升力式再入飞行器再入制导与末端能量管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文跟踪升力式再入飞行器的研究进展,以工程应用为目标,对升力式再入飞行器的最新发展、再入制导方法和末端能量管理(Terminal Area Energy Management,TAEM)方法进行研究。
     针对新一代升力式再入飞行器的发展特点,详细调研了目前世界各军事航天强国发展的多种升力式可重复使用飞行器和升力式再入打击飞行器,并分析了其关键技术和未来发展趋势。
     以研究升力式飞行器再入飞行特性为研究目的,考虑地球自转和扁率的影响,建立了升力式飞行器的再入动力学模型。在此基础上,参考现有航天飞机和飞船返回舱的再入驻点热流、过载、动压和控制等方面的约束,计算了给定升力式飞行器的再入走廊。
     为了给出适应新一代升力式再入飞行器的再入制导方法,详细分析了目前最为适用的航天飞机再入制导方法。针对航天飞机再入制导方法的缺点,目前再入制导发展的主要方向是在线轨迹规划技术,以提高飞行器返回时的安全性和任务适应性。本文在参考多种再入制导方法的基础上,设计改进的加速度制导方法中的轨迹规划算法来在线生成参考轨迹,并采用了航天飞机再入制导的轨迹跟踪算法进行仿真验证,仿真结果检验了方法的有效性。
     为了实现升力式飞行器再入飞行后安全准确地降落在指定的机场跑道,末端能量管理段制导是关键。在参考航天飞机TAEM轨迹规划方法的基础上,将TAEM段轨迹的规划问题转化为由四个几何参数确定的轨迹优化问题,在给出的性能指标下,通过优化算法得到了可行的TAEM段优化轨迹。最后用设计的TAEM段轨迹跟踪算法对参考轨迹进行了仿真验证,仿真结果表明了本文TAEM制导方法的适用性。
Following the research and development of lifting reentry vehicle, this paper studies on three works: the newly development of reentry vehicles, reentry guidance and terminal area energy management (TAEM) with the purpose of engineering application.
     According to the development characteristics of the 2nd generation lifting reentry vehicle, this paper does lots of research on the reusable launch vehicle and reentry attack weapons newly developed by some military space powers. Also this paper points out the development trend and key technologies for the future lifting reentry vehicles.
     In order to research the reentry flight of the lifting reentry vehicle, the reentry dynamical and kinematical model is established, considering the earth rotation and flattening. On this basis, a glide reentry corridor for lifting reentry vehicle is computed refer to the space shuttle and capsules’flight contains of stagnation point thermal Flow, normal acceleration, dynamic pressure and control etc.
     This paper surveys kinds of reentry guidance algorithms, especially the space shuttle guidance, in order to get the useful reentry guidance. Considering the shortage of space shuttle guidance, the main improvement of newly reentry guidance is the on-board trajectory planning. This technology can improve the security and flexibility of vehicle’s reentry flight. This paper uses the on-board trajectory planning algorithm of evolved acceleration guidance logic for entry (EAGLE), and uses the shuttle’s trajectory tracking algorithm to make a simulation validation. Results show that the guidance is useful.
     TAEM is the key phase for the lifting reentry landing on the runway accurately. Based on the space shuttle’s trajectory planning and guidance of TAEM, the trajectory planning is transformed into a four geometry parameters’trajectory optimization problem. An optimal trajectory is obtained by a trajectory optimization method with proper performance index. Then, the trajectory is tracked by the designed guidance tracking algorithm. The simulation results show that the TAEM guidance logic is effective and accurate.
引文
[1].刘暾,赵钧.空间飞行器动力学[M].哈尔滨:哈尔滨工业大学出版社,2003:131-150.
    [2].赵汉元.飞行器再入动力学和制导[M].长沙:国防科技大学出版社, 1997: 382-384.
    [3].汤一华,余梦伦等.第二代可重复使用运载器及其再入制导技术[J].导弹与航天运载技术.2010, (1): 27-31.
    [4].张庆振,任章.天地往返可重复使用运载器再入飞行GNC关键技术[J].航天控制, 2006,24(5): 27-30.
    [5]. Hanson J. M. New Guidance for New Launchers[J]. Aerospace American, 2003, (3): 36-41.
    [6]. Thomas E. Moore. Space Shuttle Entry Terminal Area Energy Management[R]. NASA B. Johnson Space Center, Nov, 1991.
    [7]. Eugen Sanger and Irene Bredt. A Rocket Drive for Long-Range Bombers,Translation CGD-32,Washington: Technical Information Branch, U.S. Navy Bureau of Aeronautics, 1952.
    [8].唐伟.重复使用飞行器回顾与展望[C].中国第一届近代空气动力学与气动热力学学会议论文集.中国空气动力研究与发晨中心,2006, (1): 2-6.
    [9].王振国,罗世彬等.可重复使用运载器研究进展[M].长沙:国防科技大学出版社,2004:45-56.
    [10].张芯.美国航天飞机第133次飞行发现号航天飞机完美谢幕[J].国际太空, 2011, (4): 51~55.
    [11]. Brian R. Hollis, Richard A. Thompson, Kelly J. Muiphy. X-33 Aerodynamic and Aeroheating Computations for Wind tunnel and Flight Conditions. AIAA Atmospheric Flight Mechanics Conference, Portland ,OR, August9-11,1999. AIAA-99-4163.
    [12].许红英,侯丹等.美国空军发射X-37B飞行器简析[J].中国航天, 2010, (6): 21-25.
    [13]. George Richie, Colorado Springs. The Common Aero Vehicle: Space Delivery System of the Future. AIAA Space Technology Coference and Exposition, Albuquerque, 28-30, Sept., 1999. AIAA 99-4435.
    [14]. Dr. Hussen Youssef, Dr. Rajiv Chowdhry. Hypersonic GlobalReach Trajectory Optimization[J]. AIAA Guidance, Navigation and Control Conference and Exhibit.16-19 August 2004.
    [15]. Steven HW, Ming Tang, Morris, etc. Falcon HTV-3X-A Reusable Hypersonic Test Bed. AIAA-2008-2544.
    [16].唐伟,桂业伟,方方.新型升力式再入飞船返回舱外形选型研究[J].宇航学报,2008,29(1):84~88.
    [17].唐伟,张勇,陈玉星等.Clipper返回舱气动布局优化方法研究[J].宇航学报,2006,27(Sup):132-135.
    [18].朱毅麟.新型航天器-航天飞机[J].太空探索.2005,(10):14-15
    [19]. 2000年的“霍托尔”和“桑格尔2”航天飞机[J].1987, (9):1-11.
    [20].胡建学,陈克俊,赵汉元等.RLV再入标准轨迹制导与轨道预测制导方法比较分析[J].国防科技大学学报,2007,29(1):26-29.
    [21]. Morth H. R. Reentry Guidance for Apollo[R]. MIT Instrumentation Lab Report, R-532,1996.
    [22]. Harpold J. C., Graves C.A. Shuttle Entry Guidance[J].Journal of the Astronautical Sciences,1979, 101052(3):239-268.
    [23]. Jon C. Harpold, Claude A. Graves. Shuttle Entry Guidance[J].Journal of Astronautical Sciences,Vol27,July-Sept,1979.
    [24]. E.Di Sotto, J.Branco. PHOEBUS:GNC Design and performance Assessment for super orbital Reentry[C]. 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, Germany, 19-22 Oct 2009, AIAA 2009-7382.
    [25]. Dukeman G. A. Profile-following Entry Guidance Using Linear Quadratic Regulator Theory[R].AIAA-2002-4457, 2002.
    [26]. Youssef H., Chowdhry R., Lee H., Rodi P. Predictor-Corrector Entry Guidance for Reusable Launch Vehicles[R].AIAA-2001-4043,2001.
    [27]. Shen Zuojun, Lu Ping. Onboard Generation of Three Dimensional Constrained Entry Trajectories[J]. Journal of Guidance, Control and Dynamics, 2003,26(1):111-121.
    [28]. Ping Lu. Predictor-Corrector Entry Guidance for Law-Lifting Vehicles[J]. Journal of Guidance, Control and Dynamics, 2008, 31(4): 1067-1075.
    [29]. Mease K. D.,Chen D. T. A Three Dimensional Predictive Entry GuidanceApproach[R]. AIAA-2000-3959, 2000.
    [30]. Leavitt J. A., Saraf A., Chen D. T. Performance of Evolved Acceleration Guidance Logic for Entry(EAGLE)[R].AIAA-2002-4456,2002.
    [31]. Schierman J. D.,Hull J. R.,Gandhi N.,etc. Flight test Results of an Adaptive Guidance System for Reausable Launch Vehicle[R]. AIAA-2004-4771,2004.
    [32]. Schierman J. D.,Hull J. R. In-flight Entry Trajectory Optimization for Reusable Launch Vehicle[R].AIAA-2005-6434,2005.
    [33]. Bollino K. P., Ross I. M., Doman D. D. Optimal Nonlinear Feedback Guidance for Reentry Vehicle[R].AIAA-2006-6074,2006.
    [34]. Hu J., Chen K., Zhao H.,etc. Hybrid Entry Guidance for Reusable Launch Vehicle[J]. Journal of Astronautics,2007,28(1):213-217.
    [35]. Thomas E. Moore.“Space Shuttle Entry Terminal Area Energy Management”, NASA Lyndon B. Johnson Space Center,Novemenber 1991.
    [36].沃云峰.可重复使用飞行器末端能量管理段轨迹与制导.西北工业大学硕士论文,2005:13-44.
    [37]. Kenneth R. Horneman, Craig A.Kluever. Terminal Area Energy Management Trajectory Plannning for an Unpowered Reusable Launch Vehicle[C]. AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, Rhode Island, 15-19 August 2004.AIAA 2004-5183.
    [38]. Craig A. Kluever. Rapid Terminal-Trajectory Planner for an Unpowered Reuseable Launch Vehicle, University of Missouri-Columbia, Columbia, Missouri, August 2009.AIAA 2009-5766.
    [39]. Francisco M.C.C. Development and Design of the Terminal Area Energy Management Guidance for a Reusable Launch Vehicle. Master of Science Thesis, The Delft of Technology at Delft, 2003: 1-16.
    [40]. Schierman, J.D., Hull, J.R., and Ward, D.G.. Adaptive Guidance with Trajectory Reshaping for Reusable Launch Vehicles, Aug 2002,AIAA Paper 02-4458.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700