural crest cells is associated with altered cell shape[J]. Exp Cell Res, 1996, 224(1):204~7
    [26] Gittenberger-De Groot AC, Bartelings MM, Deruiter MC, et al. Basics of cardiac development for the understanding of congenital heart malformations[J]. Pediatr Res, 2005, 57(2):169~76
    [27] Kirby ML. Molecular embryogenesis of the heart[J]. Pediat Dev Pathol, 2002, 5(6):516~43
    [28] Lamers WH, Moorman AF. Cardiac septation: a late contribution of the embryonic primary myocardium to heart morphogenesis[J]. Circ Res, 2002, 91(2):93~103
    [29] Webb S, Qayyum SR, Anderson RH, et al. Septation and separation within the outflow tract of the developmenting heart[J]. J Anat, 2003, 202(4):327~42
    [30] Epstein JA, Li J, Lang D, et al. Migration of cardiac neural crest cells in Splotch embryos[J]. Development, 2000, 127(9):1869~78
    [31] Jiang X, Rowitch DH, Soriano P, et al. Fate of the mammalian cardiac neural crest[J]. Development, 2000, 127(8):1607~16
    [32] Anderson RH, Webb S, Brown NA, et al. Development of the heart: (3) formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks[J]. Heart, 2003, 89(9):1110~8
    [33] Lin L, Cui L, Zhou W, et al. Beta-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis[J]. Proc Natl Acad Sci U S A, 2007, 104(22):9313~8
    [34] Chan WY, Cheung CS, Yung KM, et al. Cardiac neural crest of the mouse embryo: axial level of origin,migratory pathway and cell autonomy of the splotch(Sp2H) mutant effect[J]. Development, 2004, 131(14):3367~79
    [35] Nakajima Y, Mironov V, Yamagishi T, et al. Expression of smooth muscle alpha-actin in mesenchymal cells during formation of avian endocardial cushion tissue: a role for transforming growth factor beta3[J]. Dev Dyn, 1997, 209(3):296~309
    [36] Ferguson MW. Palate development[J]. Development, 1988, 103 Suppl:41~60
    [37] van den Hoff MJ, van den Eijnde SM, Virágh S, et al. Programmed cell death in the developing heart[J]. Cardiovasc Res, 2000, 45(3):603~20
    [38] Kang P, Svoboda KK. Epithelial-mesenchymal transformation during craniofacial development[J]. J Dent Res, 2005, 84(8):678~90
    [39] Niessen K, Fu Y, Chang L, et al. Slug is a direct Notch target required for in itiation of cardiac cushion cellularization[J]. J Cell Biol, 2008, 182(2):315~25
    [40] Chrzanowska-Wodnicka M, Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions[J]. J Cell Biol, 1996, 133(6):1403~15
    [41] Hirata H, Tatsumi H, Sokabe M. Dynamics of actin filaments during tension-dependent formation of actin bundles[J]. Biochim Biophys Acta, 2007, 1770(8):1115~27
    [42] Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis[J]. Cell, 1996, 84(3):345~57
    [43] Pellegrin S, Mellor H. Actin stress fibres[J]. J Cell Sci, 2007, 120(Pt 20):3491~9
    [44] Hinz B. Masters and servants of the force: the role of matrix adhesions in myofibroblast force perception and transmission[J]. Eur J Cell Biol, 2006, 85(3-4):175~81
    [45] Cukierman E, Pankov R, Yamada KM. Cell interactions with three-dimensional matrices[J]. Curr Opin Cell Biol, 2002, 14(5):633~9
    [46] Sawada Y, Sheetz MP. Force transduction by Triton cytoskeletons[J]. J Cell Biol, 2002, 156(4):609~15
    [47] Xu X, Francis R, Wei CJ, et al. Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells[J]. Development, 2006, 133(18):3629~39
    [48] Hayakawa K, Tatsumi H, Sokabe M. Actin stress fibers transmit and focus force to activate mechanosensitive channels[J]. J Cell Sci, 2008, 121(Pt 4):496~503
    [49] Feiner L, Webber AL, Brown CB, et al. Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption[J]. Development, 2001, 128(16):3061~70
    [50] Toyofuku T, Yoshida J, Sugimoto T, et al. Repulsive and attractive semaphorins cooperate to direct the navigation of cardiac neural crest cells[J]. Dev Biol, 2008, 321(1):251~62
    [51] Barberis D, Casazza A, Sordella R, et al. p190 Rho-GTPase activating protein associates with plexins and it is required for semaphorin signalling[J]. J Cell Sci, 2005, 118(Pt 20):4689~700
    [52] Toyofuku T, Yoshida J, Sugimoto T, et al. FARP2 triggers signals for Sema3A-mediated axonalrepulsion[J]. Nat Neurosci, 2005, 8(12):1712~9
    [53] Banu N, Teichman J, Dunlap-Brown M, et al. Semaphorin 3C regulates endothelial cell function by increasing integrin activity[J]. FASEB J, 2006, 20(12):2150~2
    [54] Bron R, Vermeren M, Kokot N, et al. Boundary cap cells constrain spinal motor neuron somal migration at motor exit points by a semaphorin-plexin mechanism[J]. Neural Develop, 2007, 30; 2:21
    [55] Terman JR, Mao T, Pasterkamp RJ, et al. MICALs, a family of conserved flavoprotein oxidoreductases, function in plexin-mediated axonal repulsion[J]. Cell, 2002, 109(7):887~900
    [1] Bajolle F, Zaffran S, Kelly RG, et al. Rotation of the myocardial wall of the outflow tract is implicated in the normal positioning of the great arteries[J]. Circ Res, 2006, 98(3):421~8
    [2] Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, et al. The outflow tract of the heart is recruited from a novel heart-forming field[J]. Dev Biol, 2001, 238(1):97~109
    [3] Waller BR 3rd, McQuinn T, Phelps AL, et al. Conotruncal anomalies in the trisomy 16 mouse: an immunohistochemical analysis with emphasis on the involvement of the neural crest[J]. Anat Rec, 2000, 260(3):279~93
    [4] Lakkis MM, Epstein JA. Neurofibromin modulation of ras activity is required for normal endocardial-mesenchymal transformation in the developing heart[J]. Development, 1998, 125(22):4359~67
    [5] Sanford LP, Ormsby I, Gittenberger-de Groot AC, et al. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes[J]. Development, 1997, 124(13):2659~70
    [6] Moralez I, Phelps A, Riley B, et al. Muscularizing tissues in the endocardial cushions of the avian heart are characterized by the expression of h1-calponin[J]. Dev Dyn, 2006, 235(6):1648~58
    [7] van den Hoff MJ, Moorman AF, Ruijter JM, et al. Myocardialization of the cardiac outflow tract[J]. Dev Biol, 1999, 212(2):477~90
    [8] van den Hoff MJ, Kruithof BP, Moorman AF, et al. Formation of myocardium after the initial development of the linear heart tube[J]. Dev Biol, 2001(1), 240:61~76
    [9] van den Hoff MJ, Kruithof BP, Moorman AF. Making more heart muscle[J]. Bioessays, 2004, 26(3):248~61
    [10] Kruithof BP, van den Hoff MJ, Wessels A, et al. Cardiac muscle cell formation after development of the linear heart tube[J]. Dev Dyn, 2003, 227(1):1~13
    [11] Sharma PR, Anderson RH, Copp AJ, et al. Spatiotemporal analysis of programmed cell death during mouse cardiac septation[J]. Anat Rec A Discov Mol Cell Evol Biol, 2004, 277(2):355~69
    [12] Keyes WM, Sanders EJ. Regulation of apoptosis in the endocardial cushions of the developing chick heart[J]. Am J Physiol Cell Physiol, 2002, 282(6):C1348~60
    [13] Fisher SA, Langille BL, Srivastava D. Apoptosis During Cardiovascular Development[J]. Circ Res, 2000, 87(10):856~64
    [14] Epstein JA, Li J, Lang D, et al. Migration of cardiac neural crest cells in Splotch embryos[J]. Development, 2000, 127(9):1869~78
    [15] Snider P, Olaopa M, Firulli AB, et al. Cardiovascular development and the colonizing cardiac neural crest lineage[J]. ScientificWorldJournal, 2007, 3(7):1090~113
    [16] Nakajima Y, Mironov V, Yamagishi T, et al. Expression of smooth muscle alpha-actin in mesenchymalcells during formation of avian endocardial cushion tissue: a role for transforming growth factor beta3[J]. Dev Dyn, 1997, 209(3):296~309
    [17] Porras D, Brown CB. Temporal-spatial ablation of neural crest in the mouse results in cardiovascular defects[J]. Dev Dyn, 2008, 237(1):153~62
    [18] Hutson MR, Kirby ML. Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations[J]. Semin Cell Dev Biol, 2007, 18(1):101~10
    [19] Eisenberg LM, Markwald RR. Cellular recruitment and the development of the myocardium[J]. Dev Biol, 2004, 274(2):225~32
    [20] Sieber-Blum M. Cardiac neural crest stem cells[J]. Anat Rec A Discov Mol Cell Evol Biol, 2004, 276(1):34~42
    [21] Hutson MR, Kirby ML. Neural crest and cardiovascular development: a 20-year perspective[J]. Birth Defects Res C Embryo Today, 2003, 69(1):2~13
    [22] Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to normal aorticopulmonary septation[J]. Science, 1983, 220(4601):1059~61
    [23] Kuratani SC, Kirby ML. Initial migration and distribution of the cardiac neural crest in the avian embryo: an introduction to the concept of the circumpharyngeal crest[J]. Am J Anatomy, 1991, 191(3):215~27
    [24] Kirby ML, Waldo KL. Neural crest and cardiovascular patterning[J]. Circ Res, 1995, 77(2):211~5
    [25] Waldo KL, Lo CW, Kirby ML. Connexin 43 expression reflects neural crest patterns during cardiovascular development[J]. Dev Biol, 1999, 208(2):307~23
    [26] Poelmann RE, Mikawa T, Gittenberger-De Groot AC. Neural crest cells in outflow tract septation of the embryonic chicken heart: differentiation and apoptosis[J]. Dev Dyn, 1998, 212(3):373~84
    [27] Webb S, Qayyum SR, Anderson RH, et al. Septation and separation within the outflow tract of the developmenting heart[J]. J Anat, 2003, 202(4):327~42
    [28] Boot MJ, Steegers-Theunissen RP, Poelmann RE, et al. Cardiac outflow tract malformations in chick embryos exposed to homocysteine[J]. Cardiovasc Res, 2004, 64(2):365~73
    [29] Bartram U, Molin DG, Wisse LJ, et al. Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-beta(2)-knockout mice[J]. Circulation, 2001, 103(22):2745~52
    [30] Waldo K, Miyagawa-Tomita S, Kumiski D, et al. Cardial neural crest cells provide new insight into septation of the cardiac outflow tract: aortic sac to ventricular septal closure[J]. Dev Biol, 1998, 196(2):129~44
    [31] Tomita Y, Matsumura K, Wadamatsu Y, et al. Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart[J]. J Cell Biol, 2005, 170(7):1135~46
    [1] Steventon B, Carmona-Fontaine C, Mayor R. Genetic network during neural crest induction: from cell specification to cell survival[J]. Semin Cell Dev Biol, 2005, 16(6):647~54
    [2] Stoller JZ, Epstein JA. Cardiac neural crest[J]. Semin Cell Dev Biol, 2005, 16(6):704~15
    [3] Pietri T, Eder O, Blanche M, et al. The human tissue plasminogen activator-Cre mouse: a new tool for targeting specifically neural crest cells and their derivatives in vivo[J]. Dev Biol, 2003, 259(1):176~87
    [4] Sato M, Yost HJ. Cardiac neural crest contributes to cardiomyogenesis in zebrafish[J]. Dev Biol, 2003, 257(1):127~39
    [5] Sieber-Blum M. Cardiac neural crest stem cells[J]. Anat Rec A Discov Mol Cell Evol Biol, 2004, 276(1):34~42
    [6] Kirby ML, Waldo KL. Role of neural crest in congenital heart disease[J]. Circulation, 1990, 82(2):332~40
    [7] Hutson MR, Kirby ML. Neural crest and cardiovascular development: a 20-year perspective[J]. Birth Defects Res C Embryo Today, 2003, 69(1):2~13
    [8] Leatherbury L, Gauldin HE, Waldo K, et al. Microcinephotography of the developing heart in neural crest-ablated chick embryos[J]. Circulation, 1990, 81(3):1047~57
    [9] Farrell MJ, Burch JL, Wallis K, et al. FGF-8 in the ventral pharynx alters development of myocardial calcium transients after neural crest ablation[J]. J Clin Invest, 2001, 107(12):1509~17
    [10] Li YX, Zdanowicz M, Young L, et al. Cardiac neural crest in zebrafish embryos contributes to myocardial cell lineage and early heart function[J]. Dev Dyn, 2003, 226(3):540~50
    [11] Martinsen BJ. Reference guide to the stages of chick heart embryology[J]. Dev Dyn, 2005, 233(4):1217~37
    [12] Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to normal aorticopulmonary septation[J]. Science, 1983, 220(4601):1059~61
    [13] Kuratani SC, Kirby ML. Initial migration and distribution of the cardiac neural crest in the avian embryo: an introduction to the concept of the circumpharyngeal crest[J]. Am J Anatomy, 1991, 191(3):215~27
    [14] Kirby ML, Waldo KL. Neural crest and cardiovascular patterning[J]. Circ Res, 1995, 77(2):211~5
    [15] Conway SJ, Henderson DJ, Copp AJ. Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant[J]. Development, 1997, 124(2):505~14
    [16] Chan WY, Cheung CS, Yung KM, et al. Cardiac neural crest of the mouse embryo: axial level of origin, migratory pathway and cell autonomy of the splotch(Sp2H) mutant effect[J]. Development, 2004, 131(14):3367~79
    [17] Serbedzija GN, Bronner-Fraser M, Fraser SE. A vital dye analysis of the timing and pathways of avian trunk neural crest cell migration[J]. Development, 1989, 106(4):809~16
    [18] Tucker GC, Aoyama H, Lipinski M, et al. Identical reactivity of monoclonal antibodies HNK-1 and NC-1:conservation in vertebrates on cells derived from the neural primordium and on some leukocytes[J]. Cell Differ, 1984, 14(3):223~30
    [19] Lopez V, Keen CL, Lanoue L. Prenatal zinc deficiency: influence on heart morphology and distribution of key heart proteins in a rat model[J]. Biol Trace Elem Res, 2008, 122(3):238~55
    [20] Martinsen BJ, Frasier AJ, Baker CV, et al. Cardiac neural crest ablation alters Id2 gene expression in the developing heart[J]. Dev Biol, 2004, 272(1):176~90
    [21] Yamauchi Y, Abe K, Mantani A, et al. A novel transgenic technique that allows specific marking of the neural crest cell lineage in mice[J]. Dev Biol, 1999, 212(1):191~203
    [22] Kirby ML. Molecular embryogenesis of the heart[J]. Pediatr Dev Pathol, 2002, 5(6):516~43
    [23] Lo CW, Cohen MF, Huang GY, et al. Cx43 gap junction gene expression and gap junctional communication in mouse neural crest cells[J]. Dev Genet, 1997, 20(2):119~32
    [24] Lo CW, Waldo KL, Kirby ML. Gap junction communication and the modulation of cardiac neural crest cells[J]. Trends Cardiovasc Med, 1999, 9(3-4):63~9
    [25] Waldo KL, Lo CW, Kirby ML. Connexin 43 expression reflects neural crest patterns during cardiovascular development[J]. Dev Biol, 1999, 208(2):307~23
    [26] Lee M, Brennan A, Blanchard A, et al. P0 is constitutively expressed in the rat neural crest and embryonic nerves and is negatively and positively regulated by axons to generate non-myelin-forming and myelin-forming Schwann cells, respectively[J]. Mol Cell Neurosci, 1997, 8(5):336~50
    [27] Nakamura T, Colbert MC, Robbins J. Neural crest cells retain multipotential characteristics in the developing valves and label the cardiac conduction system[J]. Circ Res, 2006, 98(12):1547~54
    [28] Li J, Chen F, Epstein JA. Neural crest expression of Cre recombinase directed by the proximal Pax3 promoter in transgenic mice[J]. Genesis, 2000, 26(2):162~4
    [29] Li J, Zhu X, Chen M, et al. Myocardin-related transcription factor B is required in cardiac neural crest for smooth muscle differentiation and cardiovascular development[J]. Proc Natl Acad Sci U S A, 2005, 102(25):8916~21
    [30] Brown CB, Feiner L, Lu MM, et al. PlexinA2 and semaphorin signaling during cardiac neural crest development[J]. Development, 2001, 128(16):3071~80
    [31] Morgan SC, Lee HY, Relaix F, et al. Cardiac outflow tract septation failure in Pax3-deficient embryos is due to p53-dependent regulation of migrating cardiac neural crest[J]. Mech Dev, 2008, 125(9-10):757~67
    [32] Jiang X, Rowitch DH, Soriano P, et al. Fate of the mammalian cardiac neural crest[J]. Development, 2000, 127(8):1607~16
    [33] Boot MJ, Gittenberger-De Groot AC, Van Iperen L, et al. Spatiotemporally separated cardiac neural crest subpopulations that target the outflow tract septum and pharyngeal arch arteries[J]. Anat Rec A Discov Mol Cell Evol Biol, 2003, 275(1):1009~18
    [34] Kwang SJ, Brugger SM, Lazik A, et al. Msx2 is an immediate downstream effector of Pax3 in thedevelopment of the murine cardiac neural crest[J]. Development, 2002, 129(2):527~38
    [35] Snider P, Olaopa M, Firulli AB, et al. Cardiovascular development and the colonizing cardiac neural crest lineage[J]. ScientificWorldJournal, 2007, 7:1090~113
    [36] Conway SJ, Henderson DJ, Kirby ML, et al. Development of a lethal congenital heart defect in the splotch (Pax3) mutant mouse[J]. Cardovasc Res, 1997, 36(2):163~73
    [37] Epstein JA, Li J, Lang D, et al. Migration of cardiac neural crest cells in Splotch embryos[J]. Development, 2000, 127(9):1869~78
    [38] Conway SJ, Bundy J, Chen J, et al. Decreased neural crest stem cell expansion is responsible for the conotruncal heart defects within the splotch (Sp(2H))/Pax3 mouse mutant[J]. Cardiovasc Res, 2000, 47(2):314~28
    [39] Miller KA, Davidson S, Liaros A, et al. Prediction and characterisation of a highly conserved, remote and cAMP responsive enhancer that regulates Msx1 gene expression in cardiac neural crest and outflow tract[J]. Dev Biol, 2008, 317(2):686~94
    [40] Huang GY, Wessels A, Smith BR, et al. Alteration in connexin 43 gap junction gene dosage impairs conotruncal heart development[J]. Dev Biol, 1998, 198(1):32~44
    [41] Xu X, Francis R, Wei CJ, et al. Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells[J]. Development, 2006, 133(18):3629~39
    [42] Liu S, Liu F, Schneider AE, et al. Distinct cardiac malformations caused by absence of connexin 43 in the neural crest and in the non-crest neural tube[J]. Development, 2006, 133(10):2063~73
    [43] Toyofuku T, Yoshida J, Sugimoto T, et al. Repulsive and attractive semaphorins cooperate to direct the navigation of cardiac neural crest cells[J]. Dev Biol, 2008, 321(1):251~62
    [44] Suto F, Tsuboi M, Kamiya H, et al. Interactions between plexin-A2, plexin-A4, and semaphorin 6A control lamina-restricted projection of hippocampal mossy fibers[J]. Neuron, 2007, 53(4):535~47
    [45] Lepore JJ, Mericko PA, Cheng L, et al. GATA-6 regulates semaphorin 3C and is required in cardiac neural crest for cardiovascular morphogenesis[J]. J Clin Invest, 2006, 116(4):929~39
    [46] Maschhoff KL, Baldwin HS. Molecular determinants of neural crest migration[J]. Am J Med Genet, 2000, 97(4):280~8
    [47] Liang X, Sun Y, Schneider J, et al. Pinch1 is required for normal development of cranial and cardiac neural crest-derived structures[J]. Circ Res, 2007, 100(4):527~35
    [48] Martinsen BJ, Neumann AN, Frasier AJ, et al. PINCH-1 expression during early avian embryogenesis: implications for neural crest and heart development[J]. Dev Dyn, 2006, 235(1):152~62
    [49] Yang YP, Li HR, Jing Y. Septation and shortening of outflow tract in embryonic mouse heart involve changes in cardiomyocyte phenotype and alpha-SMA positive cells in the endocardium[J]. Chin Med J (Engl), 2004, 117(8):1240~5
    [50] Waldo KL, Hutson MR, Stadt HA, et al. Cardiac neural crest is necessary for normal addition of themyocardium to the arterial pole from the secondary heart field[J]. Dev Biol, 2005, 281(1):66~77
    [51] Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, et al. The outflow tract of the heart is recruited from a novel heart-forming field[J]. Dev Biol, 2001, 238(1):97~109
    [52] Verzi MP, McCulley DJ, De Val S, et al. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field[J]. Dev Biol, 2005, 287(1):134~45
    [53] Ward C, Stadt H, Hutson M, et al. Ablation of the secondary heart field leads to tetralogy of Fallot and pulmonary atresia[J]. Dev Biol, 2005, 284(1):72~83
    [54] Yelbuz TM, Waldo KL, Kumiski DH, et al. Shortened outflow tract leads to altered cardiac looping after neural crest ablation[J]. Circulation, 2002, 106(4):504~10
    [55] Hutson MR, Zhang P, Stadt HA, et al. Cardiac arterial pole alignment is sensitive to FGF8 signaling in the pharynx[J]. Dev Biol, 2006, 295(2):486~97
    [56] Niessen K, Karsan A. Notch signaling in cardiac development[J].Circ Res, 2008, 102(10):1169~81
    [57] Goddeeris MM, Schwartz R, Klingensmith J, et al. Independent requirements for Hedgehog signaling by both the anterior heart field and neural crest cells for outflow tract development[J]. Development, 2007, 134(8):1593~604
    [58] Gittenberger-De Groot AC, Bartelings MM, Deruiter MC, et al. Basics of cardiac development for the understanding of congenital heart malformations[J]. Pediatr Res, 2005, 57(2):169~76
    [59] Lamers WH, Moorman AF. Cardiac septation: a late contribution of the embryonic primary myocardium to heart morphogenesis[J]. Circ Res, 2002, 91(2):93~103
    [60] Guerrero A, Icardo JM, Duran AC, et al. Differentiation of the cardiac outflow tract components in alevins of the sturgeon acipenser naccarii(osteinchthyes, acipenseriformes): implications for heart evolution[J]. J Morphol, 2004, 260(2):172~83
    [61] Argu?llo C, Delacruz MV, Sanchez, C. Ultrastructural and experimental evidence of myocardial cell differentiation into connective tissue cells in embryonic chick heart[J]. J Mol Cell Cardiol, 1978, 10(4):307~15
    [62] Sánchez Gómez C, Pliego Pliego L, Contreras Ramos A, et al. Histological study of the proximal and distal segments of the embryonic outflow tract and great arteries[J]. Anat Rec A Discov Mol Cell Evol Biol, 2005, 283(1):202~11
    [63] van den Hoff MJB, van den Eijinde SM, Viragh S, et al. Programmed cell death in the developing heart[J]. Cardiovasc Res, 2000, 45(3):603~20
    [64] Rana MS, Horsten NC, Tesink-Taekema S, et al. Trabeculated right ventricular free wall in the chicken heart forms by ventricularization of the myocardium initially forming the outflow tract[J]. Circ Res, 2007, 100(7):1000~7
    [65] Kern CB, Norris RA, Thompson RP, et al. Versican proteolysis mediates myocardial regression duringoutflow tract development[J]. Dev Dyn, 2007, 236(3):671~83
    [66] Cai DH, Vollberg TM Sr, Hahn-Dantona E, et al. MMP-2 expression during early avian cardiac and neural crest morphogenesis[J]. Anat Rec, 2000, 259(2):168~79
    [67] Bartelings MM, Gittenberger-De Groot AC. The outflow tract of the heart-embryologic and morphologic correlations[J]. Int J Cardiol, 1989, 22(3):289~300
    [68] Webb S, Qayyum SR, Anderson RH, et al. Septation and separation within the outflow tract of the developing heart[J]. J Anat, 2003, 202(4):327~42
    [69] Hutson MR, Kirby ML. Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations[J]. Semin Cell Dev Biol, 2007, 18(1):101~10
    [70] Abdulla R, Blew GA, Holterman MJ. Cardiovascular embryology[J]. Pediatr Cardiol, 2004, 25(3):191~200
    [71] Thompson RP, Sumida H, Abercrombie V, et al. Morphogenesis of human cardiac outflow[J]. Anat Rec, 1985, 213(4):578~86, 538~9
    [72] Restivo A, Piacentini G, Placidi S, et al. Cardiac outflow tract: a review of some embryogenetic aspects of the conotruncal region of the heart[J]. Anat Rec A Discov Mol Cell Evol Biol, 2006, 288(9):936~43
    [73] Rothenberg F, Fisher SA, Watanabe M. Sculpting the cardiac outflow tract[J]. Birth Defects Res C Embryo Today, 2003, 69(1):38~45
    [74] Waldo K, Miyagawa-Tomita S, Kumiski D, et al. Cardiac neural crest cells provide new sight into septation of the cardiac outflow tract: aortic sac to ventricular septal closure[J]. Dev Biol, 1998, 196(2):129~44
    [75] Orts-Llorca F, Puerta Fonolla J, Sobrado J. The formation, septation and fate of the truncus arteriosus in man[J]. J Anat, 1982, 134(Pt 1):41~56
    [76] Waldo KL, Hutson MR, Ward CC, et al. Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart[J]. Dev Biol, 2005, 281(1):78~90
    [77] Qayyum SR, Webb S, Anderson RH, et al. Septation and valvar formation in the outflow tract of the embryonic chick heart[J]. Anat Rec, 2001, 264(3):273~83
    [78] Majesky MW. Developmental basis of vascular smooth muscle diversity[J]. Arterioscler Thromb Vasc Biol, 2007, 27(6):1248~58
    [79] Ya J, van den Hoff MJ, de Boer PA, et al. Normal development of the outflow tract in the rat[J]. Circ Res, 1998, 82(4):464~72
    [80] Bergwerff M, Verberne ME, DeRuiter MC, et al. Neural crest cell contribution to the developing circulatory system: implications for vascular morphology[J]? Circ Res, 1998, 82(2):221~31
    [81] van den Hoff MJ, Moorman AF, Ruijter JM, et al. Myocardialization of the cardiac outflow tract[J]. Dev Biol, 1999, 212(2):477~90
    [82] van den Hoff MJ, Kruithof BP, Moorman AF, et al. Formation of myocardium after the initialdevelopment of the linear heart tube[J]. Dev Biol, 2001, 240(1):61~76
    [83] Kruithof BP, van den Hoff MJ, Tesink-Taekema S, et al. Recruitment of intra- and extracardiac cells into the myocardial lineage during mouse development[J]. Anat Rec A Discov Mol Cell Evol Biol, 2003, 271(2):303~14
    [84] Eisenberg LM, Markwald RR. Cellular recruitment and the development of the myocardium[J]. Dev Biol, 2004, 274(2):225~32
    [85] Poelmann RE, Mikawa T, Gittenberger-De Groot AC. Neural crest cells in outflow tract septation of the embryonic chicken heart: differentiation and apoptosis[J]. Dev Dyn, 1998, 212(3):373~84
    [86] Sharma PR, Anderson RH, Copp AJ, et al. Spatiotemporal analysis of programmed cell death during mouse cardiac septation[J]. Anat Rec A Discov Mol Cell Evol Biol, 2004, 277(2):355~69
    [87] Keyes WM, Sanders EJ. Regulation of apoptosis in the endocardial cushions of the developing chick heart[J]. Am J Physiol Cell Physiol, 2002, 282(6):C1348~60
    [88] Bartram U, Molin DG, Wisse LJ, et al. Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-beta(2)-knockout mice[J]. Circulation, 2001, 103(22):2745~52
    [89] Waller BR 3rd, McQuinn T, Phelps AL, et al. Conotruncal anomalies in the trisomy 16 mouse: an immunohistochemical analysis with emphasis on the involvement of the neural crest[J]. Anat Rec, 2000, 260(3):279~93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700