厌氧强化工艺处理煤制气废水中酚类化合物效能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国煤制气的发展是由“富煤、少油、缺气”的能源特点决定的。在向清洁新能源和可再生能源过渡的未来几十年中,新一代煤制气产业将扮演特殊重要的角色。但是,由于煤制气废水含有高浓度的酚类化合物、难降解有机物和有毒污染物,国内外煤制气废水的治理技术普遍存在出水效果不理想、系统稳定性差和处理成本高等问题。目前,该废水处理问题已成为制约煤制气产业发展的瓶颈。随着厌氧技术的不断发展,研究者对厌氧工艺在煤制气废水处理领域中所发挥的作用有了前所未有的重视。针对煤制气废水的水质特点,本课题系统和深入的研究了厌氧工艺处理煤制气废水中酚类化合物的效能,考察了传统厌氧工艺(升流式厌氧污泥床工艺(Upflow anaerobic sludge blanket,UASB)、高温厌氧工艺、两相厌氧工艺和两级厌氧工艺)和厌氧强化工艺(甲醇共基质和粉末活性炭)对酚类化合物的去除效能以及废水好氧生化性能的改善情况;在工程应用中考察了甲醇共基质和两级厌氧分点进水方式对厌氧处理煤制气废水中酚类化合物效能的影响;研究了共基质条件下厌氧降解酚类化合物的效能和规律,并对厌氧降解酚类化合物的影响因素进行了探讨。
     通过色质联用技术(Gas chromatography-mass spectrometry,GC-MS)分析得出,煤制气废水中酚类化合物主要是由苯酚、烷基苯酚和苯二酚等组成,约占废水化学需氧量(Chemical oxygen demand,COD)总量的30%~50%;同时,煤制气废水含有多环芳烃、杂环化合物、长链脂肪烃、氨氮和氰等污染物。研究表明传统厌氧工艺有助于改善废水的好氧生化性能,但对酚类化合物的去除效能较低,其中UASB工艺对总酚的去除率仅为30%~40%,高温厌氧工艺对总酚的去除率可达55%~60%,两级厌氧分点进水工艺和两相厌氧工艺对酚类化合物的去除率达到60%和40%左右。稀释进水总酚浓度或延长水力停留时间(Hydraulic retention time,HRT)对厌氧工艺处理酚类化合物的效能并没有显著的改善效果。
     研究比较了甲醇共基质和粉末活性炭厌氧强化工艺处理煤制气废水中酚类化合物的效能,结果表明投加粉末活性炭(1g/L)和甲醇共基质(500mgCOD/L)分别将酚类化合物的去除率提高至73%和75%左右;厌氧强化工艺不仅能够大幅度提高煤制气废水中酚类化合物的去除效能,而且能够显著改善煤制气废水的好氧生化性能。比较不同厌氧工艺对废水好氧生化性能的改善效果上:甲醇共基质厌氧工艺>粉末活性炭厌氧工艺>两级厌氧分点进水工艺>高温厌氧工艺>两相厌氧工艺>UASB工艺。厌氧工艺采用甲醇共基质协同处理煤制气废水可以降低废水的生物毒性,改善厌氧细菌的代谢活性,能够在本质上提高厌氧工艺处理酚类化合物的效能。
     在工程应用研究中,厌氧工艺处理煤制气废水中酚类化合物的效能较低,COD和总酚的去除率分别低于20%和26%。稀释进水或者延长HRT也难以显著提高厌氧工艺处理酚类化合物的效果。当煤制气废水中投加甲醇浓度200~500mgCOD/L,COD和总酚的去除率可达40.7%和35.2%,厌氧工艺处理酚类化合物的效能以及产甲烷情况均有明显的改善。但是,水质冲击对厌氧工艺处理酚类化合物的效能影响较大,而且恢复周期也较长。
     以苯酚、(间-、对-)甲酚、邻甲酚、二甲酚和邻-、间-、对苯二酚合成的酚类化合物废水为考察对象,研究表明采用乙酸、甲醇和苯酚共基质对厌氧降解酚类化合物的效能均有不同程度的改善。当进水酚类化合物浓度分别为408mg/L,612mg/L和816mg/L左右时,与无共基质处理效能相比,甲醇共基质(500mgCOD/L)条件下酚类化合物的去除率分别提高了13.8%,14.4%和15.6%;乙酸共基质(500mgCOD/L)条件下酚类化合物的去除率分别提高了11%,12.4%和10.3%。甲醇和乙酸共基质能够明显提高厌氧降解酚类化合物中甲基苯酚的效率。适量浓度的苯酚基质也有助于提高酚类化合物的去除效率,但是高浓度的苯酚基质将会抑制厌氧细菌的活性。
     试验研究表明,酚类化合物的厌氧降解性能难易程度依次为:二甲酚,邻甲酚,间甲酚,对苯二酚,邻苯二酚,对甲酚,间苯二酚,苯酚。甲基苯酚的厌氧降解性能要远低于苯二酚及苯酚,五日平均降解速率仅为1.3~4.5mg/d(不包括对甲酚)。酚类化合物的厌氧降解性能与其化学结构有着密切联系,其中羧化阶段和苯甲酰化阶段是其降解的关键步骤。在厌氧降解酚类化合物的抑制试验中,高浓度的酚类化合物造成的抑制属于暂时性抑制;氰化物和长链脂肪烃造成的抑制属于干扰性抑制。在氰化物(5mg/L)和长链脂肪烃(50mg/L)的抑制条件下,共基质的存在能够降低抑制效应,协同提高厌氧降解酚类化合物的效能。
In China, the development of coal gasification was decided by the energy characteristics of rich in coal, less oil and gas shortage. In the next few decades, the energy transition will make a new generation of coal gasification industries play a special role in the new clean and renewable energy market. However, coal gasification wastewater was typically high concentrations of phenols, refractory organics and toxic pollutants. The treatment technologies of coal gasification wastewater from abroad and domestic usually had several problems, such as unsatisfactory effluents, poor stability and high handling costs. Now, the wastewater treatment has become the restricting bottleneck for the development of coal gasification industries. With the continuous development of anaerobic technology, the researchers had an unprecedented attention to the role of anaerobic biotechnology in the field of coal gasification wastewater treatment. For the characteristics of coal gasification wastewater, the subject aimed to system and in-depth study anaerobic treatment efficiency of phenolic compounds in coal gasification wastewater. The treatment efficiencies and improvement of aerobic biodegradability were investigated in the conventional anaerobic processes of upflow anaerobic sludge blanket (UASB), thermophilic anaerobic process, two-phase anaerobic process, two-stage anaerobic process and the enhanced anaerobic processes of methanol addition of co-substrate and powdered activated carbon, respectively. In the engineering application, the effects of methanol addition and two-stage anaerobic process with step-feed on the treatment efficiencies of phenolic compounds were studied. Anaerobic degradation efficiencies and properties of phenolic compounds were investigated and anaerobic degradation metabolism of phenolic compounds was discussed preliminarily.
     By the analysis of gas chromatography and mass spectrometry (GC-MS), the phenolic compounds in the coal gasification wastewater were mainly composed of phenol, alkyl phenols and binary phenols, etc., accounting for about 30-50% of the total chemical oxygen demand (COD) of the wastewater; while the wastewater also contained more aromatic hydrocarbons, heterocyclic, long chain aliphatic hydrocarbons, ammonia and cyanide and other pollutants. Studies showed that the treatment efficiency of phenolic compounds was very low in the conventional anaerobic process, and the removal efficiency of total phenols were only about 30-40% in the UASB process, 55-60% in the thermophilic anaerobic process, around 60% in the two-stage anaerobic process and around 40% in the two-phase anaerobic process. Dilution of influent phenolic concentration or extended hydraulic retention time (HRT) had no significant promoting effect on anaerobic treatment efficiency of phenolic compounds.
     The treatment efficiencies of phenolic compounds in coal gasification wastewater were compared with the enhanced anaerobic processes of methanol co-substrate and powdered activated carbon. The results showed that the addition of powdered activated carbon (1g/L) and methanol co-substrate (500mgCOD/L), enhanced the removal efficiencies of phenolic compounds to 73% and 75%, respectively. The enhanced anaerobic processes could not only greatly improve treatment efficiency of phenolic compounds, but also significantly improved aerobic biodegradability of coal gasification wastewater. In a comprehensive comparison of these anaerobic processes in the improvement of aerobic biodegradability, the order was: methanol co-substrate anaerobic process > powdered activated carbon anaerobic process > two-stage anaerobic process with step-feed > thermophilic anaerobic process > two-phase anaerobic process > UASB process. Co-metabolism of coal gasification wastewater with methanol substrate could reduce the biological toxicity of the wastewater, and improve the metabolic activity of anaerobic bacteria for enhancing the removal efficiency of phenolic compounds in essence.
     In the engineering application, anaerobic treatment of phenolic compounds in coal gasification wastewater was difficult and ineffective. The removal efficiencies of COD and total phenols were less than 20% and 26%. Dilution or extension of hydraulic retention time was difficult to significantly improve the anaerobic treatment efficiency of phenolic compounds. When the methanol concentration of 200-500mgCOD/L was added in coal gasification wastewater, the removal efficiencies of COD and total phenols were around 40.7% and 35.2%, and the treatment efficiency of phenolic compounds and methane production had been significantly improved. However, the relatively stable wastewater quality was the prerequisite and important guarantee to achieve successful treatment of phenolic compounds in coal gasification wastewater in the anaerobic process.
     The phenolic wastewater composing of phenol, (m-, p-) cresols, o-cresol, xylenols, catechol, resorcinol and hydroquinone was treated with acetic acid, methanol and phenol as co-substrates, respectively. Results indicated the co-metabolism was helpful to improve anaerobic degradability of phenolic compounds. When the influent concentration of phenols were around 408mg/L, 612mg/L and 816mg/L, the removal efficiencies of phenolic compounds under the condition of methanol co-substrate (500mgCOD/L) were increased by 13.8%, 14.4% and 15.6% with compared to the results under the condition of without co-substrates; and under the condition of acetic acid co-substrate (500mgCOD/L) were increased by 11%, 12.4% and 10.3% with compared to the results under the condition of without co-substrates. Moderate concentration of phenol co-substrate also helped to improve the removal efficiency of phenolic compounds, but the high concentration of phenol co-substrate would inhibit the activity of anaerobic bacteria, resulting in removal efficiency of phenolic compounds dropped significantly. Co-substrates of methanol and acetic acid could significantly enhance the degradation efficiencies of methyl phenols, which played a key role in the improvement of anaerobic biodegradability of phenolic compounds.
     The experimental results showed that the difficulty of anaerobic degradability of phenolic compounds were as follows: xylenol, o-cresol, m-cresol, hydroquinone, catechol, p-cresol, resorcinol, phenol. Anaerobic degradability of methyl phenols was much lower than the phenol and binary phenols, and the five-day average degradation rates of methyl phenols were only 1.3-4.5mg/d (except p-cresol). Anaerobic degradation ways of phenolic compounds closely linked to its chemical structure, in which the carboxylation stage and benzene acylation stage were the key step in the degradation process. In the process of anaerobic degradation of phenolic compounds, the inhibition caused by high concentrations of phenolic compounds was a temporary inhibition, and the inhibition caused by cyanide and long-chain hydrocarbons belonged to interference inhibition. The inhibition of anaerobic degradation of phenolic compounds was not only affected by the type and concentration of inhibitors and other factors, but was also closely associated with the phenolic composition. Under the inhibiting environment of cyanide (5mg/L) and long chain fatty hydrocarbon (50mg/L), the presence of co-substrate could reduce the inhibitory effect and synergistically improve anaerobic degradation efficiency of phenolic compounds.
引文
[1] British Petroleum, BP statistical review of world energy (2010)[R]. London: British Petroleum, 2010: 32-35.
    [2]华贲.中国能源战略转型的历史机遇——重新审视中国能源资源特点,科学决策中国未来20~40年的能源战略[J].世界石油工业, 2010, 5, 32-41.
    [3]周溪华.我国现代煤化工技术发展路线探讨[J].中外能源, 2008, 3, 25-34.
    [4]梁彩恒.警惕我国沦为国外煤气化技术“试验场”[EB/OL] (2006-09-13) [2011-3-20]. http://mnc.people.com.cn/GB/54825/70727/4811373.html.
    [5] Li H Q, Han H J, Du M A, et al. Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor[J]. Bioresource Technology, 2011, 102(7):4667-4673.
    [6] Li H Q, Han H J, Du M A, et al. Inhibition and recovery of nitrification in treating real coal gasification wastewater with moving bed biofilm reactor[J]. Journal of Environmental Science, 2011, 23(4):568-574.
    [7] Suidan M T, Siekerka G L, Kao S W, et al. Anaerobic filters for the treatment of coal gasification wastewater[J]. Biotechnol. Bioeng. 1983, (25): 1581-1596.
    [8] Fox P, Suidan M T, Pfeffer J T. Anaerobic Treatment of a Biologically Inhibitory Wastewater[J]. Journal (Water Pollution Control Federation), 1988, 60(1): 86-92.
    [9] Fox P, Suidan M T, Pfeffer J T, et al. Hybrid expanded-bed GAC reactor for treating inhibitory wastewaters[J]. J. Environ. Eng. 1990, 116, 438-453.
    [10] Gai H J, Jiang Y B, Qian Y, et al. Conceptual design and retrofitting of the coal-gasification wastewater treatment process[J]. Chemical Engineering Journal, 2008, 138:84-94.
    [11]陈丽,程廷峰.废水pH值对萃取脱酚效果的影响[J].煤化工, 2007, 3(54):38-40.
    [12]郭海彦,夏尊江.煤气化洗涤废水中酚、氨的回收利用.北方环境, 2004, 29(1):49-50.
    [13]于长松,宋月玲.浅谈含酚工业废水的处理[J].质量天地, 2003, 12:29.
    [14] Mooketsi O I. Evaluation of ozone for the removal of phenolic compounds in wastewater from the merisol plant (sasolburg)[D]. Johannesburg: Degree of Masters of Science, University of Witwatersrand, 2008.
    [15] Yang C F, Qian Y, Zhang L J, et al. Solvent extraction process development and on-site trial-plant for phenol removal from industrial coal gasificationwastewater[J]. Chemical Engineering Journal, 2006, 117(2):179-185.
    [16]盖恒军,江燕斌,钱宇,等.煤气化废水处理过程瓶颈及改进措施分析[J],化学工程, 2007, 35(8):57-60.
    [17]钱宇,周志远,陈赟,等.煤气化废水酚氨分离回收系统的流程改造和工业实施[J].化工学报, 2010, 61(7):1821-1828.
    [18] Yu Z J, Chen Y, Feng D C, et al. Process development, simulation, and industrial implementation of a new coal-gasification wastewater treatment installation for phenol and ammonia removal[J]. Ind. Eng. Chem. Res., 2010, 49 (6):2874-2881.
    [19]吴代赦,郑宝山,唐修义,等.中国煤中氮的含量及其分布[J].地球与环境, 2006, 34(1):1-6.
    [20]施永生.煤加压气化废水处理[M].北京:化学工业出版社, 2001:46.
    [21] Li H Q, Han H J, Du M A, et al. Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor[J]. Bioresource Technology, 2011, 102(7):4667-4673.
    [22] Feng D C, Yu Z J, Chen Y, et al. Novel single stripper with side-draw to remove ammonia and sour gas simultaneously for coal-gasification wastewater treatment and the industrial implementation[J]. Ind. Eng. Chem. Res. 2009, 48 (12):5816-5823.
    [23]耿俊峰,韩义军.气浮技术在处理哈尔滨气化厂煤加压气化废水中的应用[J].煤炭技术, 2002, 21(2):52-53.
    [24] Greminger D C, Burns G P, Lynn S, et al. Solvent extraction of phenols from water[J]. Ind. Eng. Chem. Process Des. Dev. 1982, 21(1):51-54.
    [25] Gallagher J R, Mayer G G. Process performance of pilot-scale activated sludge treatment of pretreated coal gasification wastewater[C]. Conference: 40. annual Purdue industrial waste conference, West Lafayette, IN, USA, 1985:1-11.
    [26] Sack W A, Bokey W R. Biological treatment of coal gasification wastewater[C]. Proceedings of the 33rd Purdue Industrial Waste Conference, 1978:278-285. [27 Janeczek J, Lamb J C. Treatability of coal gasification wastewater using the powdereded activated carbon/activated sludge process[C]. Proceedings of the 37th Purdue Industrial Waste Conference, 1982:497-506.
    [28] Zhang W Q, Rao P H, Zhang H, et al.The role of diatomite particles in the activated sludge system for treating coal gasification wastewater[J]. Chinese Journal of Chemical Engineering, 2009, 17(1):167-170.
    [29]姬鹏霞,杨建,刘志辉. SBR法处理鲁奇加压气化废水存在问题的探讨及措施[J].山东科学, 2005, 18(4):83-85.
    [30]韩洪军,李慧强,杜茂安,等.厌氧/好氧/生物脱氨工艺处理煤化工废水[J]. 2010, 26(6):75-77.
    [31]王晨,马放,山丹,等.用于煤气废水深度处理的脱酚菌的特性. 2008, 29(3):255-259.
    [32]黄霞,陈钱.固定化优势菌种处理焦化废水中几种难降解有机物的试验研究,中国环境科学[J], 1995, 15(1):1-4.
    [33] Blum D J W, Hergenroeder R, Parkin G F, et al. Anaerobic Treatment of coal conversion wastewater constituents: biodegradability and toxicity[J]. Journal (Water Pollution Control Federation), 1986, 58(2):122-131.
    [34] Kindzierski W B, Fedorak P M, Hrudey S E. Anaerobic treatability of a phenolic coal conversion wastewater after diisopropyl ether extraction[J]. Wat. Res. 1991, 25(4):479-484.
    [35] Suidan M T, Strubler C E, Kao S W, et al. Treatment of coal gasification wastewater with anaerobic filter technology[J]. Journal (Water Pollution Control Federation), 1983, 55(10):1263-1270.
    [36] Ramakrishnan A, Gupta S K. Anaerobic biogranulation in a hybrid reactor treating phenolic waste[J]. Bioresource Technology, 2006, 137(3):3745-3753.
    [37] Nakhla G F, Suidan M T. Anaerobic toxic wastes treatment: dilution effects[J]. Journal of Hazardous Materials, 1995, 42(1):71-86.
    [38] Ramakrishnan A, Gupta S K. Effect of effluent recycling and shock loading on the biodegradation of complex phenolic mixture in hybrid UASB reactors[J]. Journal of Hazardous Materials B, 2008, 99(9):3745-3753.
    [39] Nakhla G F, Suidan M T, Pfeffer J T. Control of anaerobic GAC reactors treating inhibitory wastewaters[J]. Jr. Wat. Pollut. Control Fed. 1990, 62(1):65-72.
    [40]何苗,张晓健,雷晓玲,等.厌氧-缺氧/好氧工艺与常规活性污泥法处理焦化废水的比较[J].给水排水, 1997, 23(6):31-33.
    [41]刘荣桂,嵇小玲. A/O生物膜法处理煤气制气废水[J].工业用水与废水, 1999, 30(3):27-29.
    [42]管凤伟,高戈,赵庆良. A/O生物膜工艺处理煤气废水的试验研究[J].中国给水排水, 2009, 13:74-76.
    [43] Zhang M, Tay J H, Qian Y, et al. Coke plant wastewater treatment by fixed biofilm system for COD and NH3-N removal[J]. Water Research, 1998, 32(2): 519-527.
    [44]谢康,王磊,王欣,等.煤制气废水处理中试试验研究[J].环境污染与防治, 2010, 32(8):28-31.
    [45]张文启,马军,邱立平.煤气废水好氧-缺氧-好氧生物处理研究[J].工业水处理, 2006, 26(2):32-35.
    [46]崔崇威,马放,张艳敏,等.哈依煤气废水处理改造工艺的技术讨论[J].哈尔滨建筑大学学报, 2002, 35(6):26-29.
    [47]高亚楼,曲江,李生敏.处理造气废水混凝药剂选择的研究[J].煤化工, 2010 38(2):43-46.
    [48]赵庆良,管凤伟.不同混凝剂处理煤气废水生物出水的研究[J].黑龙江大学自然科学学报, 2010, 27(2):233-236.
    [49]李生敏,张文启,赵仁杰.”陈化”对煤气废水水质及其混凝效果的影响[J].煤化工, 2005, 33(4):38-40.
    [50]韩超,叶杰旭,孙德智. O3-MBR法深度处理煤气废水[J].环境污染及其防治, 2010, 7:970-974.
    [51]张文启,马军,刘增贺,等.臭氧预氧化强化煤气废水生化处理研究[J].工业水处理, 2005(1):33-36.
    [52]赵振业,黄君礼,张文兵.二氧化氯在煤气废水处理中的应用[J]. 2001, 17(7):6-9.
    [53]李鹏程,刘雷,胡九成.多相催化氧化法处理酚氰废水的研究[J].南昌大学学报:工科版, 2002, 24(3):80-86.
    [54]于秀娟,王辉,孙德智,等.阴阳极室同时氧化对煤气废水处理效果的研究[J].哈尔滨工业大学学报, 2007, 39(2):262-265.
    [55]马放,杨海燕,杨基先,等.臭氧-固定化生物活性炭去除煤气废水中酚的研究[J].南京理工大学学报:自然科学, 2005, 29(2):226-230.
    [56]孙家寿,余斌.膨润土复合吸附剂处理煤气洗涤废水研究[J].非金属矿, 1994, 1:37-39.
    [57]普煜,马永成,陈樑,等.鲁奇炉渣在废水净化中的应用研究[J].工业水处理, 2007, 27(5):59-62.
    [58]吕德全,左玖玲,曲江.树脂吸附法处理煤气废水的试验研究[J].环境科学与管理, 2006, 31(4):88-90.
    [59] Bhattacharyya D, Kermode R I, Dickinson R L. Coal gasification process wastewater reusability: Separation of organics by membranes[J]. Environmental Progress, 1983, 2(1):38-47.
    [60]马孟,靖大为.煤气化废水回用的浸没式超滤-反渗透的组合工艺[J]. 2009, 15(4):280-284.
    [61] Borghei S M, Hosseini S H. The treatment of phenolic wastewater using amoving bed biofilm reactor[J]. Process Biochem. 2004, 39 (10):1177-1181.
    [62] Ucun H, Yildiz E, Nuhoglu A. Phenol biodegradation in a batch jet loop bioreactor (JLB): Kinetics study and pH variation[J]. Bioresource Technology, 2010, 101(9):2965-2971.
    [63] Fan C Z, Lu A H, Li Y, et al. Pretreatment of actual high-strength phenolic wastewater by manganese oxide method[J]. Chemical Engineering Journal, 2010, 160(1):20-26.
    [64] Carbajo J B, Boltes K, Leton P. Treatment of phenol in an anaerobic fluidized bed reactor (AFBR): continuous and batch regime[J]. Biodegradation, 2010, 21(4):603-613.
    [65] Fang H H P, Chen T, Li Y Y, et al. Degradation of phenol in wastewater in an upflow anaerobic sludge blanket reactor[J]. Water Research, 1996, 30(6):1353-1360.
    [66] Fang H H P, Liang D W, Zhang T, et al. Anaerobic treatment of phenol in wastewater under thermophilic condition[J]. Water Research, 2006, 40(3):427-434.
    [67] Leven L, Schnurer A. Molecular characterisation of two anaerobic phenol- degrading enrichment cultures[J]. International Biodeterioration and Biodegradation, 2010, 64(6):427-433.
    [68] Donoso-Bravo A, Rosenkranz F, Ruiz-Filippi G, et al. Development and validation of a simplified model for the anaerobic degradation of phenol. Water Sci. Technol. 2009, 60(1):37-45.
    [69] Jih C G, Huang J S, Huang S Y. Process Kinetics of Upflow Anaerobic Sludge Bed Reactors Treating Inhibitory Substrate[J]. Water Environment Research, 2003, 75(1):5-14.
    [70] Lack A, Fuchs G. Evidence that phenol phosphorylation to phenylphosphate is the first step in anaerobic phenol metabolism in a denitrifying Pseudomonas sp[J]. Archives of Microbiology, 1994, 161(2):132-139.
    [71] He Z Q, Wiegel J. Purification and characterization of an oxygen-sensitive reversible 4-hydroxybenzoate decarboxylase from clostridium hydroxyl- benzoicum[J]. European Journal of Biochemistry, 1995, 229(1):77-82.
    [72] Veeresh G S, Kumar P, Mehrotra I. Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review. Water Research, 2005, 39(1):154-170.
    [73] O’Connor O A, Young L Y. Effects of six different functional groups and their position on the bacterial metabolism of monosubstituted phenols under anaerobic conditions. Environ. Sci Technol. 1996, 30(5):1419-1428.
    [74] Fedorak P M, Hrudey S E. The effects of phenol and some alkyl phenolics on batch anaerobic methanogenesis[J]. Water Research, 1984, 18(3):361-367.
    [75] Healy Jr J B, Young L Y. Catechol and phenol degradation by a methanogenic population of bacteria[J]. Appl. Environ. Microbiol. 1978, 35(1):216–218.
    [76] Subramanyam R, Mishra I M. Treatment of catechol bearing wastewater in an upflow anaerobic sludge blanket (UASB) reactor: Sludge characteristics[J]. Bioresource Technology, 2008, 99(18):8917-8925.
    [77] Latkar M, Chakrabarti T. Resorcinol, catechol and hydroquinone biodegra-dation in mono and binary substrate matrices in upflow anaerobic fixed-film fixed-bed reactors[J]. Wat. Res. 1994, 28(3):599-607.
    [78] Latkar M, Swaminathan K, Chakrabarti T. Kinetics of anaerobic biodegra-dation of resorcinol catechol and hydroquinone in upflow fixed film-fixed bed reactors[J]. Bioresource Technology, 2003, 88(1):69-74.
    [79] Swaminathan K, Chakrabarti T, Subrahmanyam P V R. Substrate-substrate interaction of resorcinol and catechol in upflow anaerobic fixed film-fixed bed reactors in mono and multisubstrate matrices[J]. Bioprocess and Biosystems Engineering, 1999, 20(4):349-353.
    [80] Nakhla G F, Suidan M T. Effect of anaerobic biological activity on the adsorptive capacity of granular activated carbon[J]. Water Environ. Res. 1995, 67(7):1020-1026.
    [81] Suidan M T, Fox P, Pfeffer J T. Anaerobic treatment of coal gasification wastewater[J]. Water Science and Technology, 1987, 19(1-2):229-236.
    [82] Wang Y T, Suidan M T, Rittman B E. Anaerobic treatment of phenol by an expanded-bed reactor[J]. Journal (Water Pollution Control Federation), 1986, 58(3):227-233.
    [83] Fedorak P M, Hrudey S E. Anaerobic treatment of phenolic coal conversion wastewater in semicontinuous cultures[J]. Wat. Res. 1986, 20(1):113-122.
    [84] Zhang M, Tay J H, Qian Y, et al. Comparison between anaerobic-anoxic-oxic and anoxic-oxic systems for coke plant wastewater treatment[J]. J. Envir. Eng. 1997, 123(9):876-883.
    [85] Tay J H, He Y X, Yan Y G. Anaerobic biogranulation using phenol as the sole carbon source[J]. Water Environment Research, 2000, 72(2):189-194.
    [86] Young L Y, Rivera M D. Methanogenic degradation of four phenolic compounds[J]. Water Res. 1985, 19(10):1325-1332.
    [87]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002.
    [88] Anderson G K, Yang G. Determination of bicarbonate and total volatile acidconcentration in anaerobic digesters using a simple titration. Water Environ. Res. 1992, 64(1):53-59.
    [89]何苗.杂环化合物和多环芳烃生物降解性能的研究[D].北京:清华大学环境工程学科博士学位论文, 1995.
    [90] Gijzen H J, Bernal E, Ferrer H. Cyanide toxicity and cyanide degradation in anaerobic wastewater treatment[J]. Water Research, 2000, 34(9): 2447-2454.
    [91] Chakraborty S, Veeramani H. Effect of HRT and recycle ratio on removal of cyanide, phenol, thiocyanate and ammonia in an anaerobic-anoxic-aerobic continuous system[J]. Process Biochemistry, 2006, 41(1): 96-105.
    [92] Karlsson A, Ejlertsson J, Nezirevic D, et al. Degradation of phenol under meso- and thermophilic, anaerobic conditions[J]. Anaerobe. 1999, 5(1): 25-35.
    [93] dos Santos A B, Bisschops I A E, Cervantes F J, van Lier J B. The transformation and toxicity of anthraquinone dyes during thermophilic (55℃) and mesophilic (30℃) anaerobic treatments[J]. J. Biotechnol. 2005, 115(4):345-353.
    [94] Fang H H P, Chan O C. Toxicity of phenol towards anaerobic biogranules[J]. Water Res. 1997, 31(9): 2229–2242.
    [95]袁敏.两级厌氧工艺预处理煤化工废水的研究[D].哈尔滨:哈尔滨工业大学市政工程学科硕士学位论文, 2010: 23-27.
    [96] Padoley K V, Mudliar S N, Pandey R A. Heterocyclic nitrogenous pollutants in the environment and their treatment options-an overview[J]. Bioresource Technol. 2008, 99(10):4029-4043.
    [97] Palatsi J, Illa J, Prenafeta-BoldúF X, Laureni M, et al. Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: Batch tests, microbial community structure and mathematical modeling[J]. Bioresource Technol. 2010, 101(7):2243-2251.
    [98] Barret M, Carrère H, Delgadillo L, et al. PAH fate during the anaerobic digestion of contaminated sludge: Do bioavailability and/or cometabolism limit their biodegradation?[J]. Water Res. 2010, 44(13):3797-3806.
    [99] Perez M, Rodriguez-Cano R, Romero L I, et al. Anaerobic thermophilic digestion of cutting oil wastewater: Effect of co-substrate[J]. Biochem. Eng. J. 2006, 29(3):250-257.
    [100] Field J A, Stams A J M, Kato M, et al. Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia. Antonie van Leeuwenhoek[J]. 1995, 67(1):47-77.
    [101] Kumabe K, Fujimoto S, Yanagida T, et al. Environmental and economic analysis of methanol production process via biomass gasification[J]. Fuel, 2008,87(7): 1422-1427.
    [102] Subramanyam R, Mishra I M. Co-degradation of resorcinol and catechol in an UASB reactor[J]. Bioresource Technology, 2008, 99(10): 4147-4157.
    [103]维基百科(英文),互联网[EB/OL][2011-3-20].http://en.wikipedia.org/wiki/.
    [104] Codoner A, Monzo I, Tomas F, et al. Apparent dipole moments and molar volumes of dimethylphenols in some nonpolar solvents. J. Phys. Chem. 1986, 90(10):2244–2247.
    [105] Lander J J, Svirbely W J. The Dipole Moments of Catechol, Resorcinol and Hydroquinone[J]. J. Am. Chem. Soc. 1945, 67(2):322-324.
    [106] Harwood C S, Burchhardt G, Herrmann H, et al. Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway[J]. FEMS Microbiol. Rev. 1999, 22(5):439-458.
    [107] Rudolphi A, Tschech A, Fuchs G. Anaerobic degradation of cresols by denitrifying bacteria[J]. Arch. Microbiol. 1991, 155(3):238-248.
    [108] H?ggblom M M, Rivera M D, Bossert I D, et al. Anaerobic biodegradation of para-cresol under three reducing conditions[J]. Microb. Ecol. 1990, 20(2):141-150.
    [109] Müller J A, Galushko A S, Kappler A, et al. Anaerobic degradation of m-cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate[J]. Arch Microbiol. 1999, 172(5):287-294.
    [110] Londry K L, Fedorak P M. Use of fluorinated compounds to detect aromatic metabolites from m-cresol in a methanogenic consortium: evidence for a demethylation reaction[J]. Appl. Environ. Microbiol. 1993, 59(7):2229-2238.
    [111] Kluge C, Tschech A, Fuchs G. Anaerobic metabolism of resorcyclic acids (m-dihydroxybenzoic acids) and resorcinol (1,3-benzenediol) in a fermenting and in a denitrifying bacterium[J]. Arch. Microbiol. 1990, 155(1):68-74.
    [112] Tschech A, Schink B. Fermentative degradation of resorcinol and resorcylic acids[J]. Arch Microbiol. 1985, 143(1):52-59.
    [113] Gorny N, Schink B. Hydroquinone degradation via reductive dehydroxylation of gentisyl-CoA by a strictly anaerobic fermenting bacterium[J]. Arch. Microbiol. 1994, 161(1):25-32.
    [114] Szewzyk U, Szewzyk R, Schink B. Methanogenic degradation of hydro- quinone and catechol via reductive dehydroxylation to phenol[J]. FEMS Microbiol. Ecol. 1985, 31(2):79-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700