ROV被动式升沉补偿系统理论及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海洋活动的进一步开展、海洋资源的深入开采以及近年来国内外海底观测网技术的大力发展,无人遥控潜水器(ROV)被越来越广泛地得到应用。但是,母船在波浪作用下产生横摇、纵摇和升沉运动,这种运动特别是升沉运动通过主脐带传递到吊放的ROV等水下设备,将导致设备无法正常工作或对连接的缆索或脐带系统造成破坏。因此,有必要研制一套升沉补偿系统,以减小升沉耦合运动传导、吸收加速度动力、减少脐带松弛,以改善ROV运动控制条件、防止脐带缆破坏、提高系统作业安全性。
     本文源自国家863重点项目——“4500m深海作业系统”,其目标是研制一套实用化的强作业型深海遥控潜水器(ROV)及其作业工具系统(水下升降装置、升沉补偿器、水下作业与救援工具等),以实现海底探测和取样、深海海底观测网布放和维修等作业功能。本文采用理论分析、计算机仿真和模型实验相结合的方法,对ROV系统的被动式升沉补偿器进行了研究。
     首先,论文在深入分析国内外现有的各种升沉补偿技术及各自优缺点的基础上,确定以串联被动式升沉补偿器作为4500m ROV系统的升沉补偿方案。同时根据4500m ROV的本体结构特征和吊放使用的脐带缆参数以及海况特征,提出了补偿器的性能指标,并对其进行了参数设计。
     其次,由于所设计的被动式升沉补偿器是非线性弹性系统,本文对串联被动补偿器的带缆式ROV系统建立了完整的动力学模型,推导并计算出系统在不同深度下的弹性刚度、自然周期等特性,并采用经典四阶龙格库塔法解微分方程、使用MATLAB仿真的方法,计算了系统在三种典型海况下的动力响应,进而分析补偿器的补偿性能,还对脐带缆弹性的影响进行了分析。此外,针对补偿器系统在长周期海况下,特别是大深度作业时,补偿效率低,甚至可能产生共振的问题,本文提出了在补偿器设置流量调节阀调节系统阻尼来提高补偿效率的解决方案,并对该方案通过数值仿真计算进行了验证。
     最后,本文对被动式补偿器进行了缩尺比为1:4的模型试验研究,通过模拟补偿器在不同海况和ROV不同作业深度下的补偿效果,来验证和提高设计及计算分析的可靠性,并为实际系统提供经验。
With the expansion of marine activities and the deep-going exploitation of marine resources, as well as the rapid development of Seafloor Observatory Network in recent years, Remotely Operated Vehicle (ROV) is becoming more and more widely used in these areas. However, the roll, pitch and especially the heave motion of the mother ship might transmit through the umbilical tether to the Vehicle body, which might futhur cause operational failure to the vehicle or result in damage to the tether. Therefore, a heave compensation system is needed to reduce the induced vehicle motion, alleviate the dynamic tension and avoid slack of the tether which is a precause of snap load, so as to improve the vehicle control condition and prevent cable destruction, with an aim to enhance the operational safety.
     This paper is part of the National High Technology Research and Development Program project: 4500m Deep Ocean System, which is designed to develop a strong work class ROV and its operating tool system, including the Underwater Elevator, the Heave Compensator, the Operating and Rescuing Tools, as to complete such underwater tasks as seabed surveying and sampling, seafloor observatory network deploying, installing and repairing.
     This paper conducts the research of passive heave compensator for tethered ROV system through theoretical analysis, computer simulation and model experiment.
     Firstly, after studying the existing compensation technologies at home and abroad, and analyzing their pros and cons, the paper selects the flying sheave heave compensator as the compensation scheme for 4500m ROV system. At the same time, it figures out the compensator performance objective based on the designed ROV vehicle body and the umbilical tether parameters, thus designs the compensator parameters.
     Secondly, as the passive compensator is a nonlinear system, this paper builds the overall dynamic model of the whole in-line flying sheave heave compensation tethered ROV system, deduces and calculates the system characteristics like, the spring stiffness and natural period. Numerical simulations of system response in three typical kinds of sea state conditions, solved by the classic fourth-order Runge-Kutta scheme were done, so as to verify the compensator performance. Besides, it analyses the impact of tether’s elasticity. To the question of low compensation efficiency and even the resonance situation in long seas, especially in deep water, the paper proposes a novel idea of adding a valve to regulate the system damping to solve that problem, and verifys this idea through numerical simulation later.
     Finally, this paper carries out the reduced scale model experimental research, simulates compensator response in different sea states and in various operating depths, to verify and improve the reliability of calculation analysis, while providing experiences for the real system.
引文
[1] U.S. Congress. Office of Technology Assessment. Marine Minerals: Exploring Our New Ocean Frontier, OTA-O-342 (Washington, DC: U.S. Government Printing Office, July1987).
    [2]吕华.海洋开发与管理的探讨[J].地质科技管理. 1999, (1): 7-11.
    [3]田洪亮,杨金华.全球深海油气勘探开发形式分析与展望[J].国际石油经济, 2006, 14(9): 1-3.
    [4]倪国江.海洋资源开发技术发展趋势及我国的发展重点.海洋技术, 2009, 28(1): 133-136.
    [5]刘淮.国外深海技术发展研究[J].船艇, 2006, (258) 6-18; (260)18-23; (262)16-23.
    [6]蔡叔群,张文静,王盛安.海洋环境观测技术研究进展[J].热带海洋学报, 2007, (3): 76-81.
    [7]王项南,马丽珊,熊焰等.深海观测平台技术[J].海洋技术, 2007, 26(3): 16-18.
    [8]罗续业,李彦.海王星海底长期观测系统的技术分析明[J].海洋技术, 2006, 25(3): 15-18.
    [9]卜文瑞,石学法.大洋中脊地质研究的进展与趋势[J].海洋科学进展, 2003,21(4), 482-486.
    [10]同济大学海洋地质实验室.国际海底观测系统调查报告[R].上海:同济大学, 2006: 148.
    [11]刘新月,王清,周祖翼.日本的综合大洋钻探计划[J].地球科学进展, 2004, 19(4): 552-557.
    [12]刘志飞,拓守廷. IODP计划的新进展[J].地球科学进展, 2009,24(12): 1318-1324.
    [13]彭学伦.水下机器人的研究现状与发展趋势[J].机器人技术与应用, 2004, (4): 43-47.
    [14] Jiancheng Yu, Aiqun Zhang, Zhigang Li, Kuichen Yan. The Development and the challenges of underwater vehicles for polar expedition. Underwater Technology, 2004. UT '04. 2004 : 95-99.
    [15]宋辉. ROV的结构设计及关键技术研究[硕士论文].哈尔滨:哈尔滨工程大学. 2008.
    [16]王若兰,岩明.国外水下机器人发展现状[J].机器人情报, 1991, (3): 8-17
    [17]李一平.水下机器人——过去、现在和未来[J].自动化博览, 2002, 3:153-155.
    [18]王握文.世界机器人发展历程[J].国防科技(北京), 2001, 22(l): 70-75.
    [19]蒋新松,封锡盛,王棣棠.水下机器人.辽宁科学技术版社, 2000: 37,86-88, 94-96, 360.
    [20]任福军,张岚,王殿军,孟庆鑫.水下机器人的发展现状[J].佳木斯大学学报(自然科学版), 2000, 18(4): 317-320.
    [21] McFarlane, J.R. Underwater technology 2000 ROVs and AUVs: tools for exploring, exploiting and defending the ocean frontier. Underwater Technology, 2000. UT 00. Proceedings of the 2000 International Symposium on.2000: 465-471.
    [22]封锡盛.从有缆遥控水下机器人到自治水下机器人[J].中国工程科学, 2000, 2 (12): 29-33,58.
    [23]蒋新松.未来机器人技术的发展方向[J].机器人技术与应用, 1997(2): 2-5.
    [24]王京齐,朱春景.潜艇水下操纵安全性研究概述[J].船海工程, 2006,35(6): 38-40.
    [25] D. Fornari. A Perspective on two decades of deliberations regarding deep submergence facility requirements and suggestions for the future. http://www.unols.org/committees/dessc/papers/DJF_commun_letter_final.pdf.
    [26] F. R. Driscoll, R. G. Lueck, M. Nahon.. A comparison between ship-mounted and cage-mounted passive heave compensation systems [C]// IEEE Conferences OCEANS '98 Conference Proceedings. Piscataway, NJ: IEEE Press, 1998: 1449– 1455.
    [27]杨文林,张竺英,张艾群.水下机器人主动升沉补偿系统研究[J].海洋工程, 2007, 25(3): 68-72.
    [28] Yang Wenlin, Zhang Zhuying, Zhang Aiqun. Research on an Active Heave Compensation System for Remotely Operated Vehicle. 2008 International Conference on Intelligent Computation Technology and Automation. 2008: 407-410.
    [29] F. R. Driscoll, R. G. Lueck, M. Nahon. The motion of a deep-sea remotely operated vehicle system. Part 1: Motion observations [J]. Ocean Engineering, 2000, 27(1): 29-56.
    [30] J. M. Niedzwecki, S. K. Thmpi. Snap Loading of Marine Cable Systems [J]. Applied Ocean Research, 1991, 13: 201-218.
    [31] Kikuo Hashimoto, Masayuki Watanabe, Shozo Tashiro, Hiroyasu Momma [J]. Missing of the ROV Kaiko Vehicle-Problem on the Secondary Cable. Oceans 2004, 2: 804-811.
    [32] James E. damson. Efficient Heave Motion Compensation for Cable Suspended System. Under water Intervention 2003. http://www.oceanworks.com/cms/pdfs/OW2003_Heave%20Co mpensation.pdf
    [33] www.smdhydrovision.com.
    [34] M. J. Purcell, N. C. Forrster. Bobbing crane heave compensation for the deep towed fiber optic survey system [C]// Society of Naval Architects and Marine Engineers New England Section, Fiftieth Anniversary Proceedings. Woods Hole, MA: Woods Hole Oceanographic Institute, 1994: 1-16.
    [35]王海波.水下拖曳升沉补偿液压系统及其控制研究[硕士论文].杭州:浙江大学.2009.
    [36]白鹿,张彦廷,张作龙等.钻柱液压升沉补偿系统参数计算及比较分析[J].石油矿场机械, 2009, 38(3): 10-13.
    [37] Leland R Robichaux, Jan T Hatleskog. Semi-active heave compensation system for marine vessels: United States: 005209302A, 1993.
    [38]徐小军,何平,徐循等.基于DSP的主动式波浪补偿起重机控制系统设计[J].国防科技大学学报, 2008, 30(1): 110-114.
    [39]带自动波浪补偿的吊放装置[J].机电设备,2000, 6: 43-44.
    [40] Good fellow David. Heave compensation & transducer stabilization for dredging applications[J]. World dredging & marine construction, 1985, 21(5): 39-41.
    [41]严梅剑.海上航行横向补给装置选型设计[J].船舶,2004,(1): 51-53.
    [42]卢永锦.海上横向补给高价索道系统数学模型研究[J].中国造船, 1996, (1): 17-22.
    [43] Bob Wilde, Jake Ormond. Subsea heave compensators [EB/OL]. http://www.intermoor.com/Images/Interior/subsea%20heave%20compensators%20(dot,%202009).pdf.
    [44] F. R. Driscoll, R. G. Lueck, M. Nahon. Development and Validation of a Lumped mass Dynamics Model of a Deep sea ROV system[J]. Applied Ocean Research, 2000, 22 (3) 169-182.
    [45] Andreas Huster, Hans Bergstrom, Jeff Gosior and Derek White. Design and Operational Performance of a Standalone Passive Heave Compensation System for a Work Class ROV. Oceans 2009, 1-8.
    [46] Svein I. Sagatun. Active Control of Underwater Installation. IEEE Transactions on Control System Technology, 2002, 10(5): 743-748.
    [47] K. D. Do, J Pan. Nonlinear Control of an Active Heave Compensation System [J]. Ocean Engineering, 2008, 35: 558-571.
    [48] Jorg Neupert, Tobias Mahl, Bertrand Haessig, Oliver Sawodny, Klaus Schneider. A Heave Compensation Approach for Offshore Cranes.
    [49] Umesh A. Korde. Active Heave Compensation on Drill Ships in Irregular Waves [J]. Ocean Engineering, 1998, 25 (7), 541-561.
    [50] Ferial EL-Hawary, G. A. N. Mbamalu. Dynamic Heave Compensation Using Robust Estimation Techniques [J]. Ocean Engineering, 22(4): 257-273.
    [51] J. W. Dalmaijer, M. R. L. Kuikpers. Heave Compensation System for Deep Water Installations.
    [52]肖体兵.深海采矿扬矿管重载半主动升沉补偿系统控制器的研究[J]. Proceeding of the 27th Chinese Control Conference.2008: 194-197.
    [53]肖体兵.深海采矿装置智能升沉补偿系统的研究[博士论文].广州:广东工业大学.2004.
    [54] Leland R Robichaux, Jan T Hatleskog. Semi-active Heave Compensation system for Marine Vessels: United States, 005209302A [P]. 1993-05-11.
    [55]肖体兵.深海采矿扬矿管重载半主动升沉补偿系统控制器的研究[J]. Proceeding of the 27th Chinese Control Conference, 2008: 194-197.
    [56] Andreas Huster, Adrian Dayani, David Lo. Design and Testing of a Snap Load Alleviator for a Submarine Rescue Vehicle Handling System [C]// IEEE CONFERENCES OCEANS 2007. Piscataway, NJ: IEEE Press, 2007: 1-9.
    [57]郭圣敏.深海采矿装置智能升沉补偿系统模糊自整定PID控制研究[硕士论文].长沙:中南大学. 2006.
    [58] Franz S. Hover, Mark A. Grosenbaugh, Michael S. Triantafyllou. Calculation of Dynamic Motions and Tensions in Towed Underwater Cables [J]. Oceanic Engineering, 1994, 19(3):449-457.
    [59]黄永强,陈树勋.机械振动理论.机械工业出版社,1996.
    [60]张利平.液压传动与控制.西北工业大学出版社,2005.
    [61] Le Sun, Jingye Wang, Xuehui Yang, Anyuan Han. Theory of Simulation Model and Research Object. 2008 Asia Simulation Conference-7th International Conference on Simulation and Scientific Computing, 979-983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700