膳食纤维微胶囊改善嗜酸乳杆菌NCFM存活能力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
益生菌在极端环境条件下的存活能力很低,采用膳食纤维微胶囊包埋益生菌,不但可以改善益生菌在逆境环境下的存活能力,而且可以使膳食纤维和益生菌两者相结合,有利于形成一类新型的食品添加配料。
     本文研究了从挤压膨化麦麸中制取膳食纤维的工艺过程,建立了膳食纤维提取的适宜工艺条件,即淀粉酶用量为0.5%,碱解浓度为1%的NaOH,碱解时间为100min,碱解温度为60°C。
     采用嗜酸乳杆菌NCFM(Lactobacillus acidophilus NCFM)与可溶性膳食纤维作为芯材,不溶性膳食纤维与海藻酸钠和明胶作为壁材制成微胶囊。微胶囊崩解耐受性试验结果表明,将不溶性膳食纤维(0.5g)和明胶(3%)与海藻酸钠(2%)按1:1体积制成壁材,50%可溶性膳食纤维与嗜酸乳杆菌菌悬液按1:1体积制成芯材,芯材与壁材按1:1体积比制成微胶囊后,其益生菌菌体的释放效果最好,包埋后的微胶囊在60min内完全崩解,释放出的活菌数最多,可达2.97×107cfu/g。研究了膳食纤维微胶囊化后的益生菌菌株在胃液与肠液、酸、胃蛋白酶、胆盐、胰蛋白酶和高渗透压等极端环境条件的存活能力,结果表明:(1)经pH 2.5的生理盐水处理3h后,微胶囊化菌株的活菌数为1.08×108cfu/ml,而对照组菌株的活菌数为2.7×107cfu/ml;(2)经人工胃液及处理3h和人工肠液处理24h后,微胶囊化的活菌数分别为5.44×106cfu/mL和2.57×106cfu/mL ,而对照处理的活菌数分别为3.41×106cfu/mL和1.35×106cfu/mL;(3)经14g/L的胃蛋白酶处理后6h,对照组菌株的活菌数为3.50×106cfu/ml,而微胶囊化菌株的活菌数为0.85×106cfu/ml;(4)经0.2%胆盐处理后6h,微胶囊化菌株的活菌数为2.01×106cfu/ml,而对照处理的活菌数为0.95×106cfu/ml;(5)经3g/L胰蛋白酶处理后6h,对照处理的活菌数为0.68×107cfu/ml,而微胶囊化菌株的活菌数为5.35×107cfu/ml;(6)经18%的NaCl溶液处理后3h,微胶囊化菌株的活菌数为1.2×107cfu/ml,而对照处理的活菌数为1.1×108cfu/ml。
     我们的结果表明,经膳食纤维微胶囊化包埋后的嗜酸乳杆菌NCFM菌株能明显增强其在极端环境下的存活能力。
Probiotics in extreme environmental conditions of survival is very low, a combination of dietary fiber microencapsulation technology to embedded probiotics not only improve the probiotics in adverse environmental conditions of survival, and that dietary fiber and the physiological function of probiotics Characteristics of combining to form a nutrient-rich additives.
     This paper studies the technologic process of extracting dietary fiber from wheat bran, and find the best technics,whith is to use 0.5% amount of extract– amylase to hydrolyze dietary fiber and then use 1% concentration of NaOH alkali solution 100 min, alkali solution at temperature of 60℃for 100minutes.
     I made the microcapsule with the Lactobacillus acidophilus solution and the soluble dietary fiber as a core material, insoluble dietary fiber and sodium alginate, made of gelatin as a microcapsule wall material. the collapse of tolerance test show that wall material (not insoluble dietary fiber 0.5 g +3% gelatin: 2% sodium alginate: = 1:1): core material (50% of soluble dietary fiber: Lactobacillus acidophilus bacilli = 1:1) by made of the ratio of 1:1 compose the best microcapsule.
     Microencapsulation of L. acidophilus strain NCFM subjected to extreme environments including gastric juice, intestinal juice, acidity condition, pepsin solution, trypsin solution, bile salt and NaCl solution was also studied. The results showed that microencapsules containing the cells of strain NCFM were completely broken out in 70 min, and viable cell counts released reached 2.97×107cfu/g. The viability of the microencapsulated strain NCFM treated in pH 2.5 was significantly improved compared to the control (P<0.01). The viable cell counts of microencapsulated cells were 1.08×108cfu/mL, whereas those of the control were 2.7×107cfu/mL.The artificial stimulation of gastric and intestinal environments to treat microencapsulated strain NCFM for 3h and 24h showed that the viable counts of microencapsulated cells was significantly higher than the control, reaching 5.44×106cfu/mL and 2.57×106cfu/mL respectively, whereas the control was only 3.41×106cfu/mL and 1.35×106cfu/mL. Exposure strain NCFM microencapsulated to 14g/L pepsin solution showed that compared to the non-microencapsulated cells, the viable cell counts of micro-encapsulated cells were significantly improved, up to 3.5×106cfu/mL. In contrast, the viable cell counts of the control treatment were 0.85×106cfu/mL.When treated in 0.2% bile salt, the viable counts of microencapsulated cells were higher than those of the control (P<0.01), reaching 2.1×106cfu/mL. The live cells of the control were 0.95×106cfu/mL.Exposure of strain NCFM microencapsulated to 3g/L trypsin solution indicated that compared to the non-microencapsulated cells which were 0.68×107cfu/mL as the control, the viable counts of micro-encapsulated cells were 5.35×107cfu/mL.When treated in 18% NaCl solution, the viable counts of microencapsulated cells were up to 1.1×108cfu/mL, higher than those of the control which was 1.2×107cfu/mL (P<0.01).
     In short, it was concluded that use of microencapsulation presented in our study to treat L. acidophilus promoted the survival of this organism subjected to extreme environments.
引文
[1]畅天狮,刘俊果,张桂,边红杰,王兴梅.乳酸菌在酸性环境中的生理变化及 pHin 的调控机制.中国乳品工业.2002.2:7~10.
    [2]曹永梅.海藻酸钙固定化细胞及其在食品工业中的应用[J].中国乳品工业.2001, 29(6):34-36.
    [3]曹永梅,许时婴.微胶囊技术在双歧杆菌中的应用[J]. 食品科技.2000(5):8-9,11.
    [4]曹永梅,许时婴.肠溶性双歧杆菌微胶囊的制备[J].食品与发酵工业.1999,25(2):71-74,77.
    [5] 陈洪兴,房健,李朝霞 . 双歧杆菌微胶囊的研究 [J]. 盐城工学院学报:自然科学版.2003,16(2):41-43.
    [6]成妮妮.嗜酸乳杆菌抗热保护剂的研究[J].食品研究与开发.2003,12:51~53
    [7]大连轻工业学院等.食品分析[M].中国轻工业出版社.2002:118,235~236.
    [8]邓君明,张曦,微胶囊技术及其在饲料工业中的应用[J].饲料世界.2002,6:1~7.
    [9]杜崇旭,牛铭山,刘雪娇.膳食纤维改性与应用的研究进展[J].大连民族学院学报,2005,9,7(5):18.
    [10]E 民医药网:http://www.em800.com/
    [11]复眉.干酪乳杆菌 ?-半乳糖苷酶基因在乳酸乳球菌中表达[J].工业微生物.1995,25(4):44~48.
    [12]冯艳丽,张锐利. 嗜酸乳杆菌对胃肠道酶的敏感性研究[J].乳业科学与技术,2005,1:12~15.
    [13]高维道.挤压与膨化技术应用[J].无锡轻工业学院学报,1986,5(1):86-91.
    [14]高福成.现代食品工程高新技术[M].北京:中国轻工业出版社,1998.
    [15]郭本恒.嗜酸乳杆菌在乳品中的应用技术[J].食品工业.1999,1:18~19.
    [16]郭迪,潘力,杨汝德.耐盐乳酸菌的筛选和鉴定[J].广州食品工业科技(增刊总 83):1~4.
    [17]郝生宏,谷春涛,萨仁娜,佟建明.高温处理对三种益生菌的影响[J].饲料工业.2004,6:27~28.
    [18]黄春振,陈有容,齐凤兰. 嗜酸乳杆菌生理特性的研究[J]. 食品研究与开发,2004,4(2):36~39.
    [19] 贾 建 波 , 郭 迎 卫 . 植物 乳杆菌 三 联 菌培 养及其合生素胶囊 研制 [J]. 中国乳品工业.2004,32(7):10-13.
    [20]李桂荣.第七营养元素[J] .食品研究与开发.2005(4) : 98-100.
    [21]李小松.麦麸膳食纤维食品的研制[J].保健食品,2005,4:10.
    [22]李安平,谢碧霞等.高活性竹笋膳食纤维微胶囊的研究.福建林学院学报. 2002,22(4):304-307.
    [23]李应彪,陆强.麦麸膳食纤维的提取技术研究[J]. 粮油加工与食品机械.2005,(11):77-79
    [24]梁峙,赵孝华.海藻酸钠固定化酵母菌的应用研究[J].食品工业科技,2002,12:34-35.
    [25]李世敏.功能食品加工技术[M].北京:中国轻工业出版社,2003.
    [26]刘玉林,张声华.麦麸膳食纤维的应用研究[J].湖北农学院学报,1998,18(2):154-165.
    [27]刘振民,唐晓峰,任彬彬.嗜酸乳杆菌的生理特性及应用[J].中国乳业,2003,5:28~30.
    [28]刘文佐,曲湘昆.双歧杆菌在人工胃液中的存活率考查[J].中国微生态学杂志.1997.4(9):22;
    [29]刘丽英,张日俊. 乳酸菌的微胶囊化包被研究[J], 饲料工业,2003,24(6):16~18.
    [30]吕兵,张国农.酸奶发酵剂速效干剂制备中保护剂的研究[J]. 中国乳品工业.1996,24(2):3-5.
    [31]吕晓英,张朝武.乳糖不耐受研究动态[J].现代预防医学.2005,4:319~321.
    [32]陆勤丰.膳食纤维制品的开发研究[J] .粮食加工,2005,(4):44-47.
    [33]孟祥晨,霍贵成.双歧杆菌消化道逆环境特性的研究[J].食品与发酵工业.2003.10(29):6~10;
    [34]那淑敏,贾士芳,陈秀珠,陈美铃,郭兴华,还连栋.嗜酸乳杆菌发酵代谢产物分析[J].中国微生态学.1999,10:266~268.
    [35]欧仕益,高孔荣,等.膳食纤维抑制膳后血糖升高的机理探讨[J].食品科学.1998,19(3):48—52
    [36]秦湘红,苏丹,雍学安,蒋耀兴,周洲.双歧杆菌包埋保存技术工艺研究[J]. 中国微生态学杂志.2003,15(2):118-119.
    [37]闫征,王昌禄,顾晓波.pH 值对乳酸菌生长和乳酸产量的影响[J].食品发酵与工业.2002.(629):35~38;
    [38]膳食纤维的定义及主要成分.http://www.dietary-fiber.net
    [39]邵佩兰,李雯霞,徐明.不同提取方法对麦麸膳食纤维特性的影响.食品科技.
    [40]田志芳,马晓凤,刘森等.燕麦膳食纤维食品基料加工技术及应用研究[J].中国食物与营养,2004,(2025-27.
    [41]田洪涛,张篪.双歧杆菌微生态制剂保藏技术研究现状[J]. 食品与发酵工业.1995,26(3):74~77.
    [42]田召芳,牛钟相,常维山,孙海港,邹德志.乳酸菌细菌素的研究进展[J]. 微生物学杂志.2003,23(6):47-49.
    [43]王洪新.食品新资源[M].北京:中国轻工业出版社,2002.
    [44]王丹兵,张桂.挤压与膨化技术在食品工业中的应用与发展,农产品加工·学刊.2006,1:64-65.
    [45]王金元,食品工业中的微胶囊技术[J].中国食品.2000,5:36.
    [46]王树宁,刘玺.乳酸菌固定化技术研究[J]. 山西食品工业.1998(1):25-26,29.
    [47]王石瑛.挤压膨化技术及其应用[J].西部粮油科技,2000,25(3):31-33.
    [48]吴惠芬等.2株猪源乳酸菌对低pH值和耐受性及热稳定性研究[J].华中农业大学学报,2005.6:266~268;
    [49]邢树文,焦德志.膳食纤维与肠道细蔼对人体的影响[J].高师理科学刊.2003,23(2):60—63.
    [50]许启泰,张瑜,杜钢军,陈百泉,包翠屏.嗜酸乳杆菌胞外多糖对小鼠免疫功能的影响[J].中国药理学通报.2004,12:1401~1403.
    [51]杨基础,刘佳.双歧杆菌固定化的研究[J]. 微生物学通报.1996,23(1):35~36.
    [52]医药在线,www.cnm21.com
    [53]张和平,张列兵.现代乳品工业手册[M].中国轻工业出版社.2005:656.
    [54]赵瑞香,孙俊良,于涛. 嗜酸乳杆菌产生 β—半乳糖苷酶活力的测定及数学模型的建立[J]. 食品科学.2003,24(12):52~54.
    [55]赵瑞香,李元瑞,郭洋.嗜酸乳杆菌抑菌特性的研究[J].中国微生态学.2001,12:318~319.
    [56]赵瑞香,孙俊良,李元瑞,袁志发.嗜酸乳杆菌抗酸抗汁盐能力的研究[J].西北农林科技大学学报.2004.2:57~59;
    [57]赵瑞香,李元瑞,罗磊,等.嗜酸乳杆菌生产特性的研究[J].西北农林科技大学学报(自然科学版),2002,30(3):85~88.
    [58]中国高血压冠心病康复网. http://www.xinyou.org/gaoxueya.htm
    [59]祝美云,艾志录,赵秋艳等.海藻酸钙明胶联合固定化 α-淀粉酶[J].食品科学,2004,25(2):64-68.
    [60]张岩,梁萌,刘德华.克鲁氏假丝酵母在高渗环境中海藻糖和胞内苷油积累的研究[J].生物工程学报.2001.5:332~335.
    [61]张英春,张兰威,王玉军.分纯益生菌共生及功能特性研究[J].研究与探讨.2004,8:59~62.
    [62]Boquien C Y.Desmazeaud M J.Effect of fermentation conditions on growth of streptococcus and Leuconostoc lactis CNRZ 1091 in pure and mixed cultures[J].Applied and Environmental Microbiology. 1988,54:1318
    [63]Daniel J.O.Sullivan. Screening of intestinal microflore for effective probiotic bacteria[J]. Journal of Agriculture and Food Chemistry. 2001, 49: 1751~1760.
    [64]Drasar B S, Hill J F. Intestinal bacteria and cancer[J]. American Journal of Clinical Nutrition. 1972, 25: 1399~1404.
    [65]Gilliland S E, Speck M L. Deconjugation of bile acids by intestinal lactobacilli[J]. Applied and Enviromental Microbiology. 1977, 33: 15~18.
    [66]Hanley J,Patterson DK,Wooldridge J.Breath hydrogen excretion in response to usual feeding patterns:evidence for "Functional lactase insufficiency"beyond the first month of life[J].J Perdiatr,1984 APR,104(4):527~330.
    [67]Harvey R J.Damage to streptococcus lactis resulting from growth at low pH[J].Joumal of Bacteriology,1965,90:1330
    [68]Hood S K, Zottola E A. Effect of low pH on the ability of Lactobacillus acidophilus to survive and adhere to human intestinal cells[J]. Journal of Food Science. 1988, 53:1514~1516.
    [69]Hosoda M, Hashimoto H, Morita H, et al. Effect of administration of milk fermented with Lactobacillus acidophilus LA-2 on fecal mutagenicity and microflora in the human intestine[J]. Journal of Dairy Science. 1996, 79: 745~749.
    [70]Kim G S, Gilliland S E. Lactobacillus acidophilus as a dietary adjunct for milk to aid lactose digestion in humans[J]. Journal Dairy Science. 1983, 66: 959~966.
    [71]Lee LJ,Hansen JB,Jagusztyn-Krynicka EK,et al.Cloning and expression of the beta-D-phosphogalsctoside galactohydrolase gene of Lactobacillus case in Escherichia coli K-12[J].J bacteriol,1982 Dec,152(3):1138~1146.
    [72]Robert Havenaar, Ios H J Huis In’t Veid. Probiotics: a general view. Lactic Acid Bacteria[M]. Actes du colloque LACTIC 94 (Caen 7-9 September 1994) publies sous la direction de Georges NOVEL et de Jean-Francois LE QUERLER. 17~25, 151~170.
    [73]Sanders M E, Kleanhammer T R. Invited review: the scientific basic of Lactobacillus acidophilus NCFM functionality as a probiotic[J]. Journal of Dairy Science. 2001, 84: 319~331.
    [74]Sheu T Y et al.J.Food Sci..1993,54(3):557
    [75]Wager R D, Pierson C, Warner T, et al. Biotherapeutic effects of probiotic bacteria on candidiasison immunodeficient mice[J]. Infection and Immunity. 1997, 65: 4165~4172.
    [76]VENTL ING B L MISTRY V V. Growth characteristics ofBifidobacteria in Vit rafiltered milk, the South Dakota Agricul-tural Experiment Station[J]. Dairy Sci ,1993 ,76 :9622971.
    [77]DOL EYRES Y, LACROIX C Technologies with f ree and immobi-lized cells for probiotic bifidobacteria production and protection.Intemational Dairy Journal, 2005, 15 :9732988.
    [78]Nishino H,Tokuda H,et al. Cancer prevention by caroten-oids[J]. Pure Appl Chem,1999,71(12):2273-2278
    [79]Bauernfeined J C. Carotenoids as colourants and vitamin A precursors[M]. New York: Academic Press,1981
    [80]Manas E ,et al. Ethanolic precipitation A Souce of Error inDietary Fiber Determination [ J ] . Food Chem , 1994 ,(4) : 351~3551
    [81]Prosky L , et al1 Controling Dietary Fiber in Food Prod-ucts[M].Van Nostrand Reinhold , New York 19921
    [82]Charles W. Weber , et al. Binding Capacity of 18 FiberSources for Calcium[J ] . Agric Food Chem , 1993 , (48) :1931~19351
    [83]Wang Y, Funk M A. , et al. The Effect of Fiber Sourcein Enteral Products on Fecal Weight [J ].Mineral Balanceand Grouth Rate of Rats. J PEN , 1994 ,(18) : 3401
    [84]Selvendran R1 R1 , et al1 The Analysis of Dietary Fiber in Food[M] , Marcel Dekker Inc. New York and Besel ,in Food[M] , Marcel Dekker Inc. New York and Besel ,19811
    [85]Richard E A. Leitz Domald J . , Pasaterl Balanced Fiber Composition , EN Patent , No. 4877. 627 (1989).
    [86]Beecher, G. (1999). Phytonutrients role in metabolism: Effects on resistance to egenerative processes. Nutrition Reviews, 57,3–6.
    [87]Carle, R., Keller, P., Schieber, A., Rentschler, C., Katzschner, T.,Rauch, D., et al. (2001). Method for obtaining useful materials from the by-products of fruit and vegetable processing. Patent from the by-products of fruit and vegetable processing. Patent application, WO 01/78859 A1.
    [88]Craig, S. A. S., Holden, J. F., & Khaled, M. Y. (2000). Determination of polydextrose as dietary fiber in foods. Journal of theAssociation of Official Analytical Chemists International, 83,1006–1012.
    [89]Fischer, M. (2004). Dietary fibres. New challenges for research. In J. M. van der Kamp, N. G. Asp, J. Miller, & G. Schaafsma (Eds.),Dietary fibre (pp. 59–66). The Netherlands: Wageningen Academic Publishers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700