龙眼LFY同源基因表达及启动子克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龙眼(Dimocarpus longan L.)是我国具有重要经济价值的名优特色果树,也是我国在国际市场上极具竞争力的特色水果,但龙眼大小年结果、鲜果不能周年供应市场等问题尚未得到有效解决,这些都与龙眼花芽分化有关。
     LFY基因在有花和无花植物中都存在,是决定花分生组织形成的必需基因,并在花形成中发挥着接连许多花诱导途径的输出信号和激活花器官决定基因的关键作用。因此,对LFY基因的研究成为目前关于成花基因研究中的一个热点。官磊(2007)采用染色体步移技术,克隆龙眼LFY同源基因编码区全长序列,并采用半定量RT-PCR技术对LLFY基因的功能进行了初步研究。本试验在此基础上细化了龙眼花芽分化采样过程,运用半定量RT-PCR技术进一步研究LLFY基因的表达。同时,进行LLFY在四季蜜龙眼中表达的研究。此外,本试验应用染色体步移技术,克隆了龙眼LLFY基因的启动子序列片段,并对启动子序列进行分析。主要研究结果如下:
     1龙眼LLFY表达的研究
     为了研究LLFY基因在龙眼花芽分化不同时期的表达情况,本实验分别选取“红核子”叶芽以及2月份到4月份不同时期的花序顶芽,运用半定量RT-PCR技术检测LLFY基因的表达情况。实验结果表明, LLFY的表达不仅与龙眼花序的分化有关,也与花芽的分化有关。同时,LLFY在“四季蜜”龙眼中的表达结果显示,LLFY表达量的增加可能与四季蜜龙眼早花以及四季开花的特性有关。
     2龙眼LLFY启动子序列的克隆和分析
     采用染色体步移技术,根据龙眼LLFY编码区基因组DNA序列设计特异性引物,进行LA-PCR扩增,获得龙眼LLFY基因启动子约800bp序列。运用Plant CARE、FootPriter等软件进行序列分析,结果表明,在此序列中除含有TATA-box和CAAT-box两个主要元件外,还含有多个潜在的顺式作用元件,如MYB结合位点、ABA响应元件(ABRE)和一些光响应元件如GA-box、GAG-motif、I-box等,说明龙眼LLFY的表达与干旱、光照、ABA有关。
Longan (Dimocarpus longan Lour.) is an important fruit in China, and very competitive in the international market, but there are some problems in longan production such as biennial bearing, the inadequate annual market supply of fresh fruit which are closely related to flower bud differentiation of in longan.
     LFY gene exists in flowering and non-flowering plants, it is an essential gene that decides the form of floral meristem and play a key role in linking signals of flowering induction and activating floral organ determining genes during the flower formation.Guan Lei (2007) cloned the LFY homologous gene in longan(LLFY) and preliminary studied expression of LLFY by semi-quantitative RT-PCR analysis, the results showed LLFY genes were related to inflorescence differentiation and growth. On the basis of previous study, we detected the expression of LLFY gene further by RT-PCR in this article, meanwhile, LLFY‘s expression in“sijimi”longan was also studyed. In addition, the partial promoter sequence of longan LLFY was cloned by genome walking method, and the promoter sequence was analyzed by software. The main results showed as follows:
     1 The expression research of longan LFY gene.
     In order to study the expression of LLFY gene in different periods of flower bud differentiation, we selected“Honghezi”leaf buds and terminal inflorescence buds from February to April. The results showed that, the function of LLFY was related to not only the inflorescence differentiation, but also the flower bud differentiation. Meanwhile, the results showed the increasing expression of LLFY gene in“sijimi”may be related to its characteristics of early flowering and flowering throughout the growing season.
     2 Cloning and analysing the promoter sequence of longan LFY gene.
     Specific primers were designed and 800bp long sequence of LLFY promoter was cloned by genome walking method. Sequence analysis showed that LLFY’s promoter region contained not only two major components, the TATA-box and CAAT-box, but also several potential cis-acting elements such as MYB binding site、ABA responsive elements(ABRE) and some light responsive elements-GA-box、GAG-motif、I-box, etc. which means the expression of LLFY gene is related to drought, light, ABA.
引文
1.曹秋芬,田雅人,等.苹果LEAFY同源基因的cDNA克隆与表达分析[J].园艺学报. 2003, 30(3): 267-271.
    2.陈大明,金勇丰,张上隆.柑橘LEAFY同源基因片段分离及特性研究[J].园艺学报. 2001, 28 (4): 295-300.
    3.樊荣,万小荣,张文涛,等. LE-ACS6启动子在LE-ACS6: GUS转基因拟南芥中的特异性[J].植物生理与分子生物学学报, 2004, 30(3): 351.
    4.官磊.龙眼LEAFY基因克隆与功能研究[D].福州:福建农林大学, 2007.
    5.姜翠翠.木奈多酚氧化酶(PPO)基因启动子的克隆与功能鉴定[D].福州:福建农林大学, 2007.
    6.焦改丽,孟钊红,聂安全等.花椰菜花叶病毒(CaMV)35S启动子在转基因棉花中的表达[J].作物学报, 2004, 30( 11) : 1135-1139.
    7.李杰,张福城,王文泉等.高等植物启动子的研究进展[J].生物技术通讯, 2006, 17(4):658-661.
    8.李姗姗,迟彦,李凌飞等.启动子克隆方法研究进展[J].中国生物工程杂志, 2005, 25( 7) : 9-16.
    9.梁栋.番木瓜β-半乳糖苷酶同源基因启动子克隆与功能鉴定[D].福州:福建农林大学, 2007.
    10.林炳英,李梅,林德钦,金志强.番茄果实特异性启动子2A11的基因克隆及功能研究[J].农业生物技术科学, 2006, 22(10): 62-66.
    11.刘发央,侯路珍,谢小冬.启动子Actinl的克隆及植物表达载体的构建[J].草原与草坪, 2005, 3: 66-71.
    12.刘月学,胡桂兵,林顺权等.枇杷LEAFY同源基因的克隆及序列分析[J].华南农业大学学报, 2005, 26(2): 67-70.
    13.刘振林.甘菊BADH基因启动子的克隆及瞬时表达分析[D].北京林业大学博士论文. 2006.
    14.聂丽娜,夏兰琴,徐兆师等.植物基因启动子的克隆及其功能研究进展[J].植物遗传资源学报, 2008, 9 (3) : 385-391.
    15.彭坚,李永红,席嘉宾等.化学调控四季花龙眼成花坐果的初步研究[J].西北植物学报, 2005, 25(7): 69-73.
    16.皮灿辉,易自力,王志成.提高转基因植物外源基因表达效率的途径[J].中国生物工程杂志, 2003, 23( 1) : 1-4.
    17.邵巍.龙眼胚性培养物胞质型apx基因克隆及其表达研究[D].福州:福建农林大学, 2007.
    18.王关林,方宏筠.植物基因工程原理及技术[M].北京:科学出版社, 1998.
    19.王利琳,梁海曼,庞基良,朱睦元.拟南芥LEAFY基因在花发育中的网络调控及其生物学功能[J].遗传, 2004, 26(1): 137-142.
    20.王莹,韩烈宝,曾会明.高等植物启动子克隆方法的研究进展[J].生物技术通报, 2007, 3: 97-100.
    21.吴乃虎,工程原理(下册)[M].第2版.北京:科学出版社, 2001: 71.
    22.夏江东,夏平.高等植物启动子功能和结构研究进展[J].楚雄师范学院学报, 2005, 20( 3) : 41-48.
    23.姚嵘,马三梅.植物果实的特异型启动子[J].生命化学, 2006 , 26 (4): 55- 57.
    24.曾黎辉,王庆莲,洪自同等.龙眼LEAFY同源基因片段的克隆和表达[J].热带作物学报, 2006, 27(4): 69-73.
    25.钟伟,林晓东,朱芳德等.应用RAPD技术分析热带龙眼四季蜜与常规龙眼品种的遗传差异[J].中山大学学报(自然科学版), 2004, 43: (S1): 65-68.
    26.宗成文,章镇,房经贵等.葡萄LEAFY基因启动子的分离和序列分析[J].南京农业大学学报, 2007, 30(4): 20-25.
    27. Abe M, Kobayashi Y, Yamamoto S, et al. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex.Science. 2005, 309:1052–1056.
    28. Ahearn K P, Johnson H A, Weigel D,et al. NFL1, a Nicotiana tabacum LEAFY-like gene, controls meristen initiation and floral structure. Plant and Cell Physiology, 2001, 42(10): 1130-1139.
    29. Amasino, R M. Vernalization and flowering time. Curr. Opin.Biotechnol., 2005, 16(2): 154–158.
    30. Aoyagi K, Kuhlemeier C, Chua NH. The pea rbcs-3A enhancer-Iike element directs cell-specific expression in transgenic tobacco[J]. MolecuLar Geneties And Genomies, 1988, 213: 179-185.
    31. Attolico AD, Tullio De MC. Increased ascorbate content delays flowering in long-day grown Arabidopsis thaliana (L. ) Heynh[J]. Plant Physio lB iochem, 2006, 44 (729) : 462-466.
    32. Bachem C W B ,Oomen R J F J ,Visser R G F. Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plant Molecular Biology Report, 1998, 16: 157-173.
    33. Blázquez M A ,Soowal L N ,Lee L ,Weigel D. LEAFY expression and flower initiation in Arabidopsis.Development, 1997, 124: 3835-3844.
    34. Blazquez M A, Green R, Nilsson O, et al. Gibberellins promote flowering ofarabidopsis by activating the LEAFY promoter[J]. Plant Cell, 1998, 10 (5): 791– 800.
    35. Blázquez M A, Weigel D. Integration of floral inductive signals in Arabidopsis. Nature, 2000, 404: 889-892.
    36. Boss P K, Bastow R M, Mylne J S, et al. Multiple pathways in the decision to flower:enabling, promoting, and resetting. The Plant Cell, 2004, 16(S): 18–31.
    37. Bradley D, Ratcliffe O, Vincent C, et al. Inflorescence commitment and architecture in Arabidopsis. Science, 1997, 275: 80–83.
    38. Carmona M J, Cubas P, Mart?′nez-Zapater J M, et al. VFL, the Grapevine FLORICAULA/LEAFY Ortholog, is expressed in meristematic regions independently of their fate. Plant Physiol, 2002, 130: 68–77.
    39. Carrera E, Prat S. Expression of the Arabidopsis abil-1 mutant allele inhibits proteinase inhibitor wound-induction in tomato[J]. The Plant Journa1.1998, 15(6): 765-771.
    40. Clarke HR, Davis JM, Wilbert SM, et a1. Wound-induced and developmental activation of a poplar tree chitinase gene promoter in transgenic tobacco[J]. Plant MoL BioL, 1994, 25(5): 799-815.
    41. Coca MA, ALmoguera C, Thomas TL, et aL. Differential regulation of small heatshock genes in plants: analysis of a water-stress-inducible and developmentally activated sunflower promoter[J]. Plant Mol Bio1, 1996, 31(4): 863-876.
    42. Conti L, Bradley D. TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. The Plant Cell, 2007, 19: 767-778.
    43. Donna MW, Elizabeth JD, Paul SL. Cloning restriction fragments that promote expression of a gene in Bacillus subtilis[J]. Journal of Bacteriology, 1981, 146: 1162-1165.
    44. Dornelas MC, Rodriguez AP. The rubber tree (Hevea brasiliensis Muell.Arg.) homologue of the LEAFY/FLORICAULA gene is preferentially expressed in both male and female floralmeristems[J]. J Exp Bot, 2005, 56 (417) : 1965-1974.
    45. Dornelasm C, Rodrigueza P. The tropical cedar tree (Cedrela fissilisVell., Meliaceae) homolog of the Arabidopsis LEAFY gene is expressed in reproductive tissues and cancomplement Arabidopsis leafy mutants[J]. Planta, 2006, 223 (2) : 306-314.
    46. Fordor I, Kranikova O V, Berets E, et al. Cloning structure and features of a Saccharomyces cerevisiae DNA fragment causing the expression of reportergenes. Mol Biol, 1990, 24: 1411-1418.
    47. Fukuda Y, Shinshi H. Characterization of a novel cis-acting element that is responsive to a fungal elicitor in the promoter of a tobacco class I chitinase gene[J]. Plant Mol Biol, 1994, 24(3): 485-493.
    48. Garbarino JE, Bellknap WR. IsoLation of a ubiquitin-ribosomal protein gene (ubi3) from potato and expression of its promoter in transgenic plants. Plant Mol Bio1, 1994, 24(1): 119-127.
    49. Hamès C, Ptchelkine D, Grimm C, et al. Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins. EMBO J. 2008, 27(19): 2628-37.
    50. Hayama R, Coupland G. Shedding light on the circadianclock and the photoperiodic control of flowering. Curr. Opin. Plant Biol., 2003, 6: 13–19.
    51. He Z, Zhu Q, Dabi T et al. Transformation of rice with the Arabidopsis floral regulator LFY causes early heading. Transgenic Research, 2001, 9: 223-227.
    52. Huang T, Bohlenius H, Eriksson S, et al. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science, 2005, 309: 1694–1696.
    53. Huang WW, Bateman E. TATA elemants direct bi-directional transcription by RNApolymerasesII and III[J]. Nucleic acids Res, 1996, 24(6): 1158-1163.
    54. Hunt AG, MacDonald MH. Deletion analysis of the polyadenylation signal of a pea ribulose-l,5-bisphosphate carboxylase small-subunit gene J]. Plant Mol Bio1, 1989, 13(2): 125-138.
    55. Jack JL, Richard HK, Jaro S. An inverted TATA box direct downstream transcription of the bone sialoprotein[J]. Gene Biochen J, 1995, 310(3): 33-40.
    56. Jack T. Molecular and genetic mechanisms of floral control. The Plant Cell, 2004, 16: S1-S17.
    57. Joshi C P. An inspection of the domain between putative TATA box and translation start site in 79 plant genes[J]. Nucleic Acids Res, 1987, 15: 6643.
    58. Kardailsky I, Shukla VK, Ahn JH, et al. Activation tagging of the floral inducer FT. Science, 1999, 286: 1962–1965.
    59. Kardish N, Magal N, Aviv D, et a1. The tomato gene for the chloroplastic Cu, Zn superoxide dismutase: regulation of expression imposed in transgenic tobacco plants by a short promoter [J]. Plant Mol Bio1, 1994, 25(5): 887-897.
    60. Kobayashi Y, Kaya H, Goto K, et al. A pair of related genes with antagonistic roles in mediating flowering signals. Science, 1999, 286: 1960–1962.
    61. Kotoda N, Wada M, Masuda T et al. The breakthrough in the reduction of juvenile phase in apple using transgenic approaches. Acta Hort. 2003, 625: 337-343.
    62. Kotoda N, Iwanami H, Takahashi S, et al. Antisense expression of MdTFL , a TFL1-like gene, reduces the juvenile phase in apple. J. Amer.Soc.Hort.Sci., 2006, 131: 74-81.
    63. Kumpatla SP, et al. Genome intruder scanning and modulation systems and transgene silencing[M]. TIBS, 1998, 3 : 97.
    64. Kyozuka J, Konishi S, Nemoto K, et al. Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. Proceedings of the National Academy of Sciences of USA, 1998, 95: 1979-1982.
    65. Lagrange T, Gauvin S, Mache R, et al. S2F, a leaf-specific transacting factor, binds to a novel cisacting element and differentially activates the RPL21 gene[J]. Plant Cell, 1997, 9: 1469-1479.
    66. Lee J, Oh M, Park H, et al. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. The Plant Journal, 2008, 55: 832–843.
    67. Liu YG, Robert FW.Genomics, 1995, 25: 674-681.
    68. Luo L.J, Shi J.S. TAIL-PCR: a simple and efficient method to isolate DNA segments adjiacent to known sequence, Nanjing Linye Daxue Xuebao[J]. Journal of Nanjing Forestry University. 2003, 27(4): 87-90.
    69. Maizel A, Busch M A, Tanahashi T, et al. The floral regulator LEAFY evolves by substitutions in the DNA binding domain. Science, 2005, 308: 260-263.
    70. Matsuoka M, Kyozuka J, Shimamoto K, et a1. The promoters of two carboxylases in a C4 plant (maize) direct cell-specific, light-regulated expression in a C3 plant (rice)[J]. The Plant Journal, 1994, 6(3 ): 311-319.
    71. Mi Jung Kim, Heeja Kim, Mi Chung Suh. Seed- specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis- regulatory elements in the SeFAD2 promoter and enhancers in the 5′- UTR intron[J]. Molecular Genetics and Genomics, 2006, 276(4): 351- 368.
    72. Mi Jung Kim, Jeong- Kook Kim, Mi Chung Suh. The SebHLH transcription factor mediates trans - activation of the SeFAD2 gene promoter through binding to E- and G- box elements[J]. Plant Molecular Biology, 2007, 64(4): 453- 466.
    73. Miao GH, Verma DPS. Soybean nodulin-26 gene encoding a channel protein is expressed only in the infected cells of nodules and is regulated differently in rootsof homologousand heterologous plants[J]. Plant Ce11, 1993, 5: 781-786.
    74. Mouradov A, Cremer F, Coupland G. Control of flowering time: interacting Pathways as a basis for diversity. The Plant Cell, 2002, S111–S130.
    75. Nilsson O , Lee I , Blazquez M A ,Weigel D. Flowering time genes modulate the response to LEAFY activity. Genetics ,1998 ,150: 403-410.
    76. Norberg M, Holmlund M, Nilsson O. The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs[J]. Development, 2005, 132 (9) : 2203-2213.
    77. Parcy F. Flowering:a time for integration. Int. J. Dev. Biol., 2005, 49: 585–593.
    78. Pe?a L, Martín-Trillo M, Juárez J, et al. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nature Biotech. 2001, 19(3): 263–267.
    79. Pillitter L J, Lovatt C J, Walling L L. Isolation and characterization of LEAFY and APETALA1 homologues from Citrus sinensis L. Osbeck‘Washington’.J Amer Soc Hort Sci, 2004, 129(6): 846-856.
    80. Pillitter L J, Lovatt C J, Walling L L. Isolation and characterization of a TERMINAL FLOWER Homolog and its correlation with juvenility in Citrus. Plant Physiol, 2004, 135: 1540–1551.
    81. Pneuli L et al. The SELFPRUNING gene of tomoto regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1[J]. Development. 1998, 125: 1979-1989.
    82. Prasenjit Saha, Dipankar Chakraborti, Anindya Sarkar. Characterization of vascular- specific RSs1 and rolC promoters for their utilization in engineering plants to develop resistance against hemipteran insect pests[J]. Planta, 2007, 226(2): 429- 442.
    83. Qingyi YU, MOORE, ALBERT , et al. Cloning and characterization of a FLORICAULA/LEAFY ortholog, PFL in polygamous papaya[J]. Cell Res, 2005 Aug; 15 (8) : 576-584.
    84. Rachael LN, et al.Nature, 1979, 277: 324-325.
    85. Riliang Gu, Li Zhao, Guoying Wang. Isolation of a maize beta- glucosidase gene promoter and characterization of its activity in transgenic tobacco[J]. Plant Cell Reports, 2006, 25(11): 1157- 1165.
    86. Rojas A, Almoguera C, Carranco R, et a1. Selective activation of the developmentally regulated hahsp 17.6 G1 promoter by heat stress transcription factors[J]. Plant Physiology, 2002, 129: 1207
    87. Rrandl R, Schoffl F. Heat shock element are involved in heat shock promoter activation during tobacco seed maturation[J]. Plant Mol Bio1, 1996, 31: 157.
    88. Sablowski R. Flowering and determinacy in Arabidopsis. Journal of Experimental Botany Advance, 2007, 10: 1-9.
    89. Schonrock N, Bouveret R, Leroy O, et al. Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway[J ]. Genes Dev, 2006, 20 (12): 1667-1678.
    90. Sheen JY, Bogorad L. Regulation of levels of nuclear transcripts for C4 photosynthesis in bundle sheath and mesophyll cells of maize leaves[J]. Plant Molecular Biology, l987, 8(3): 227-238.
    91. Shen Q, Chen CN, Brands A, et al. The stress and abscisic acid induced barley gene HVA22: developmental regulation and homologues in diverse organisms[J]. Plant Mol Bio1, 2001, 45(3): 327.
    92. Tada Y, Sakamoto M, Matsuoka M, et a1. Expression of a monocot LHCP promoter in transgenic rice[J]. EMBO Journa1, 1991, 10(7): 1083-1088.
    93. Taylor JE, Renwick KF, Webb AA, et aI. ABA regulated promoter activity in Stomatal guard cells[J]. Plant J, 1995, 7(1): 129.
    94. Thomas J. Molecular and genetic mechanisms of floral control[J]. The Plant Cell, 2004, 16(S): 1-17.
    95. Tiimonen H, Haggman H, et al. The seasonal activity and the effect of mechanical bending and wounding on the PtCOMT promoter in Betula pendula Roth[J]. Plant Cell Reports, 2007, 26(8): 1205- 1214.
    96. Vega S H, Sauer M, Orkwiszewski J A J, et al. The early phase change Gene in Maize[J]. The Plant Cell, 2002, 14: 133–147.
    97. Wada1 M, Cao Q, Kotoda1 N, et al. Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Mol Bio, 2002, 49: 567–577.
    98. Walton EF, Podivinsky E, Wu RM. Bimodal pattern of floral gene expression over the two seasons that kiwifruit flowers develop. Physiol Plant, 2001, 111: 396–404
    99. Weigel D, Alvarez J, Smyth D R, et al. LEAFY controls Floral meristem identity in Arabidopsis. Cell, 1992, 69: 843-859.
    100.Weigel D, Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature ,1995, 377: 495-500.
    101.Xu D, McElroy D, Thornburg RW, et a1. Systemic induction of a potato pint promoter by wounding, methyl jasmonate and abscisic acid in transgenic riceplants[J]. Plant Mol Bio1, 1993, 22(4): 573.
    102.Yoon IS, Park DH, Mori H, et a1. Characterization of an auxin-inducible 1-aminocyclopropane-1-carboxylate synthase gene, VR-ACS6, of mungbean (Vignaradiata (L.) Wilczek) and hormonal interactions on the promoter activity in transgenic tobacco[J]. Plant Cell Physio1, 1999, 40(4): 431.
    103.Zhang Q, Liu H Z, Cao J S. Identification and p reliminary analysis of a new PCP p romoter from B rassica rapa ssp. Chinensis[J]. Mol Biol Rep, 2007, 10: 1107-1114.
    104.Zhu Q, Lamb C. TATA box and inititator functions in the accurate transcription of a plant minimal promoter in vitro[J]. Plant Cell, 1995, 7(10): 1681-1689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700