电液比例控制技术在升沉补偿系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在深海区域,由于有风、浪、涌、流的影响,母船会产生较大程度的升沉运动,并且此升沉运动通过缆绳或脐带传递至水下工作设备,则水下工作设备会随母船产生较大的上下波动,对其安全可靠投放、作业和回收产生很大影响,甚至造成脐带或缆绳断裂等严重后果。因此,在进行深水作业时,必须有相关的升沉补偿装置对母船的升沉运动进行补偿,以此减缓船体运动对水下工作设备的影响。只有掌握了此项技术,深海资源开发才不再只是一种规划,但是当前国内对升沉补偿系统的研究基本上处于空白,这严重制约了我国海洋经济的发展,因此尽快的掌握此项核心技术对我国经济社会的发展具有重要意义。
     本文主要研究了升沉补偿的一种实现方法——电液比例控制技术。主要对主动升沉补偿及被动升沉补偿实现方法进行设计。所涉及的主要电液比例元件主要包括比例溢流阀、电液比例方向流量阀及轴向柱塞泵(可进行负载敏感恒压变量切换)。其中比例溢流阀接受张力反馈信号控制缆绳张力恒定;电液比例方向流量阀控制绞车的正常收放,也可接受张力及平台位移反馈实现绞车的主动补偿控制;轴向柱塞泵则通过叠加由相关比例元件构成的调节器实现负载敏感、恒压变量功能,以实现整个系统的节能。
     比例溢流阀采用双级三通减压阀作为先导控制的结构,可实现回路压力的精细控制,在控制信号一定的情况下回路压力并不随溢流量的增大而略微增大,而是保持恒定值不变,从而精确实现回路压力的电比例控制,以实现在被动升沉补偿中缆绳张力的精确控制。
     电液比例方向流量阀采用二通进口压力补偿的方法确保阀口前后压差不变,从而实现阀口开度与控制流量成比例,另外此系统中采用的电液比例方向流量阀具有阀芯位置反馈功能,可容易实现闭环控制从而保证对通过阀流量的准确控制,最终使得执行机构马达转速精确可控可调。
     在轴向柱塞泵上叠加压力、负载敏感及恒功率调节器以实现恒压、恒流、恒功率及各种复合控制功能。采用这些调节器实现各种控制功能最主要的就是改善系统的性能减少功率损失。
     升沉补偿系统采用PID校正控制,其中比例环节用于减少偏差,微分环节用于改善系统的阻尼而积分环节用于消除系统的稳态误差。以期获得较好的补偿效果。本套系统可为以此类系统的应用与实施提供相关理论依据。
In the deep sea area, because of wind, waves,chung, stream effects, the mothership will heave a greater degree of movement, and the heave motion is passed through the cable or the umbilical cord to the underwater working equipment, then the equipment will follow the mothership generate large fluctuations which will generate significant impact to its safe and reliable delivery, operation and recycling, or even lead to the broken of the umbilical cord or cable and other serious consequences. Therefore, when deep water operations, there must be related to the mother ship heave compensation device to compensate for the heave motion, thus cutting down effect of the hull to underwater work equipment. Only mastered the technology, deep sea resources development was no longer just a plan, But the current domestic research on the heave compensation system is basically in the blank, which severely restricts the development of marine economy in China, so as soon as possible to master the core technology has significant sense to our economic and social development.
     This paper studies an implementation method of heave compensation electro-hydraulic proportional control technology. Mainly design the active and passive heave compensation approach and the implementation.Involved in the major electro-hydraulic proportional components including proportional relief valve, electro-hydraulic proportional directional flow valve and piston pump (load-sensitive and constant pressure variable can be switched freely.) The portional relief valve which accept the tension feedback signal control cable tension constant, electro-hydraulic proportional directional flow valve controls the normal retractable of the winch,it also accepts tension and platform displacement feedback to achieve the active compensation control. Axial piston pump can achieve load-sensitive and constant voltage variable function by superposition regulator which is constituted of components related to the proportion,in order to achieve the overall system energy.
     The proportional relief valve adopt dual-stage three way pressure reducing valve as a pilot control valve, the pressure of loop can be fine controlled, In the case of control signal under certain circumstances circuit pressure does not increase with the overflow increase slightly,so accurate realization of the electronic proportional control loop pressure to achieve the precise control of the cable tension in passive heave compensation.
     electro-hydraulic proportional directional flow valve ensure the pressure before and after the valve port constant by two-way inlet pressure compensation, In order to achieve valve opening is proportional to control flow, while the system used electro-hydraulic proportional directional flow valve has a spool position feedback function can be easy to implement closed-loop control to ensure accurate control of flow through the valve, and ultimately make the actuator motor speed precisely controlled and adjustable.
     Superimposed on the axial piston pump pressure, load sensing and constant power regulator in order to achieve constant voltage, constant current, constant power and a variety of complex control functions. Using these regulators to achieve a variety of control functions the most important is to improve the performance of the system and reduce power losses.
     Heave compensation system uses PID tuning control,,the P is used to reduce bias, the D is used to improve the system damping and the I is use to eliminate the steady-state error. To obtain better compensation effect.
     This system can provide the theoretical basis of application and implementation to such systems
引文
[1].王裕清,韩成石.液压传动与控制技术[M].北京:煤炭工业出版社,1997:203-226.
    [2].张平格.液压传动与控制[M].北京:冶金工业出版社,2004:1-144.
    [3].成大仙.机械设计手册-第4卷,流体传动与控制[M].北京:机械工业出版社,2010:18-170—--18-239.
    [4].马先贵.润滑与密封[M].北京:机械工业出版社,1985.
    [5].杜巧连.液压传动[M].杭州:浙江科学技术出版社,2005.
    [6].张利平.液压站设计与使用[M].北京:海洋出版社,2004.
    [7].赵冬梅,郑万年.液压气动符号及其识别[M].北京:化学工业出版社,2009.
    [8].刘延俊.液压回路与系统[M].北京:化学工业出版社,2009.
    [9].赵应越.现代实用液压辅件[M].上海:上海交通大学出版社,2002.
    [10].杨征瑞,花克勤,徐轶.电液比例与伺服控制[M].北京:冶金工业出版社,2009.
    [11].张利平.液压控制系统及设计[M].北京:化学工业出版社,2006:146-152.
    [12].吴根茂,邱敏秀,王庆丰等.实用电液比例技术[M].杭州:浙江大学出版社 2006:111-218.
    [13].许益民.电液比例控制系统分析与计算[M].北京:机械工业出版社,2005:1-42.
    [14].黎启柏.电液比例控制与数字控制系统[M].北京:机械工业出版社,1997:55-181.
    [15]. Liu J.-R, Xie Y.-J, Weng Z.-T. Research on the electro-hydraulic variable valve actuation system based on a three-way proportional reducing valve[J].International Journal of Automotive Technology Volume 10, Number 1,27-36, DOI:10.1007/s 12239-009-0004-6
    [16].Wu Hong;Yang Lijuan;Li Xiaomei.Digital electro-hydraulic proportional control for bulldozer working device[C].2009 2nd International Conference on Information and Computing Science, ICIC 2009, v 3, p 296-299.
    [17].Mannan M.A;Xu M;Xiao Z. Electro-hydraulic proportional control of twin-cylinder hydraulic elevators[J].Control Engineering Practice, v 9, n 4, p 367-373, April 2001
    [18].王进军.电液比例负载敏感控制变量柱塞泵技术研究[D].杭州:浙江大学,2006:7-11.
    [19].王海波.水下拖曳升沉补偿液压系统及其控制研究[D].杭州:浙江大学,2009:1-15.
    [20].李素玲,刘军营.比例控制与比例阀及应用[J].液压与气动,2003年第2期。:30-33.
    [21].黄火兵,夏伟,屈盛官,王郡文.比例控制与插装阀技术的应用与发展[J].机床与液压,2007年4月第35卷第4期。:229-231.
    [22].廖谟圣.海洋开发机器与液压技术[M].北京:海洋出版社,1988.
    [23].石油院校教材编写组.石油矿场机械[M],北京:中国工业出版社,1961.
    [24].郭圣敏.深海采矿装置升沉补偿系统模糊自整定PID控制研究[D].长沙:中南大学,2006.
    [25].肖奇军.模糊控制在深海采矿升沉补偿模拟系统中的应用研究[D].广州:广东工业大学,2004.
    [26].Do.K.D. Pan.J.Nonlinear control of an active heave compensation system[J].Ocean Engineering, v 35, n 5-6, p 558-571, April 2008
    [27].Wang Haibo,Wang Qingfeng.Design and internal model robust control of underwater towed heave compensation system[J]. Jixie Gongcheng Xuebao v 46, n 8,,p 128-132, April 20, 2010
    [28].平建涛,李海明,宋立忠.船用起重机波浪补偿控制技术研究[J].计算技术与自动化,第28卷第4期2009年12月:42-44.
    [29].魏素芬,杨文林,张竺英.液压绞车主动升沉补偿控制研究[J].液压与气动,2009年第7期:27-29.
    [30].邵曼华,寇雄,赵鹏程.几种船用起重机波浪补偿装置[J].机械工程师,2004.2:14-16.
    [31].王维东,陈忠强,黄新年.压力补偿器在液压调速系统中的应用[J].液压传动与控制,第5期(总第12期)2005年9月:18-20.
    [32].刘会永,刘宗宏,牟东,纪长林.压力补偿器在液压系统中的应用[J].煤矿机械,第31卷第06期2010年6月:170-172.
    [33].庄丽,顾建.压力补偿式变量泵的改进[J].排灌机械,第22卷第5期:23-25.
    [34].孙明堂压力补偿阀在液压系统上的应用.液压与气动,1996年01期.
    [35].陶永华,尹恬欣,葛芦生.新型PID控制及其应用[M].北京:机械工业出版社,1998.1-135.
    [36].韩峻峰.模糊控制技术[M].重庆,重庆大学出版社,2003.
    [37].霍罡,曹辉.可编程序控制器模拟量及PID算法应用案例[M].北京:高等教育出版社,2008.
    [38].孟庆明.自动控制原理:非自动化类[M].北京:高等教育出版社,2008.
    [39].赵国相.微型计算机原理与汇编语言程序设计[M].北京:科学出版社,2004.
    [40].武汉华远控制技术有限公司.多组合液压及控制试验系统液压系统技术方案图纸WHHY-718ZHSYT-YL.2010.
    [41]. HAWE HYDRAULIC产品样本.D7485-1
    [42]. SUN HYDRAULIC插装阀中文目录.
    [43]. Parker工业液压技术液压泵、液压马达、液压阀、电子控制器及液压系统产品目录.。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700