深海采矿车水射流采输装置位姿自适应控制系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深海采矿车工作于6000米深海底极其复杂的环境当中,海底稀软底质和海浪等各种扰动的存在,给深海采矿车的控制带来了极大的影响。位于深海采矿车前端的水射流采输装置担负着对深海底表层金属结核的捕获收集任务,其位姿参数即对地高度和倾角直接影响到能否捕获结核以及结核采集效率,间接影响对深海沉积物的扰动程度。该参数的控制是整个采矿控制系统的关键因素之一。开展水射流采输装置位姿控制研究,对提高水射流采输装置位姿即高度和倾角参数稳态性能和动态品质,进而保证集矿安全、高效及保护海底环境等,具有重要意义。
     本文以深海采矿车为背景,首先介绍了水力式采矿车采矿原理及水射流采输装置组成。然后针对水射流采输装置液压驱动系统的非对称性特点,建立了水射流采输装置液压系统数学模型。由于水射流采输装置采用电液比例阀控液压缸结构,是复杂的非对称、非线性系统,而且水射流采输装置工作于深海底,处于强烈扰动的环境中,因此,采用鲁棒自适应控制算法来实现对水射流采输装置的控制。在设计鲁棒自适应控制器的过程中,首先采用模型参考自适应算法以克服系统的不确定性及非线性,然后通过给控制系统加一个由误差驱动的鲁棒控制器构成鲁棒自适应控制器,提高水射流采输装置位姿控制系统的鲁棒性。
     最后,利用MATLAB软件建立了水射流采输装置控制系统仿真模型,分别对有、无干扰情况下模型参考自适应算法和鲁棒自适应算法进行了仿真,验证了本文算法的有效性。
The deep-sea mining vehicle works in 6,000 meters deep seabed. The control of the vehicle has been influenced detrimentally by the rare soft seabed sediments and various other disturbances in the deep-sea environment. The water jet mining output device, which lies at the head of the vehicle, completes the collection on the multiply-metal modules. The result of capturing and efficiency of the collecting are heavily affected by attitude parameter of the mining output device, which also influences the disturbing degree of the deep-sea sediment. So the attitude parameter is the core of the controlling. It is significant to study the technology of attitude control of the water jet mining output device, by witch we can make the system stable, achieve dynamic characteristics, keep the mining safe and efficient, and protect the environment of deep-sea.
     Based on the deep-sea mining vehicle, the collecting theory and the constitution of the water jet mining output device are introduced. According to the asymmetry of the hydraulic system, the lifting—up and descending-down mathematical model is set up respectively. Considering the characteristics of valve controlling asymmetric cylinder system and the various disturbances of the deep-sea environment, a robust adaptive controller is designed. In the process of designing robust adaptive controller, the uncertainty and nonlinear are overcome by using model reference adaptive algorithm system, and then a robust controller driven by the error is constituted. The robustness of the control system for the attitude of the mining output device is improved.
     Finally, a simulation model is setup with MATLAB tool, computational simulations are carried out using adaptive control and robust adaptive control respectively in toolbox SIMULINK of MATLAB. The effectively of the algorithm is proved by the simulation.
引文
[1]王随平,熊光辉.深海履带机器车的实时导航和避障[J].中南大学学报,2007,38(1):1-2
    [2]朱洪前,桂卫华,王随平,等.深海采矿机器人行走系统模糊控制研究[J].矿业研究与开发,2008,(3):10-15
    [3]管华诗.自然科学向导丛书(海洋卷)-蓝色的国土[M].山东:山东科学技术出版社,2007
    [4]王随平,张海宁,李闪阁.深海采矿车的轨迹跟踪控制算法与仿真[J].中原工学院学报,2010,(1):58-61
    [5]莫杰,刘守全.开展南太平洋岛国合作探查开发深海矿产资源[A].第十届中国科协年会“深水技术产业发展”国际研讨会[C],2008
    [6]Mou Chen, Shuzhi Sam Ge, Bernard. Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities [J]. IEEE Transactions on Neural Networks 2010,21(5):58-62
    [7]王随平,李闪阁,张海宁.基于网络时延预估补偿的远程控制系统研究[J].可编程控制器与工程自动化,2009,(8):28-30
    [8]中国大洋协会.战略论坛[J].国际海底开发动态.2004
    [9]赵辉宇.深海集矿机集矿头高度控制技术研究[D].长沙:中南大学,2006
    [10]牛京考.中国对大洋多金属结核开发研究述评[J].中国锰业,2002,20(2):20-26
    [11]Yngve Selen, Richard Abrahamsson, Peter Stoica. Automatic robust adaptive beamforming via ridge regression [J]. Signal Processing,2008,88(1):56-60
    [12]萧汉强.深海底资源开发的法律争端与商业采矿前景探讨[A].第十届中国科协年会“深水技术产业发展”国际研讨会[C],2008.95-98
    [13]汤晓燕.深海采矿升沉补偿系统建模及其模糊控制仿真[J].中南大学学报(自然科学版),2008,(1):9-12
    [14]P. M. Vercruijsse, R. Lotman. An Integral Design Approach for Deep Sea Mining Systems Using Dredging Technology[J]. ASME Conf.2010,23:90-95
    [15]尹才硚.对深海矿产资源开发的思考[A].第十届中国科协年会“深水技术产业发展”国际研讨会[C],2008:95-98
    [16]丁六怀,高宇清,简曲,等.中国大洋多金属结核集矿技术研究综述[J].矿 业研究与开发,2003,23(4):5-7
    [17]卜英勇.基于最优切削深度的深海采矿车定位研究[J].海洋通报,2008,(4):96-99
    [18]王爱武,王和平.海底采矿的研究与开发[J].可编程控制器与工厂自动化(PLC&FA),2004, (11):9-12
    [19]赵丽.集矿装置与集矿车体姿态解耦控制研究[D].长沙:中南大学,2007
    [20]华克强,赵世伟.水下机器人姿态角LQR——鲁棒方差控制实验研究[J].舰船科学技术,2009,31(2):79-84
    [21]华克强,王秀娟.水下机器人姿态H∞/H2鲁棒控制实验研究[J].机器人技术,2009,20(5):220-225
    [22]严浙平,蔡鹤皋.水下机器人位姿控制中的精确极大似然配准算法研究[J].机器人.2003,25(7):12-13
    [23]高道祥.不确定机器人系统鲁棒自适应控制[D].沈阳:东北大学,2006
    [24]Ortege R, Spong M. Adaptive motion control of rigid robots:A tutorial [J]. Automatica,2009,25(6):877-888
    [25]Lin T C, Wang C H, Liu H L. Observer-based indirect adaptive fuzzy neural tracking control for nonlinear SISO systems using VSS and H oo approaches [J].Fuzzy Sets and systems,2004,143(2):211-232
    [26]孙富春,孙增圻,张钹.机械手神经网络稳定自适应控制理论与方法[M].北京:高等教育出版社,2005
    [27]王文军.具有干扰的神经网络自适应控制系统[D].北京:北京工业大学,2005
    [28]H. F. Ho, Y k. wong, A. B. Rad. Robust fuzzy tracking control for robotic manipulators[J]. Simulation Modelling Practice alld Theory 2007,15(7): 801-816
    [29]白寒,王庆九,徐振,等.阀控非对称缸液压系统多级滑膜鲁棒自适应控制[J].农业机械学报,2009,1(10):193-198
    [30]L. X. Wang. Stable adaptive fuzzy, control of nonlinear systems [J]. IEEE Tralls. On Fuzz Systems,2003,1(2):146-155
    [31]张天平.基于一种修改的李亚普诺夫函数的自适应模糊滑模控制[J].自动化学报,2002,1(28):137-142
    [32]陈峰,桂卫华,王随平,等.深海底采矿机器车的研究现状[J].矿山机械,2005,33(9):6-10
    [33]张利平.车液压控制系统设计[M].北京:化学工业出版社,2006
    [34]吴振顺.液压控制系统[M].北京:高等教育出版社,2008
    [35]桂卫华,冯磊华,王随平.深海集矿机模型车行走驱动系统[J].中南大学学报2005,36(3):470-474
    [36]陈峰,桂卫华,王随平,等.深海底采矿机器人遥测遥控系统[J].中南大学学报,2003,(7):61-65
    [37]李爱玲,闫夷升.声纳技术及其在军事上的应用[J].现代物理知识,2003,(3):47-48
    [38]卢军.主动式声纳列阵拖曳系统姿态数值计算[J].海洋工程,2001,19(3):85-90
    [39]龚德文.深海集矿机测控系统的研究开发[J].矿冶工程,2004,24(3):9-12
    [40]Tie-Shan Li, Dan Wang, Gang Feng. A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2010, (40)3:140-145
    [41]赵雪峰,孔祥龙,李乐.一种光纤光栅传感器的试验研究[J].防灾减灾工程学报,2010,(30):243-246
    [42]Norman K. Bucknor. Modeling of a New Hydraulic Control System for a Belt-Type Continuously Variable Transmission [J]. ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference,2005:98-101
    [43]王随平,于欣.深海采矿机器人集矿头高度自适应控制[J].伺服控制,2010,(12):63-65
    [44]黄涛勋.液气压传动[M].北京:机械工业出版社,2007
    [45]王占林.近代电气液压伺服控制[M].北京:航空航天大学出版社,2005.
    [46]Rong Liu, Xuanyin Wang, Xuchu Huang. Hybrid Fuzzy PID Control of Hydraulic Robot[J]. ASME International Mechanical Engineering Congress & Exposition,2002,14(5):56-59
    [47]彭国朋,周建华,黄海涛.雷达天线阵面液压升降系统同步控制及仿真研究[J].电子机械工程,2008(5):95-98
    [48]N. Arada, J. P. Raymond. Optimal control problems with mixed control-state constraints[J]. SIAM Journal on Control and Optimization,2001,39(5): 1391-1407
    [49]M P R. Rao, R.P. Whyte. Model reference adaptive control using quadratic and non-quadratic Lyapunov functions[J]. China-Ireland International Conference on Information and Communications Technologies,2007
    [50]薛亮儒,王少萍,张凌霄.基于模型参考自适应的液压系统力解耦控制[J].液 压气动与密封,2008,(4):271-273
    [51]李言俊,张科.自适应控制理论及应用[M].西安:西北工业大学出版社,2005
    [52]Chan P T, Rad A B, Wang J. Indirect adaptive fuzzy sliding mode control:Part Ⅱ: Parameter projection and supervisory control [J]. Fuzzy Sets and Systems,2001, 122(1):31-43
    [53]杨俭.电液比例位置系统复合控制及相关研究[D].浙江:浙江大学,2005
    [54]Xie J, Wu Q. Robust adaptive control with law J of hybrid adaptive law[J]. Int of Systems Science,2009,33(14):99-103
    [55]朱亮,姜长生,薛雅丽.一类不确定非线性系统的鲁棒自适应轨迹线性化控制[J].控制理论与应用,2008,(4):273-276
    [56]Zhang L, Fuzzy controllers based on optimal fuzzy reasoning for missile terminal guidance [A].45th AIAA Aerospace Sciences Meeting and Exhibit[C]. Reno: AIAA,2007:8-11
    [57]Washio, S. Nakamur, Y. Yu. Y Static characteristics of a piston-type pilot relief valve [J]. Proceedings of the Institution of Mechanical Engineers, Part C, Journal-of Mechanical Engineering Science,2009,213(C3):231-239
    [58]胡云安,晋玉强,李海燕.非线性系统鲁棒自适应反演控制[M].北京:电子工业出版社,2010
    [59]Schmitendorf W.E. Methods for Obtaining Robust Tracking Control Laws [J]. Automatica.2007,23(5):675-677
    [60]王玉惠.空天飞行器基于模糊理论的鲁棒自适应控制研究[D].南京:南京航空航天大学,2008
    [61]M.D jouadi, G. Zames. On optimal robust disturbance attenuation [J]. Systems & Control Letters.2002,46(5):343-351
    [62]Bu F P, Yan B. Nonlinear adaptive robust control of hydraulic actuators regulated by proportional directional control valves with deadband and nonlinear flow gains[C]. Proceedings of the 2000 American Control Conference, Chicago, Illinois, USA,2000:4129-4133
    [63]Barnett, D. McClaran, S. Nelson. Architecture of the Texas A&M autonomous underwater vehicle controller[C]. Proceedings of the symposium on autonomous underwater vehicles technology, Monterey, CA, USA,2003:231-237
    [64]俞立.鲁棒控制—线性矩阵不等式处理方法[M].北京:清华大学出版社,2002
    [65]M. D jouadi, G Zames. On optimal robust disturbance attenuation. Systems & Control Letters,2002,46(5):343-351
    [66]张圣勤.MATLAB7.0实用教程[M].北京:机械工业出版社,2008
    [67]李东君.基于MATLAB SIMULINK非对称阀控非对称液压缸控制系统的仿真分析[J].机床与液压,2008,36(7):143-146
    [68]庞中华,崔红.系统辨识与自适应控制MATLAB仿真[M].北京:北京航空航天大学出版社,2008
    [69]张贤明.MATLAB语言及应用案例[M].南京:东南大学出版社,2010
    [70]苏东海,杨京兰.基于SIMULINK的阀控非对称液压缸系统的研究[J].流体传动与控制,2008,(1):3-6
    [71]薛定宇.控制系统仿真与计算机辅助设计[M].北京:机械工业出版,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700