海洋拖曳绞车液压调速及张力波动抑制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋拖曳绞车作为一种重要的装备机械,在海洋研究及海洋开发等领域得到了广泛应用,液压调速及拖曳张力波动抑制是海洋拖曳绞车的关键技术之一,对其进行研究有助于提高海洋拖曳绞车的控制特性及可靠性,具有重要的学术意义和工程应用价值。
     通过理论分析和建模仿真,研究了拖曳绞车采用不同液压调速回路下的调速特性;特别就平衡阀对拖曳绞车调速的稳定性及动态调速性能的影响进行了深入的研究;.同时分析并建立了拖曳绞车负载—拖体及拖缆系统的基本特性及数学模型,探讨了拖曳张力波动抑制的工作机理,提出了基于比例溢流阀的拖曳张力波动抑制液压控制系统;并采用校正及主动运动跟踪的控制方案,对拖曳张力波动抑制控制进行了研究,取得了较好的张力波动抑制效果。
     论文各章内容分述如下:
     第一章对海洋拖曳绞车做了基本介绍,回顾了国内外海洋拖曳绞车液压调速及拖曳张力波动抑制相关技术的国内外研究现状
     第二章对泵控闭式及开式调速回路在海洋拖曳绞车调速方面的应用特性进行了研究。泵控开式回路在应用于海洋拖曳绞车的收放时一般需要加入平衡阀以平衡负负载,平衡阀的加入极大的影响了系统的动态特性,论文通过理论分析和建模仿真研究了系统各参数对平衡阀系统动态特性的影响,并提出了平衡阀回路设计的一般准则。
     第三章通过对海洋拖曳绞车阀控调速回路理论分析和建模仿真,研究了阀控系统在海洋拖曳绞车收放调速过程中的应用特性。
     第四章分别提出了应用于海洋拖曳绞车的主动式、被动式和综合式拖曳张力波动抑制液压系统,并对各种工作方式张力波动抑制液压系统的工作机理进行了深入剖析和理论研究。
     第五章针对第五章所提出基于比例溢流阀的综合式拖曳张力波动抑制液压系统,设计了内层校正控制器和外层主动控制器,内层校正控制器可独立工作,其工作时系统可作为被动式张力波动抑制系统稳定工作,当内层校正控制器与外层主动控制器配合工作时系统作为主动式张力波动抑制系统工作,可取得显著的张力波动抑制性能。
     第六章对论文的工作进行了总结,并展望了今后的研究工作和方向
As an important kind of construction machineries, marine towing winches have been widely applied in the marine research and development. Since both hydraulic speed control and tension fluctuation suppression are key techologies for the marine towing winch, the research on them will help to improve the control characteristics and reliability of the marine towing winch.
     Through theoretical analysis, modeling & simulation, characteristics of different hydraulic speed controlling circuits of towing winches have been studied, special efforts have been focused on the study of dynamic performance of the winches involving counterbalance valves; the basic characteristics and mathematical model of the towed-sytstem have been studied and the principle of tension fluctuation suppression was discussed, a hydraulic control system based on the proportional relief valve has been proposed to suppress the tension fluctuation. Both internel and external controller have been developed for the proposed system and the simulation has proved that both internel and external controller work well.
     The main contents of each chapter are as follows:
     In the first chapter,a brief introduction to the marine towing winch has been made, a review of domestic and international reseach progress on speed control and tension fluctuation suppression for the marine towing winch has been introduced.
     In the second chapter, the basic mathematical models of the pump controlled circuits have been introduced and the characteristics have been analysed. In the pump controlled open circuits, a counterbalance valve has to been involved to balance the negative loads. Counterbalance valves may cause the system unstable, so special efforts have been focused on the dynamic performance analysis of the system involving counterbalance valves.
     In the third chapter, the basic mathematical models of the valve controlled circuits have been introduced and the characteristics have been analysed.
     In the fourth chapter, the active and passive prinple of the tension fluctuation suspression has been discussed, and a hydraulic system based on proportional relief valve has been proposed for tension fluctuation.
     In the fifth chapter, an controller has been proposed for the hydraulic system. The simulation results show that the controller can work well.
     The last chapter summarizes the paper work, and prospects the direction of future research
引文
[1]Mike Clifford.卷扬机驱动系统.北京:北京农科院出版社,1980,83-142.
    [2]朱熙耕.45吨静液压绞车的研制.天津:天津大学,2005
    [3]郑明.海洋意识与海洋战略.中国远洋航务公告,2005.3
    [4]左立平.海洋发展战略国际盘点.瞭望新闻周刊,2005.7.11
    [6]Brian Beasley, Cooper Best, Derek Davis. Design of flying eye remotely operated vehicle for deep water surveillance. IEEE,2000:2075-2099
    [7]黄向青,陈太浩,梁开.海洋水下起伏式拖体U-TOW的技术特点及应用.海洋技术,2005:24(3):25-29
    [8]张兆英,王抗美.拖曳式CTD测量技术研究.海洋技术,2004,23(4):18-21
    [9]Joynt John, Moore Tom. Data acquisition using an integrated intelligent towed body with an intelligent CTD system. Proceedings of the 1994 IEEE Oceans Conference,1994, v1:408-413
    [10]于铭,杨士莪.拖曳式水平鱼探仪海上试验研究.应用声学,2009.7,28(4):254-258
    [11]侯胜利,刘海生,王南萍.海洋拖曳式Y能谱仪在渤海的应用,2007,32(4):528-532
    [12]刘孟庵.拖曳线列阵声呐技术发展综述.声学与电子工程,2006,3:1-5
    [13]钱东,张少悟.鱼雷防御技术的发展与展望.鱼雷技术,2005,13(2):1-6
    [14]魏建江,尹东源,刘桂兰,等.CS-1型侧扫声纳系统.海洋技术,1997,16(1):1-13
    [15]Raymond A. BalIweg. Raytheon's Integrated Systems for UPLOW-A Cable Burial System[J]. IEEE,2000:249-265
    [16]Gray D.A., Anderson B.D.O., Bitmead R.R., Towed Array Shape Estimation Using Kalman Filters-Theoretical Models, IEEE JOURNAL OF OCEANIC ENGINEERING,1993,18(4): 543-556
    [17]Triantafyllou, Michael S., Franz S. Hover. Maneuvering and Control of Marine Vehicles, MIT Press,2003:64-73
    [18]Stanley G. Lemon. Towed-Array History,1917-2003. IEEE JOURNAL OF OCEANIC ENGINEERING,2004,29(2):365-366
    [19]李积德.船舶耐波性.哈尔滨:哈尔滨船舶工程学院出版社.1992:1-4
    [20]Blizzard Bill, Luke Mike. Eliminating heave induced difficulties in critical multilateral casing exit operations. Proceedings of the IADC/SPE Asia Pacific Drilling Technology Conference, APDT,1998:659-668
    [21]连琏,顾云冠.海况对水下运载器吊放回收的影响.The Ocean Engineering,1996,2: 1-8
    [22]Zahe B., Stability of Load Holding Circuits with Counterbalance Valves. Eighth Bath International Fluid Power Workshop.1995:60-73.
    [23]Lisowski E., Stecki J.S., Stability of a Hydraulic Counterbalancing System of a Hydraulic Winch. The Sixth Scandinavian International Conference on Fluid Power,Vol.2,1999:921-933.
    [24]Andersen T.O., Hansen M.R. Evaluaton of Velocity Control Concepts Involving Counterbalance Valves in Mobile Cranes. Fifth International Conference on Fluid Power Transmission and Control,2001:311-315
    [25]曹苏民,李肇震,刘淘.新型两级平衡阀.工程机械,1989,20(4):4-8
    [26]李肇震,曹苏民,林建亚.平衡阀动态性能研究及改进措施.浙江大学学报,1988年增刊,流体传动与控制专辑:157-164
    [27]姚平喜,闫志明,杨世春.负载敏感平衡阀的性能分析与数字仿真.液压气动与密封,2009,29(2):51-54
    [28]李锋,马长林.平衡阀动态特性仿真与参数优化研究.机床与液压,2003,(4):232-233
    [29]周小峰,李自光,颜荣庆,彭勇.功率键合图在新型组合式平衡阀动态特性中的应用.机械工程学报,2005,3(3):293-296
    [30]Mitchell M. R., Dessureault J. G. A constant tension winch:design and test of a simple passive system. Ocean Engineering,1992,19(5):489-496
    [31]康天增.水下声纳被动拖曳缓冲系统—液压蓄能器的应用.机电设备,1995,3:14-18
    [32]赵曾厚.声纳拖曳装置主动伺服控制系统的设计.机电设备,1996,2:24-27,32
    [33]Michael J. Purcell, Ned C. Forrester. Bobbing crane heave compensation for the deep towed fiber optic survey system. Society of Naval Architects and Marine Engineers New England Section Fiftieth Anniversary Proceedings,1994:1-16
    [34]Ming-Hui CHU, Yuan KANG, Yih-Fong CHANG, Model-Following Controller Based on Neural Network for Variable Displacement Pump, JSME International Journal, Series C,2003, 46(1):176-187
    [35]李婷婷,电液比例变量泵-马达恒速控制系统的研究.长安大学硕士学位论文.2004
    [36]G. J. Schoenau, R. T. Burton, G. P. Kavanagh, Dynamic Analysis of a Variable Displacement Pump, Transactions of the ASME,1990, Vol.112:122-132
    [37]李运华,机电控制.北京航空航天大学出版社,2003:126-127
    [38]张海平.螺纹插装阀介绍之二-平衡阀.流体传动与控制.2006,(3):37-40
    [39]张海平.螺纹插装阀介绍之二-平衡阀(续).流体传动与控制.2006,(5):48-49
    [40]张海平.螺纹插装阀介绍之二-平衡阀(续).流体传动与控制.2006,(6):38-43
    [41]麻井伟,姚平喜.一种新型的负载敏感平衡阀.机械管理开发.2007,(2):81-82
    [42]王春行.液压控制系统.机械工业出版社.2004
    [43]战兴群,张炎华,赵克定.二次调节系统中液压蓄能器数学模型的研究.中国机械工程,2001,12(增刊):45-46
    [44]汤兵勇.模糊控制理论.清华大学出版社.2002
    [45]刘曙光,魏俊民,竺志超.模糊控制技术.中国纺织出版社.2001
    [46]章卫国,杨向忠.模糊控制理论与应用.西北工业大学出版社.1999
    [47]章卫国,卢京潮,吴方向.先进控制理论与方法导论.西北工业大学出版社.2000
    [48]楼顺天,胡昌华,张伟.基于MATLAB的系统分析与设计——模糊系统.西安电子科技大学出版社.2001
    [49]盛万兴,王孙安.电液速度控制系统的智能模糊控制.机床与液压.1994.4
    [50]罗绍新,王芙蓉.电液比例阀控系统的自学习模糊控制的研究.机床与液压.2002.3
    [51]李俊明,殷涌光等.电液比例系统的模糊控制.农业机械学报.1999.9
    [52]李英辉,李喜斌,戴杰,庞永杰,徐玉如.拖曳系统计算中拖缆与拖体的耦合计算.海洋工程,2002,20(4):37-42
    [53]Ablow CM, Schechter S. Numerical simulation of undersea cable dynamics[J]. Ocean Engineering,1983,10(6):443-457.
    [54]Milinazzo F, Wilkie M, Latchman SA. An efficient algorithm for simulating the dynamics of towed cable systems[J]. Ocean Engineering,1987,14(6):513-526.
    [55]Wu Jiaming, Chwang AT. Ahydrodynamic model of a two-part underwater towed system[J]. Ocean Engineering,2000,27(5):455-472.
    [56]GertlerM, Hagen G L. Standard equations of motion for submarine simulation[R]. Technical Report DTMB 2510, David Taylor Research Center, Washington, D.C.1967.
    [57]Abkowitz MA. Stability and motion control of ocean vehicles[M]. MITPress,1969,32-50.
    [58]罗薇,张攀.水下拖曳系统运动预报.武汉理工大学学报.2007,29(2),139-142
    [59]王海波,王庆丰.水下拖曳升沉补偿系统水动力数学模型研究.海洋工程.2008,26(4):77-83
    [60]李有法.数值计算方法.北京:高等教育出榜社,1996:20-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700