嗜酸乳杆菌β-半乳糖苷酶基因的克隆及其作为食品级筛选标记的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     在乳酸乳球菌克隆表达嗜酸乳杆菌β-半乳糖苷酶基因(lacZ),并观察以lacZ基因作为食品级筛选标记的活性及筛选稳定性,为构建食品级表达载体奠定基础。
     方法:
     1.根据GenBank已报道的嗜酸乳杆菌ATCC4356-lacZ基因的DNA序列,利用PCR引物设计和分析软件,设计引物,扩增ATCC4356-lacZ基因,并将其克隆入乳酸菌表达质粒载体pMG36e中构建重组质粒pMG36e-lacZ,借助X-gal显色在大肠杆菌DH5α中筛选阳性克隆子。
     2.优化乳酸乳球菌MG1363的电转化条件,并在此条件下将重组质粒pMG36e-lacZ电转入MG1363中,借助X-gal显色筛选阳性转化子MG1363-lacZ以观察筛选活性。
     3. MG1363-lacZ在含乳糖的M17培养基中表达β-半乳糖苷酶,SDS-PAGE和native-PAGE分析蛋白表达和酶活性。通过X-gal显色筛选方法将重组菌株MG1363-lacZ传60代,并测定β-半乳糖苷酶酶活和比活力以观察X-gal筛选的稳定性。
     结果:
     1.成功构建了重组质粒pMG36e-lacZ,经PCR和酶切鉴定后与预期结果完全吻合。核酸序列测定显示插入的lacZ基因序列与预期结果亦相符。借助X-gal显色从大肠杆菌DH5α中成功筛选出阳性克隆子。
     2.优化了MG1363的电转化条件,确定了最佳参数:电压2kV,时间5ms。利用电转化成功地将重组质粒pMG36e-lacZ导入MG1363中,并借助X-gal显色成功筛选出阳性转化子MG1363-lacZ。
     3. SDS-PAGE结果显示,转化子MG1363-lacZ能表达约70kDa的蛋白,native-PAGE分析显示,该蛋白具有β-半乳糖苷酶活性。对借助X-gal传60代后的重组乳酸乳球菌进行β-半乳糖苷酶比活力检测,与X-gal筛选的第二代相比没有显著差异(P=0.596>0.05),与红霉素筛选比较也没有显著差异(P=0.882>0.05),表明lacZ基因作为筛选标记具有较好的活性和稳定性。
     结论:
     通过克隆表达ATCC4356-lacZ借助X-gal筛选方法从大肠杆菌DH5α和乳酸乳球菌MG1363中成功筛选出阳性克隆转化子。ATCC4356-lacZ基因作为筛选标记具有较好的活性和稳定性。本实验为以β-半乳糖苷酶基因作为筛选标记的食品级载体的研究奠定了基础。
Objective:
     Cloning and expressingβ-galactosidase gene (lacZ) from Lactobacillus acidophilus in Lactococcus lactis, and observing the selective activity and stability of lacZ gene as a food-grade selection marker for the construction of a food-grade vector.
     Methods:
     1. According to the lacZ sequence of Lactobacillus acidophilus ATCC4356 in GenBank, a pair of primers was designed. And then the lacZ gene was amplified from L. acidophilus ATCC4356-DNA by PCR techniques. After purification, the lacZ gene fragment was digested with restriction endonucleases PstI and XbaI, and then linked with the lactic acid bacterial expression vector pMG36e digested with the same enzymes to construct the recombinant plasmid pMG36e-lacZ. The positive recombinant from Escherichia coli DH5αwas selected with blue colonies on X-gal-containing LB medium.
     2. Optimize the electroportion procedures for L. lactis MG1363, And the recombinant plasmid pMG36e-lacZ was transformed into MG1363 by electroportion. Selected the positive transformant MG1363-lacZ by selecting blue colonies on X-gal- and lactose-containing M17 medium.
     3. MG1363-lacZ was grown at 30℃on M17 medium containing lactose and induced for expressing ofβ-galactosidase. The proteins expression andβ-galactosidase activity was analysed with SDS-PAGE and native-PAGE respectively. The activity and specific activity ofβ-galactosidase were detected after a period of 60 generations with X-gal as the coloration for the stability observation.
     Results :
     1. Restriction enzyme digestion, PCR identification and DNA sequencing analysis confirmed that the construction of pMG36e-lacZ was successful. The positive recombinant from Escherichia coli DH5αwas selected successfully with blue colonies on X-gal-containing LB medium.
     2. The electroportion procedures of L. lactis MG1363 was optimized, and the recombinant plasmid pMG36e-lacZ was transformed into MG1363 at 1.9 kv of voltage and 2.8 ms of duration. The positive transformant MG1363-lacZ was selected successfully by selecting blue colonies on X-gal- and lactose-containing M17 medium. And the PCR identification and restriction enzyme digestion also confirmed that the recombinant plasmid pMG36e-lacZ was electroporated into L. lactis MG1363 successfully. The recombinant L. lactis strain MG1363-lacZ was obtained.
     3. SDS-PAGE showed the genetic engineering L. lactis strain MG1363-lacZ could express a protein, about 70kDa, which was confirmed to be ofβ-galactosidase activity by native-PAGE analysis. Theβ-galactosidase specific activity of recombinant L. lactis MG1363-lacZ after a period of 60 generations selected with X-gal was similar to the 2nd generation (P=0.592>0.05), and also similar to the 61st generation selected with Erythromycin (P=0.882>0.05). These indicated that theβ-galactosidase lacZ gene had good activity and stability as a selection marker.
     Conclusion:
     The positive transformant DH5α-lacZ and MG1363-lacZ was selected successfully by expressing L. acidophilus ATCC4356β-galactosidase and selecting blue colonies on X-gal-containing medium. Theβ-galactosidase lacZ gene had good activity and stability as a selection marker, and it could be used as a selection marker for constructing of a food-grade vector.
引文
[1]杨洁彬,郭兴华.乳酸菌-生物学基础及应用[M].北京:中国轻工业出版社. 1999
    [2]凌代文,东秀珠.乳酸菌分类鉴定及实验方法[M].北京:中国轻工业出版社. 1999
    [3] Gilliland SE. Health and nutritional benefit from lactic acid bacteria [J]. FEMS Microbiol Rev. 1990; 7(1-2):175-188.
    [4] Sanders ME. Lactic acid bacteria as promoters of human health. In: Functional foods [M]. Ed. Goldberg I, Chapman & Hall, 294-322
    [5] Bermúdez-Humarán LG. Lactococcus lactis as a live vector for mucosal delivery of therapeutic proteins[J]. Hum Vaccin. 2009; 5(4):264-267.
    [6] Novotny R, Scheberl A, Giry-Laterriere M, et al. Gene cloning, functinal expression and secretion of the S-layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a in Lactococcus lactis [J]. FEMS Microbiol Lett. 2005; 242(1):27-35.
    [7] de Vos WM. Safe and sustainable systems for food-grade fermentations by genetically modified lactic acid bacteria [J]. International Dairy Journal, 1999; 9(1):3-10.
    [8] Hansen EB. Commercial bacterial starter cultures for fermented foods of the future [J]. Int J Food Microbiol. 2002; 78(1-2):119-131.
    [9] Kondo JK & Johansen E. Product development strategies for foods in the era of molecular biotechnology [J]. Antonie Van Leeuwenhoek. 2002; 82(1-4):291-302.
    [10] Takala TM, Saris PE. A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI [J]. Appl Microbiol Biotechnol. 2002; 59(4-5):467-471.
    [11] Brede DA, Lothe S, Salehian Z, et al. Identification of the propionicin F bacteriocin immunity gene (pcfI) and development of a food-grade cloning system for Propionibacterium freudenreichii [J]. Appl Environ Microbiol. 2007;73(23):7542-7547.
    [12] Liu CQ, Su P, Khunajakr N, et al. Development of food-grade cloning and expression vectors for Lactococcus lactis [J]. J Appl Microbiol. 2005; 98(1):127-135.
    [13] O' Sullivan D, Ross RP, Twomey DP, et al. Naturally occurring lactococcal plasmid pAH90 links bacteriophage resistance and mobility functions to a food-grade selectable marker [J]. Appl Environ Microbiol. 2001; 67(2):929-937.
    [14] Defoor E, Kryger MB, Martinussen J. The orotate transporter encoded by oroP from Lactococcus lactis is required for orotate utilization and has utility as a food-grade selectable marker [J]. Microbiology. 2007; 153(Pt 11):3645-3659.
    [15] Bron PA, Benchimol MG, Lambert J, et al. Use of the alr gene as a food-grade selection marker in lactic acid bacteria [J]. Appl Environ Microbiol. 2002; 68(11):5663-5670.
    [16]孙强正,熊衍文,叶长芸,等.食品级分泌表达载体的构建及报告蛋白在乳酸乳球菌中的表达[J].微生物学报. 2008, 48(3):293-298.
    [17] Jeong DW, Lee JH, Kim KH, et al. A food-grade expression/secretion vector for Lactococcus lactis that uses an alpha-galactosidase gene as a selection marker [J]. Food Microbiol. 2006; 23(5):468-475.
    [18] Borthakur A, Gill RK, Tyagi S, et al. The probiotic Lactobacillus acidophilus stimulates chloride/hydroxyl exchange activity in human intestinal epithelial cells [J]. J Nutr. 2008; 138(7):1355-1359.
    [19] Altermann E, Russell WM, Azcarate-Peril MA, et al. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM [J]. Proc Natl Acad Sci U S A. 2005; 102(11):3906-3912
    [20]姚晓英,李大金. hCGb-c3d3融合蛋白在乳酸杆菌中的表达和鉴定[J].生殖医学杂志.2006; 15(5):308-312.
    [21] [美]J.萨姆布鲁克D.W拉塞尔著,黄培堂等译.分子克隆实验指南(第三版)[M],北京:科学出版社,2002
    [22] Bakken AP, Hill CG Jr, Amundson CH. Hydrolysis of lactose in skim milk byimmobilized beta-galactosidase (bacillus circulans) [J]. Biotechnol Bioeng. 1992; 39(4):408-417.
    [23] Pastore M, Morisi F. Lactose reduction of milk by fiber-entrapped beta-galactosidase. Pilot-plant experiments [J]. Methods Enzymol. 1976; 44:822-830.
    [24] Chen W, Chen H, Xia Y, et al. Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus [J]. J Dairy Sci. 2008; 91(5):1751-1758.
    [25] Chen W, Chen H, Xia Y, et al. Immobilization of recombinant thermostable beta-galactosidase from Bacillus stearothermophilus for lactose hydrolysis in milk [J]. J Dairy Sci. 2009; 92(2):491-498.
    [26] Walsh MK, Swaisgood HE. An Escherichia coli plasmid vector system for production of streptavidin fusion proteins: Expression and bioselective adsorption of streptavidin-beta-galactosidase [J]. Biotechnol Bioeng. 1994; 44(11):1348-1354.
    [27] Liu WF, Gao D, Wang ZN. Expression of the extracellular domain of the human immunodeficiency virus type 1 envelope protein and its fusion with beta-galactosidase in Saccharomyces cerevisiae [J]. Clin Diagn Lab Immunol. 1998; 5(4):592-594.
    [28] Ravelojaona V, Robert AM, Robert L. Expression of senescence-associated beta-galactosidase (SA-beta-Gal) by human skin fibroblasts, effect of advanced glycation end-products and fucose or rhamnose-rich polysaccharides [J]. Arch Gerontol Geriatr. 2009; 48(2):151-154.
    [29] Price JV, Cech TR. Coupling of Tetrahymena ribosomal RNA splicing to beta-galactosidase expression in Escherichia coli [J]. Science. 1985; 228(4700):719-722.
    [30]汪川,张朝武,余倩,等.保加利亚乳杆菌产β-半乳糖苷酶特性的研究[J].现代预防医学2005; 32(10):1274-1277.
    [31] Kuhlman T, Zhang Z, Saier MH Jr, et al. Combinatorial transcriptional control of the lactose operon of Escherichia coli [J]. Proc Natl Acad Sci U S A. 2007;104(14):6043-6048.
    [32] Lewis M, Chang G, Horton NC, et al. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer [J]. Science. 1996; 271(5253):1247-1254.
    [33] Malan TP, McClure WR. Dual promoter control of the Escherichia coli lactose operon [J]. Cell. 1984; 39(1):173-180.
    [34] Alpers DH, Tomkins GM. Sequential transcription of the genes of the lactose operon and its regulation by protein synthesis [J]. J Biol Chem. 1966; 241(19):4434-4443.
    [35] Goulas T, Goulas A, Tzortzis G, et al. Expression of four beta-galactosidases from Bifidobacterium bifidum NCIMB41171 and their contribution on the hydrolysis and synthesis of galactooligosaccharides [J]. Appl Microbiol Biotechnol. 2009; 84(5):899-907.
    [36] Goulas TK, Goulas AK, Tzortzis G, et al. Molecular cloning and comparative analysis of four beta-galactosidase genes from Bifidobacterium bifidum NCIMB41171 [J]. Appl Microbiol Biotechnol. 2007; 76(6):1365-72.
    [37] Goulas T, Goulas A, Tzortzis G, et al. Comparative analysis of four beta-galactosidases from Bifidobacterium bifidum NCIMB41171: purification and biochemical characterisation [J]. Appl Microbiol Biotechnol. 2009; 82(6):1079-88.
    [38] Pan Q, Zhu J, Liu L, et al. Functional Identification of a Putative beta-Galactosidase Gene in the Special lac Gene Cluster of Lactobacillus acidophilus [J]. Curr Microbiol. 2010; 60(3):172-8.
    [39] Rhimi M, Aghajari N, Jaouadi B, et al. Exploring the acidotolerance of beta-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus: an attractive enzyme for lactose bioconversion [J]. Res Microbiol. 2009; 160(10):775-84.
    [40] Altermann E, Russell WM, Azcarate-Peril MA, et al. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM[J]. Proc Natl Acad Sci U S A. 2005; 102(11):3906-3912.
    [41] Dennis T, Fanous M, Mousa S. Natural products for chemopreventive andadjunctive therapy in oncologic disease [J]. Nutr Cancer. 2009; 61(5):587-597.
    [42] Senok AC, Verstraelen H, Temmerman M, et al. Probiotics for the treatment of bacterial vaginosis [J]. Cochrane Database Syst Rev. 2009; (4):CD006289.
    [43] Giamarellos-Bourboulis EJ, Bengmark S, Kanellakopoulou K, et al. Pro- and synbiotics to control inflammation and infection in patients with multiple injuries [J]. J Trauma. 2009; 67(4):815-821.
    [44] Wohlgemuth S, Loh G, Blaut M. Recent developments and perspectives in the investigation of probiotic effects [J]. Int J Med Microbiol. 2010; 300(1):3-10.
    [45] Fukao M, Tomita H, Yakabe T, et al. Assessment of antibiotic resistance in probiotic strain Lactobacillus brevis KB290 [J]. J Food Prot. 2009; 72(9):1923-9.
    [46] Nishitani Y, Tanoue T, Yamada K, et al. Lactococcus lactis subsp. cremoris FC alleviates symptoms of colitis induced by dextran sulfate sodium in mice [J]. Int Immunopharmacol. 2009; 9(12):1444-1451.
    [47] Nouaille S, Ribeiro LA, Miyoshi A, et al. Heterologous protein production and delivery systems for Lactococcus lactis [J]. Genet Mol Res. 2003; 2(1):102-111.
    [48] Wegmann U, O'Connell-Motherway M, Zomer A, et al. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363 [J]. J Bacteriol. 2007; 189(8):3256-3270.
    [49] Kok J, van der Vossen JM, Venema G. Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli [J]. Appl Environ Microbiol. 1984; 48(4):726-731.
    [50]汪川,刘衡川,裴晓方,等.非融合表达β-半乳糖苷酶的重组乳酸乳球菌的构建和性能研究[J].四川大学学报(医学版). 2009; 40(1):29-32.
    [51] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem. 1976; 72(1-2):248-254.
    [52] Nguyen TH, Splechtna B, Yamabhai M, et al. Cloning and expression of the beta-galactosidase genes from Lactobacillus reuteri in Escherichia coli [J]. J Biotechnol. 2007; 129(4):581-591.
    [53] Nguyen TH, Splechtna B, Steinb?ck M, et al. Purification and characterization of two novel beta-galactosidases from Lactobacillus reuteri [J]. J Agric Food Chem. 2006; 54(14):4989-4998.
    [54] Chollet E, Sebti I, Martial-Gros A, et al. Nisin preliminary study as a potential preservative for sliced ripened cheese: NaCl, fat and enzymes influence on nisin concentration and its antimicrobial activity [J]. Food Control. 2008; 19(10):982-989.
    Allison GE, Fremaux C, Klaenhammer TR (1994) Expansion of bacteriocin activity and host range upon complementation of two peptides encoded within the lactacin F operon. J Bacteriol 176: 2235-2241.
    Allison GE, Klaenhammer TR (1996) Functional analysis of the gene encoding immunity to lactacin F, lafI, and its use as a Lactobacillus-specific, food-grade genetic marker. Appl Environ Microbiol 62: 4450-4460.
    Arqués JL, Rodríguez E, Nu?ez M, Medina M (2008) Antimicrobial activity of nisin, reuterin, and the lactoperoxidase system on Listeria monocytogenes and Staphylococcus aureus in cuajada, a semisolid dairy product manufactured in Spain. J Dairy Sci 91: 70-75.
    Bermúdez-Humarán LG (2009) Lactococcus lactis as a live vector for mucosal delivery of therapeutic proteins. Hum Vaccin 5: 264-267.
    Boucher I, Parrot M, Gaudreau H, Champagne CP, Vadeboncoeur C, Moineau S (2002) Novel food-grade plasmid vector based on melibiose fermentation for the genetic engineering of Lactococcus lactis. Appl Environ Microbiol 68: 6152-6161.
    Brede DA, Faye T, Johnsborg O, Odeg?rd I, Nes IF, Holo H (2004) Molecular andgenetic characterization of propionicin F, a bacteriocin from Propionibacterium freudenreichii. Appl Environ Microbiol 70: 7303-7310.
    Brede DA, Lothe S, Salehian Z, Faye T, Nes IF (2007) Identification of the propionicin F bacteriocin immunity gene (pcfI) and development of a food-grade cloning system for Propionibacterium freudenreichii. Appl Environ Microbiol 73: 7542-7547.
    Bron PA, Benchimol MG, Lambert J, Palumbo E, Deghorain M, Delcour J, De Vos WM, Kleerebezem M, Hols P (2002) Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Appl Environ Microbiol 68: 5663-5670.
    Bron PA, Hoffer SM, Van Swam II, De Vos WM, Kleerebezem M (2004) Selection and characterization of conditionally active promoters in Lactobacillus plantarum, using alanine racemase as a promoter probe. Appl Environ Microbiol 70: 310-317.
    Bueno DJ, Casale CH, Pizzolitto RP, Salvano MA, Oliver G (2007) Physical adsorption of aflatoxin B1 by lactic acid bacteria and Saccharomyces cerevisiae: a theoretical model. J Food Prot 70: 2148-2154.
    Cancilla MR, Hillier AJ, Davidson BE (1995) Lactococcus lactis glyceraldehyde-3-phosphate dehydrogenase gene, gap: further evidence for strongly biased codon usage in glycolytic pathway genes. Microbiology 141:1027-1036.
    Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28: 281-370.
    Chassy BM and Flickinger JL (1987) Transformation of Lactobacillus casei by electroporation. FEMS Microbiol Lett 44: 173-177.
    Chassy BM, Alpert CA (1989) Molecular characterization of the plasmid-encoded lactose-PTS of Lactobacillus casei. FEMS Microbiol Rev 63:157-166.
    Deegan LH, Cotter PD, Hill C, and Ross P (2006) Bacteriocins: Biological tools for bio-preservation and shelf-life extension. Int Dairy J 16:1058-1071.
    Defoor E, Kryger MB, Martinussen J (2007) The orotate transporter encoded by oroP from Lactococcus lactis is required for orotate utilization and has utility as a food-grade selectable marker. Microbiology 153: 3645-3659.
    Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J (1996) Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 69: 193-202.
    el Demerdash HA, Heller KJ, Geis A (2003) Application of the shsp gene, encoding a small heat shock protein, as a food-grade selection marker for lactic acid bacteria. Appl Environ Microbiol 69: 4408-4412.
    Dickely F, Nilsson D, Hansen EB, Johansen E (1995) Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol Microbiol 15: 839-847
    Fernández M, Martínez-Bueno M, Martín MC, Valdivia E, Maqueda M (2007) Heterologous expression of enterocin AS-48 in several strains of lactic acid bacteria. J Appl Microbiol 102: 1350-1361.
    Fremaux C, Ahn C, Klaenhammer TR (1993) Molecular analysis of the lactacin F operon. Appl Environ Microbiol 59: 3906-3915.
    Froseth BR, McKay LL (1991) Development and application of pMF011 as a possible food-grade cloning vector. J Dairy Sci 74:1445-1453
    Fu X, Xu JG (2000) Development of a chromosome-plasmid balanced lethal system for Lactobacillus acidophilus with thyA gene as selective marker. Microbiol Immunol 44: 551-556.
    Gálvez A, Abriouel H, López RL, Ben Omar N (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51-70.
    Geis A, el Demerdash HA, Heller KJ (2003) Sequence analysis and characterization of plasmids from Streptococcus thermophilus. Plasmid 50: 53-69.
    Glenting J, Madsen SM, Vrang A, Fomsgaard A, Israelsen H (2002) A plasmid selection system in Lactococcus lactis and its use for gene expression in L. lactis and human kidney fibroblasts. Appl Environ Microbiol 68: 5051-5056.
    Gosalbes MJ, Esteban CD, Galán JL, Pérez-Martínez G (2000) Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl Environ Microbiol 66: 4822-4828.
    Hanniffy SB, Philo M, Peláez C, Gasson MJ, Requena T, Martínez-Cuesta MC (2009)Heterologous production of methionine-gamma-lyase from Brevibacterium linens in Lactococcus lactis and formation of volatile sulfur compounds. Appl Environ Microbiol 75: 2326-2332.
    Hansen EB (2002) Commercial bacterial starter cultures for fermented foods of the future. Int J Food Microbiol 78: 119-131.
    Harrington A, Hill C (1992) Plasmid involvement in the formation of a spontaneous bacteriophage insensitive mutant of Lactococcus lactis. FEMS Microbiol Lett 75: 135-141.
    Hashiba H, Takiguchi R, Jyoho K, Aoyama K (1992) Establishment of a host-vector system in Lactobacillus helveticus with beta-galactosidase activity as a selection marker. Biosci Biotechnol Biochem 56: 190-194.
    Hols P, Defrenne C, Ferain T, Derzelle S, Delplace B, Delcour J (1997) The alanine racemase gene is essential for growth of Lactobacillus plantarum. J Bacteriol 179: 3804-3807.
    Hols P, Kleerebezem M, Schanck AN, Ferain T, Hugenholtz J, Delcour J, de Vos WM (1999) Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat Biotechnol 17: 588-592.
    Hughes BF, McKay LL (1992) Deriving phage-insensitive lactococci using a food-grade vector encoding phage and nisin resistance. J Dairy Sci 75: 914-923
    Jeong DW, Lee JH, Kim KH, Lee HJ (2006) A food-grade expression/secretion vector for Lactococcus lactis that uses an alpha-galactosidase gene as a selection marker. Food Microbiol 23: 468-475.
    Johansen E (1999) Genetic engineering (b) Modification of bacteria. Pages 917-921 in Encyclopedia of Food Microbiology. R. Robinson, C. Batt, and P. Patel, ed. Academic Press, London, UK.
    Kilstrup M, Hammer K, Ruhdal Jensen P, Martinussen J (2005) Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiol Rev 29: 555-590
    Kleerebezem M, Hugenholtz J (2003) Metabolic pathway engineering in lactic acid bacteria. Curr Opin Biotechnol 14: 232-237.
    Labrie S, Bart C, Vadeboncoeur C, Moineau S (2005) Use of an alpha-galactosidase gene as a food-grade selection marker for Streptococcus thermophilus. J Dairy Sci 88: 2341-2347.
    Lacaze G, Wick M, Cappelle S (2007) Emerging fermentation technologies: development of novel sourdoughs. Food Microbiol 24: 155-160.
    Lebrun M, Audurier A, Cossart P (1997) Plasmid-borne cadmium resistance genes in Listeria monocytogenes are similar to cadA and cadC of Staphylococcus aureus and are induced by cadmium. J Bacteriol 176: 3040-3048.
    Leelawatcharamas V, Chia LG, Charoenchai P, Kunajakr N, Liu CQ, Dunn NW (1997) Plasmid-encoded copper resistance in Lactococcus lactis. Biotechnol Lett 19: 639-643
    Leenhouts K, Bolhuis A, Venema G, Kok J (1998) Construction of a food-grade multiple-copy integration system for Lactococcus lactis. Appl Microbiol Biotechnol 49: 417-423.
    Lin MY, Harlander S, Savaiano D (1996) Construction of an integrative food-grade cloning vector for Lactobacillus acidophilus. Appl Microbiol Biotechnol 45: 484-489.
    Liu CQ, Leelawatcharamas V, Harvey ML, Dunn NW (1996) Cloning vectors for lactococci based on a plasmid encoding resistance to cadmium. Curr Microbiol 33: 35-39.
    Liu CQ, Khunajakr N, Chia LG, Deng YM, Charoenchai P, Dunn NW (1997) Genetic analysis of regions involved in replication and cadmium resistance of the plasmid pND302 from Lactococcus lactis. Plasmid 38: 79-90.
    Liu CQ, Charoechai P, Khunajakr N, Deng YM, Widodo, Dunn NW (2002) Genetic and transcriptional analysis of a novel plasmid-encoded copper resistance operon from Lactococcus lactis. Gene 297: 241-247.
    Liu CQ, Su P, Khunajakr N, Deng YM, Sumual S, Kim WS, Tandianus JE, Dunn NW (2005) Development of food-grade cloning and expression vectors for Lactococcus lactis. J Appl Microbiol 98: 127-135.
    Lokman BC, van Santen P, Verdoes JC, Krüse J, Leer RJ, Posno M, Pouwels PH (1991) Organization and characterization of three genes involved in D-xylose catabolism in Lactobacillus pentosus. Mol Gen Genet 230: 161-169.
    MacCormick CA, Griffin HG, Gasson MJ (1995) Construction of a food-grade host/vector system for Lactococcus lactis based on the lactose operon. FEMS Microbiol Lett 127: 105-109.
    Madsen SM, Albrechtsen B, Hansen EB, Israelsen H (1996) Cloning and transcriptional analysis of two threonine biosynthetic genes from Lactococcus lactis MG1614. J Bacteriol 178: 3689-3694.
    Mauriello G, De Luca E, La Storia A, Villani F, Ercolini D (2005) Antimicrobial activity of a nisin-activated plastic film for food packaging. Lett Appl Microbiol 41: 464-469
    Mayo B, van Sinderen D, Ventura M (2008) Genome analysis of food grade lactic Acid-producing bacteria: from basics to applications. Curr Genomics 9: 169-183.
    Mercenier A, Müller-Alouf H, Grangette C (2000) Lactic acid bacteria as live vaccines. Curr Issues Mol Biol 2: 17-25.
    O'Sullivan D, Twomey DP, Coffey A, Hill C, Fitzgerald GF, Ross RP (2000) Novel type I restriction specificities through domain shuffling of HsdS subunits in Lactococcus lactis. Mol Microbiol 36: 866-875.
    O' Sullivan D, Ross RP, Twomey DP, Fitzgerald GF, Hill C, Coffey A (2001) Naturally occurring lactococcal plasmid pAH90 links bacteriophage resistance and mobility functions to a food-grade selectable marker. Appl Environ Microbiol 67: 929-937.
    Piper C, Draper LA, Cotter PD, Ross RP, Hill C (2009) A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. J Antimicrob Chemother [Epub ahead of print]
    Platteeuw C, van Alen-Boerrigter I, van Schalkwijk S, de Vos WM (1996) Food-grade cloning and expression system for Lactococcus lactis. Appl Environ Microbiol 62: 1008-1013.
    Posno M, Heuvelmans PT, van Giezen MJ, Lokman BC, Leer RJ, Pouwels PH (1991)Complementation of the inability of Lactobacillus strains to utilize D-xylose with D-xylose catabolism-encoding genes of Lactobacillus pentosus. Appl Environ Microbiol 57: 2764-2766.
    Rodríguez H, Curiel JA, Landete JM, de las Rivas B, López de Felipe F, Gómez-Cordovés C, Manche?o JM, Mu?oz R (2009) Food phenolics and lactic acid bacteria. Int J Food Microbiol 132: 79-90.
    van Rooijen RJ, van Schalkwijk S, de Vos WM (1991) Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. J Biol Chem 266: 7176-7181.
    van Rooijen RJ, Gasson MJ, de Vos WM (1990) Characterization of the Lactococcus lactis lactose operon promoter: contribution of flanking sequences and LacR repressor to promoter activity. J Bacteriol. 1992 Apr;174(7):2273-80.
    Ross P, O'Gara F, Condon S. Thymidylate synthase gene from Lactococcus lactis as a genetic marker: an alternative to antibiotic resistance genes. Appl Environ Microbiol 56: 2164-2169.
    Rouse S, van Sinderen D (2008) Bioprotective potential of lactic acid bacteria in malting and brewing. J Food Prot 71: 1724-1733.
    Sasaki Y, Ito Y, Sasaki T (2004) ThyA as a selection marker in construction of food-grade host-vector and integration systems for Streptococcus thermophilus. Appl Environ Microbiol 70: 1858-1864.
    Settanni L, Corsetti A (2008) Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol 121: 123-138.
    S?rensen KI, Larsen R, Kibenich A, Junge MP, Johansen E (2000) A food-grade cloning system for industrial strains of Lactococcus lactis. Appl Environ Microbiol 66: 1253-1258.
    Sridhar VR, Smeianov VV, Steele JL (2006) Construction and evaluation of food-grade vectors for Lactococcus lactis using aspartate aminotransferase and alpha-galactosidase as selectable markers. J Appl Microbiol 101: 161-171.
    von Staszewski M, Jagus RJ. (2008) Natural antimicrobials: Effect of MicrogardTM andnisin against Listeria innocua in liquid cheese whey. Int Dairy J 18: 255-259
    Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, Cox E, Remon JP, Remaut E (2003) Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 21: 785-789.
    Steidler L, Rottiers P (2006) Therapeutic drug delivery by genetically modified Lactococcus lactis. Ann N Y Acad Sci 1072: 176-186.
    Sun Q, Xiong Y, Ye C, Xu J (2008) Construction of a food-grade secretion expression vector and use it for reporter protein expression in Lactococcus lactis. Wei Sheng Wu Xue Bao 48: 293-298.
    Takala TM, Saris PE (2002) A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Appl Microbiol Biotechnol 59: 467-471.
    Takala TM, Saris PE, Tynkkynen SS (2003) Food-grade host/vector expression system for Lactobacillus casei based on complementation of plasmid-associated phospho-beta-galactosidase gene lacG. Appl Microbiol Biotechnol 60: 564-570.
    Tanous C, Kieronczyk A, Helinck S, Chambellon E, Yvon M (2002) Glutamate dehydrogenase activity: a major criterion for the selection of flavour-producing lactic acid bacteria strains. Antonie Van Leeuwenhoek 82: 271-278.
    de Vos WM, Gasson MJ (1989) Structure and expression of the Lactococcus lactis gene for phospho-beta-galactosidase (lacG) in Escherichia coli and L. lactis. J Gen Microbiol 135: 1833-1846.
    de Vos WM, Boerrigter I, van Rooyen RJ, Reiche B, Hengstenberg W (1990a) Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis. J Biol Chem 265: 22554-22560.
    de Vos WM. February (1990b) Process for selecting and maintaining recombinant DNA in lactic acid bacteria. European patent application 0 355 036.
    de Vos WM (1999) Safe and sustainable systems for food-grade fermentations by genetically modified lactic acid bacteria. Int Dairy J 9: 3-10.
    de Vuyst L, Leroy F (2007) Bacteriocins from lactic acid bacteria: production,purification, and food applications. J Mol Microbiol Biotechnol 13: 194-199.
    Weimer B, Seefeldt K, Dias B (1999) Sulfur metabolism in bacteria associated with cheese. Antonie Van Leeuwenhoek 76: 247-261.
    Wong WY, Su P, Allison GE, Liu CQ, Dunn NW (2003) A potential food-grade cloning vector for Streptococcus thermophilus that uses cadmium resistance as the selectable marker. Appl Environ Microbiol 69: 5767-5771.
    von Wright A, Wessels S, Tynkkynen S, Saarela M (1990) Isolation of a replication region of a large lactococcal plasmid and use in cloning of a nisin resistance determinant. Appl Environ Microbiol 56: 2029-2035
    von Wright A, R?ty K (1993) The nucleotide sequence for the replication region of pVS40, a lactococcal food grade cloning vector. Lett Appl Microbiol 17: 25-28.
    Zhu Y, Zhang Y, Li Y (2009) Understanding the industrial application potential of lactic acid bacteria through genomics. Appl Microbiol Biotechnol 83: 597-610

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700