深海拖曳系统运动性能分析与定高控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深海拖曳系统(以下简称深拖系统)是由拖船,拖缆(缆绳),拖体为主要组成部分的综合探测系统。它可应用于海底地貌拍摄,海洋资源勘探,沉没物体搜寻等水下作业。它具有探测面积广,作业效率高,操控性能好等诸多优势,是深海探测领域中一种重要的技术手段。
     计算机仿真与控制技术的发展与应用为深拖系统的研究工作提供了一种便捷、可靠且有效的方法。不管是用数值计算方法对深拖系统运动进行分析,还是用仿真模块对拖体航行进行闭环控制研究,计算机都能较为方便地给出理想的结果。并且这些结果对于深拖系统进行实际作业有着比较重要的参考价值。
     文章首先采用集中质量法,对拖缆进行离散,并对离散的缆绳单元进行受力分析,最后以拖船和拖体为边界条件,建立一组关于系统的运动方程组。利用数值分析方法解此运动方程组,得到一组可以描绘系统运动的数值解。
     在这基础上,文章不光对系统参数进行详细的分析,得到了不同参数对系统的影响;还进一步地分析了一级深拖系统和二级深拖系统各自的运动性能,比较了两者的异同。同时,对于二级深拖系统良好的升沉补偿能力进行了较为深入的研究,为深拖系统定高航行提供了一种效果不错的方案。
     除了对深拖系统本身的运动性能分析,文章从控制理论入手,寻求以拖体姿态以及航行轨迹调控的控制策略。为此,文章考虑了由拖缆向拖体的单向作用,以及拖体首尾升降舵和垂直推进器的作用,利用PID控制原理进行定高航行控制模块的设计。
     本文的研究工作将有利于进一步了解深拖系统的运动性能,也为今后的深拖系统的设计优化工作提供有效的参考。
Deep sea towed system (DSTS) is composed of ship, cable and towed vehicle. It is mainly used for the seabed’s photographing, the exploration of the sea resource and the search for the immersed objects. It is one of the most important tech in the area of deep sea exploration, because of its vast scope, high efficiency as well as good maneuvering.
     The development and use of the computer simulation and control tech provides a way of DSTS’s research----convenient, reliable and effective. By this way, ideal result would be obtained both in the analysis of motion performance and research of consta- nt-depth control. Also these results will be valuable when DSTS goes to work in the r- eal sea.
     This passage firstly use lumped mass method when do force analysis for the unit of the dispersed cable. Then the system’s motion equations can be established by add- ing the boundary conditions of the ship and towed vehicle. A series of data that could describe the system’s motion will be obtained by using numerical analysis methods.
     Besides, the system’s parameters will be discussed carefully to understand their effect to the system. The one-level system and second-level system is taken into acco- unt as well. The second-level’s heave compensation is studied in depth for providing a better choice of constant-depth control.
     Except for the above, the control tactics of the towed vehicle’s posture and track is discussed here based on the control theory. The single action from the cable to the towed vehicle and the elevator rudder as well as vertical thruster is considered. The constant-depth control module is designed by the PID method.
     This passage would help when DSTS is under designing or optimizing.
引文
[1]联合国新闻部信息技术科.联合国21世纪议程. 2002
    [2]第三次联合国海洋法会议.联合国海洋法公约. 1982
    [3]Stewart E. Harris, Robert D. Ballard. ARGO: Capabilities for deep ocean exploration [R], Woods Hole Oceanographic Institution, 1986
    [4]Robert D. Ballard, Dana R. Yoerger, W. Kenneth Stewart. ARGO: A remotely operated survey and sampling system for full-ocean depth [R]. Woods Hole Oceanographic Institution, 1991
    [5]Dwight F. Coleman, James B. Newman. Design and Implementation of Advanced Underwater Imaging Systems for Deep Sea Marine Archaeological Surveys [R], Woods Hole Marine Systems Inc, 2000
    [6] Kiyoshi OTSUKA, Hiroya.su MOMMA, Hirosiii IIOTTA. JAMSTEC/DEEPTOW CAMERA SYSTEM [R], Japan Marine Science and Technology Center, 1991
    [7]Ji-Mao Zhu, Deep ocean research activity in China [J], International Offshore and Polar Engineering Conference, Norway, 2001
    [8]葛彤,朱继懋. 6000米深海光学深拖系统升级改造课题研究报告[R],上海:上海交通大学, 2009
    [9]B.и.叶果洛夫。水下拖曳系统[M],北京:海洋出版社. 1989
    [10]Burgess J.J. Numerical Prediction of the dynamics of a sea-plow system [J], Proc. 11th Int. Offshore and polar engineering conference.2001:288-294
    [11]施生达。潜艇操纵性[M],北京:国防工业出版社. 1995
    [12]汤兵勇,路林吉。模糊控制理论与应用技术[M],北京:清华大学出版社,2002
    [13]冯巧玲。自动控制原理[M],北京:北京航空航天大学出版社,2007
    [14]邱德润,陈日新,曾喆昭等藕拧⑾低秤肟刂评砺踇M],北京:北京大学出版社,2009
    [15]Ablow C.M., Schechter S. Numerical simulation of undersea cable dynamics [J]. Ocean Engineering, 1983 Vol.10 (6):443-457
    [16]Delmer T.N., Stephens T.C., Coe J.M. Numerical simulation of towed cables [J]. Ocean Engineering, 1983 Vol.10 (2):119-132
    [17]Dowling P. The dynamics of towed flexible cylinders part 1. Neutrally buoyant elements [J], Journal of fluid mechanics, 1988 Vol.187:507-532
    [18]Dowling P. The dynamics of towed flexible cylinders part 2. Neutrally buoyant elements [J], Journal of fluid mechanics, 1988 Vol.187:533-571
    [19]Milinazzo F., Wilkie M., Latchman S.A., An efficient algorithm for simulation the dynamics of towed cable systems [J], Ocean Engineering, 1987 vol.14 (6):513-526
    [20]Pedersen E., Sorensen A.J., Modeling and control of towed marine seismic streamer cables [J]. IFAC Control applications in marine systems, 2001:89-94
    [21]Nakamura M., Kajiwara H., Koterayama W., Development of an TOV operated both as towed and self-propulsive vehicle [J], Ocean Engineering, 2001 Vol.28:1-43
    [22]Waltion T.S., Ploachech H., Calculation of transient motion of submerged cables [J], Mathematics of computation, 1960 Vol.14:27-46
    [23]Waltion T.S., Ploachech H., Transient motion of an elastic cable immersed in a fluid [J], Mathematics of computation, 1963 Vol.17:60-63
    [24]Huang S., Stability analysis of the heave motion of marine cable-body systems [J], Ocean Engineering, 1999 Vol.26:531-546
    [25]Huang S., Dynamic analysis of three-dimension marine cables [J], Ocean Engineering, 1994Vol.21 (6):531-546
    [26]张潞怡。6000米深拖系统非线性运动理论研究及仿真[D]。博士学位论文。上海交通大学。1996
    [27]李英辉。合成孔径声纳拖曳系统运动的理论与实验研究[D]。博士学位论文。哈尔滨工程大学。2002
    [28]王飞。海洋勘探拖曳系统运动仿真与控制技术研究[D]。博士学位论文。上海交通大学。2007
    [29]张亮,李云波。流体力学[M],哈尔滨:哈尔滨工程大学出版社,2001
    [30]董红生。PID控制器参数自动整定方法研究[D],硕士学位论文,甘肃工业大学,2003
    [31]徐建明。PID控制器及其设计方法研究[D],硕士学位论文,浙江工业大学,2003
    [32]冯苏,朱克强。水下拖曳系统运动姿态仿真研究[J],海洋工程,2005,11(4):56-63
    [33]朱克强,李维扬。带缆遥控潜水器空间运动仿真[J],中国造船,1996,3(134):96-104
    [34]Jin-Kyu Choi, Hiroshi Sakai and Toshinari Tanaka, Autonomous Towed Vehicle for Underwater Inspection in a Port Area [J], ICRA, Spain, 2005
    [35]D. Perrault, G. Hackett and M. Nahon, Simulation and active control of towed undersea vehicles, International Conference on Robotics and Automation [J], 1997
    [36]Mark A. Grosenbaugh, Transient behavior of towed cable systems during ship turning maneuvers [J], Ocean Engineering 2007 vol.34:1532–1542
    [37]李英辉,李喜斌,戴杰等,拖曳系统计算中拖缆与拖体的耦合计算[J],海洋工程,2002,20(4):37-42
    [38]张璐怡,朱继懋。深海拖曳系统运动响应的理论研究[J],海洋学报,1997, 15(1):87-95
    [39]张璐怡。深拖系统中缆运动的力学特性[J],上海交通大学学报,1997,31(11):65-69
    [40]王飞,黄国墚,邓德衡。水下拖曳系统的稳态运动分析与设计[J],上海交通大学学报,2008,42(4):679-684
    [41]R. Bachmayer, S. Humphris, D. Fornari, Oceanographic Research Using Remotely Operated Underwater Robotic Vehicles: Exploration of Hydrothermal Vent Sites On The Mid-Atlantic Ridge At 37°North 32°West [J], Marine Technology Society, 1998, Vol32 (3):37-47.
    [42]李力波。海下索缆系统运动的动力学模拟[J],中国造船,1989,(4):33-44
    [43]朱刚,杜月中。波浪作用下潜标拖缆动力学分析[J],海洋工程,2007,25(4):15-20
    [44]王飞,黄国墚,刘天威。规则波作用下拖缆数值分析研究[J],海洋工程,2006,24(1):92-97
    [45]陈加菁,张年万,袁毅之。匀流中悬索的性状及计算[J],中国造船,1980,12(2):49-62
    [46]罗薇,张攀。水下拖曳系统运动预报[J],武汉理工大学学报,2007,29(2):139-142
    [47]李志印,吴家鸣。水下拖曳系统水动力特性的计算流体力学分析[J],中国造船,2007,48(2):9-19
    [48]朱克强。舰船与水下拖体系统耦合运动的非线性数值模拟[J],华东船舶工业学院学报,1993,7(4):51-57
    [49]卢军。主动式声纳列阵拖曳系统姿态数值计算[J],海洋工程,2001,19(3):85-90
    [50]王海波,王庆丰。水下拖曳升沉补偿系统水动力数学模型研究[J],海洋工程,2008,26(4):77-83
    [51]朱继懋。潜水器设计[M],上海:上海交通大学出版社,1992
    [52]李英辉,易宏。二级深拖数值仿真研究报告[R],上海:上海交通大学,2009
    [53]黄忠霖。自动控制原理的MATLAB实现[M],北京:国防工业出版社,2007
    [54]陈晓平,李长杰,毛颜欢。MATLAB在电路与信号及控制理论中的应用[M],合肥:中国科学技术大学出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700