催化重整流程模拟与优化技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流程模拟与优化技术作为流程工业综合自动化技术的重要组成部分得到了广泛应用,带来了显著的经济效益。本论文以石化行业重要的石油二次加工过程——催化重整过程为研究对象,以该过程的模拟优化技术及其工业应用为研究主线,围绕催化重整集总反应动力学模型的建立、专用流程模拟优化软件的开发、基于ASPEN PLUS软件平台的全流程模拟与工业优化应用、机理模型的在线计算应用、遗传算法和混合遗传算法在约束优化和多目标优化中的应用等进行了深入研究。具体包括以下几个方面:
     1) 在充分考虑反应机理和满足工业应用方便性的前提下,提出了一个新的催化重整20集总反应动力学模型。以此模型为基础,采用序贯模块法实现了由反应器、加热炉、换热器、分离罐等装置组成的催化重整循环流程的机理建模工作。为了方便工业应用,所有模型方程的求解和参数估计中的无约束优化方法均采用了成熟、快速而可靠的算法。以20集总反应动力学模型为核心的催化重整过程模型的成功建立,是本论文以下工业应用研究的基础。
     2) 以C++为工具,开发了基于催化重整集总反应动力学模型的专用流程模拟优化软件ESP-Simpro。其清晰的功能模块设计、完整的模型库、快速可靠的算法、功能强大的输入/输出系统、友好的人机界面、标准化的接口和统一的权限管理等特点使得该软件具备了商业化应用的潜质和前景。该软件作为商业化软件产品在国内某工业级连续重整装置上得到了成功应用。其工业应用情况表明了机理模型和模拟软件在过程分析和操作指导上的重要意义。
     3) 利用ASPEN PLUS用户模型技术,将催化重整过程机理模型开发成用户单元操作模块,从而在ASPEN PLUS平台实现了包含重整反应装置在内的催化重整全流程模拟。从实际的工业应用结果看,各主要操作点和操作指标的模拟计算值与实际操作值均吻合得较好。利用ASPEN PLUS内置的SQP优化算法,还对工业连续重整装置进行了操作参数优化研究,并将优化方案在该装置上进行了现场测试。测试结果表明芳烃收率的平均值实际提高0.49wt%,与优化计算结果相当吻合。该优化研究可为厂方带来每年600多万元的纯利润。
As the basic of integrated control technologies in modern petrochemical industrials, the technology of process simulation and optimization is widely applied and brings large profits for related plants or componies. This dissertation takes the importantsecondary process of refinery-----catalytic reforming as the research background, andfocuses on the simulation and optimization of this process and its typical industrial applications. The lumped kinetics model and corresponding process model of catalytic reforming is firstly developed in this dissertation. Based on this process model, the industrial applications comprise developing special simulation software, devolping secondary simulation software on ASPEN PLUS platform, on-line computation, constraint optimization and multi-objective optimization. The detailed content is arrangend as follows,1. A new kinetics model involving twenty lumped components and thirty-one reactions is developed for catalytic reforming. The deactivation of the catalyst in semiregenerative or continuous catalytic reforming process is modeled by two different methods. Sequential modular approach is then implemented for the process modeling of catalytic reforming, which is composed of reformers, heaters, heat exchanger and separator. Aiming at industrial application, the traditional and steady algorithms are selected to solve process model equations and unconstrained optimization problem deriving from parameter estimation. The process model is the foundation of all the following industrial applications.2. The special process simulation and optimization software for catalytic reforming is developed with C++ language based on the 20-lumped kinetics model. This software possesses good structure of functional modules, integrated model library, steady and fast algorithms and powerful input and output system. As commercial software, it has been applied upon one domestic industrial catalytic reforming unit successfully. The software is proved to be effective and convenient for application. In addition, the sensitivity analysis is also performed with this software to guide
    process operations.3. By developing the process model as a user module, a whole industrial continuous catalytic reforming process is simulated on ASPEN PLUS platform. Fair agreement between the calculated and actual operating data is obtained. Based on the process model and the built-in SQP algorithm, process optimization is then studied and the calculated optimization results are also tested on the actual industrial unit about one month. The testing results show that the aromatics yield increases about 0.49 wt% averagely, which is close to the calculated result and makes a profit of about six million yuan annually.4. Based on the process mechanism model, linear PLS regression model and first-order TSK fuzzy neural network model, the on-line computation of production index for one industrial continuous catalytic reforming process is studied. The process model is proved to have such performances of stronger robustness and generalization, fewer samples for modeling needed and computing more than one index by using the same model and model parameters. By adopting an on-line prediction and correction strategy, the process model is used to on-line calculate aromatics yield, yield of each aromatics lump, and RON (Research Octane Number) of the process. The on-line prediction trend and precision are very good.5. A constrained optimization strategy of industrial catalytic reforming process is proposed based on the process model. A genetic algorithm based on infeasibility degree (IFDCOGA) is selected to compute this problem. This genetic algorithm is proved to have shortcomings of premature and dead state convergence during optimization computation. Aiming at overcoming its shortcomings, a new optimization method is proposed by integrating IFDCOGA with traditional algorithms. The feature of this method is its faster convergence speed and convenience because of not using the genetic algorithm each time in industrial applications.6. A new hybrid genetic algorithm, named as HNAGA, is proposed by integrating a genetic algorithm based on neighborhood and archived operation (NAGA) with traditional algorithm such as SQP or LM. Based on the process model, this hybrid
    algorithm is then applied to compute a multi-objective optimization problem of industrial catalytic reforming process. The optimal objectives include maximizing the aromatics yield and minimizing the yield of heavy aromatics. Four reactor inlet temperatures, reaction pressure and hydrogen-to-oil molar ratio, are selected as decision variables. The hybrid algorithm HNAGA is proved to be more excellent than NAGA in obtaining Pareto optimal solutions.The dissertation is concluded with a summary and perspectives of some important problems to be solved in the future research and application.
引文
Alam S. S., Rhinehart R. R., High K. A., Gemperline P. J. (2004). On-line Optimization of a Batch Reaction—Development and Experimental Demonstration, Proceedings of the American Control Conference, 6: 4861-4866.
    Arpornwichanop A., Kittisupakorn P., Mujtaba I. M. (2005). On-line Dynamic Optimization and Control Strategy for Improving the Performance of Batch Reactors, Chemical Engineering and Processing, 44(1):101-114.
    Aspentech Corp. (2003). http://info.ce.hc360.com/Html/001/001/3260.htm.
    Aspentech Corp. (2005). Aspen CatRef~(TM) Product Brief, http://www.aspentech.com.
    Bhaskar V., Gupta S. K., Ray A. K. (2000). Application of Multiobjective Optimization in Chemical Engineering, Rev. Chem. Eng., 16(1): 1-54.
    Bybee K. (2003). Promoting Real-Time Optimization of Hydrocarbon-Producing Systems, Journal of Petroleum Technology, 55(12): 34-35.
    Chung T. S., Li K. K., Chen G. J., Xie J.D., Tang G. D. (2003). Multi-objective Transmission Network Planning by a Hybrid GA Approach with Fuzzy Decision Analysis, Electrical Power and Energy Systems, 25:187-192.
    Coello C. C. A. (2001). A Short Tutorial on Evolutionary Multiobjective Optimization, Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization, Zurich, Switzerland, 67-81.
    Deb K. (2000). An Efficient Constraint Handling Method for Genetic Algorithm, Comput Methods Appl Mech Engrg, 186:311-338.
    Deka D. J., Sandeep G., Chakraborty D., Dutta A. (2005). Multiobjective optimization of Laminated Composites Using Finite Element Method and Genetic Algorithm, Journal of Reinforced Plastics and Composites, 24(3): 273-285.
    Enrique A. R., Jorge A. J. (1994). New Process Model Proves Accurate in Tests on Catalytic Reformer, Oil & Gas Journal, July: 80-83.
    Fonseca C. M., Fleming P. J. (1994). An Overview of Evolutionary Algorithm in Multiobjective Optimization, Technical report, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, U. K..
    Froment G. F. (1987). The Kinetic of Complex Catalytic Reactions, Chem. Eng. Sci., 42(5): 1073-1087.
    Froment G. F., Bischoff K. B. (1990). Chemical Reactor Analysis and design, 2nd Edition, New York: Wiley.
    Graziani K. P., Ramage M. P. (1978). Determining the Real-time Activity Parameters of A Pseudomonomolecular Kinetics Reforming Model, ACS Symposium Series, 65: 282-287.
    Glover F. (1989). Tabu search: part Ⅰ. ORSA J. on Computing, 1: 190-206.
    Glover F. (1990). Tabu search: part Ⅱ. ORSA J. on Computing, 2: 4~32.
    Hauqseth P., Chukman G.. (2005). Process Profits with Simulation, Hydrocarbon Engineering, 10(2): 57-60.
    Henningsen J., Bundgaard-Nielson M. (1970). Catalytic Reforming, British Chemical Engineering, 15(11): 1433-1438.
    Holland J. H. (1975). Adaptation in Natural and Artificial System, An Introduction Analysis with Application to Biology, Control and Artificial Intelligence, The University of Michigan Press, Ann Arbor, USA.
    Horn J., Nafpliotis N., Goldberg D. E. (1994). A Niched Pareto Genetic Algorithm for Multiobjective Optimization, Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE Worm Congress on Computational Intelligence, IEEE Press, Piscataway, New Jersey, 1: 82-87.
    Hu S. Y., Zhu X. X. (2004a). Molecular Modeling and Optimization for Catalytic Reforming, Chemical Engineering Communications, 191 (4): 500-512.
    Hu X. B., Wu S. F., Jiang J. (2004b). On-line Free-flight Path Optimization Based on Improved Genetic Algorithms, Engineering Applications of Artificial Intelligence, 17(8): 897-907.
    Hu Y. Y., Su H. Y., Chu J. (2003). Modeling, Simualtion and Optimization of Commercial Naphtha Catalytic Reforming Process, Proceedings of the 42nd IEEE Conference on Decision and Control, Hawaii, USA, 6206-6211.
    Hu Y. Y., Xu W. H., Su H. Y., Chu J. (2004c). A Dynamic Model for Nnaphtha Catalytic Reformers, Proceedings of the IEEE International Conference on Control Applications, 1: 159-164.
    Hu Y. Y., Xu W. H., Hou W. F., Su H. Y., Chu J. (2005). Dynamic Modeling and Simualtion of a Commercial Naphtha Catalytic Reforming Process, Chinese J. Chem. Eng., 13(1): 74-80.
    Jenkins J. H., Stephens T. W. (1980). Kinetics of Cat Reforming, Hydrocarbon Processing, November: 163-167.
    Jorge A. J., Eduardo V. M. (2000). Kinetics Modeing of Naphtha Catalytic Reforming Reactions, Energy & Fuels, 14: 1032-1037.
    Jorge A. J., Eduardo V. M. et al. (2001). Modeing and Simulation of Four Catalytic Reactors in seires for Naphtha Reforming, Energy & Fuels, 15: 887-893.
    Jorge A. J., Eduardo V. M. et al. (2002). Simulation of a Commercial Semiregenerative Reforming Plant Using Feedstocks with and without Benzene Precursors, Chem. Eng. Technol., 25(5): 541-546.
    Kjell M., Hilde G. H., Anne H., Ingunn T., Knut G., Anders H. (1996). Effect of Reaction Pressure on Octane Number and Reformate and Hydrogen Yields in Catalytic Reforming, Ing. Eng. Chem. Res., 35: 99-105.
    Kmak W. S. (1972).Powerforming Process Studies with a Kinetics Simulation Model, AIChE Meeting, Houston, Texas.
    Knowles J. D., Come D. W. (2000). Approximating the Nondominated Front Using Pareto Archived Evolution Strategy, Evol. Comput., 8(2), 149-172.
    Krane H. G., Groh A. B., Schulman B. L., Sinfelt J. H. (1960). Reactions in Catalytic Reforming of Naphthas, Proceedings of the 5th Worm Petroleum Congress, 39-51.
    Krikpatrick A., Gelatt C. D., Vecchi M. P. (1983). Optimization by Simulated Annealing, Science, 220: 671-680.
    Kugelman A. M. (1976). What Affect Catalytic Reformer Yield? Hydrocarbon Proc., 95-99.
    Liang H. Y., Sun Z. Q., Gu S. X. (2004). Chaos-RBF Network and its Application in Soft Sensor of Continuous Catalytic Reforming Process, Proceedings of the Worm Congress on Intelligent Control and Automation (WCICA), 3: 2634-2638.
    Liang K. M., Guo H. Y., Pan S. W. (2005). Study on Naphtha Catalytic Reforming Reactor Simulation and Analysis, Journal of Zhejiang University: Science, 6(6): 590-596.
    Lee J. W., etc. (1997). A Modeling and Simulation Study on a Naphtha Reforming Unit with a Catalyst Circulation and Regeneration System, Computers. Chem. Engng., 21: s1105-s1110.
    Mahadevan R., Doyle I., Francis J. (2003). On-line Optimization of Recombinant Product in a Fed-batch Bioreactor, Biotechnology Progress, 19(2): 639-646.
    Marin G.. B., Froment G. F. (1982). Reforming of C6 Hydrocarbons on a Pt/Al_2O_3 Catalyst, Chem. Eng. Sci., 37(5): 759-773.
    Marin G. B., Froment G. F., Lerou J. J., De Bacher W. (1983). Simulation of a Catalytic Naphtha Reforming Unit, E. F. C. E. Publication Series, 27(2): C117-C123.
    Marquardt D. W. (1963). An Algorithm for Least-Squares Estimization of Nonlinear Parameters, J. SLAM, 11: 431.
    Michalewtcz Z. (2000). 演化程序—遗传算法和数据编码的结合,上海:科学出版社。
    Mitra K., Gopinath R. (2004a). Multiobjective Optimization of an Industrial Grinding Operation Using Elitist Nondominated Sorting Genetic Algorithm, Chemical Engineering Science, 59(2): 385-396.
    Mitra K., Majumdar S., Raha S. (2004b). Multiobjective Optimization of a Semibatch Epoxy Polymerization Process Using the Elitist Genetic Algorithm, Industrial and Engineering Chemistry Research, 43(19): 6055-6063.
    Mu S. J., Su H. Y., Mao W. J., Chen Z. Y., Chu J. (2002). A new Genetic Algorithm to Handle the Constrained Optimization Problem, Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, 739-740.
    Mu S. J., Su H. Y., Gu Y., Chu J. (2003a). Multi-objective Optimization of Industrial Purified Terephthalic Acid Oxidation Process, Chinese J. Chem. Eng., 11(5): 536-541.
    Mu S. J., Su H. Y., Wang Y. X., Chu J.(2003b). An Efficient Evolutionary Multi-objective Optimization Algorithm, Proceedings of the IEEE Congress on Evolutionary Computation, 2:914-920.
    Mu S. J., Su H. Y., Jia T., Gu Y., Chu J. (2004). Scalable Multi-objective Optimization of Industrial Purified Terephthalic Acid (PTA) Oxidation Process, Comput. and Chem. Eng., 28: 2219-2231.
    Padmavathi G., Chaudhuri K. (1997). Modeling and Simulation of Commercial Catalytic Naphtha Reformers, Can. J. Chem. Eng, 75: 903-937.
    Powell M. J. D. (1978). Mathematical Programming, 14(2): 224.
    Powell M. J. D. (1979). A Fast Algorithm for Nonlinearly Constrained Optimization Cauculations, Berlin: Springer-Verley, 144-157.
    Prasanna V. J., Michael T. K., Aronson L. H., Richard W. L. (1999). Automated Kinetic Modeling of Catalytic Reforming at Reaction Pathways Level, Rev. Proc. Chem. Eng., 2: 169-193.
    Rajesh J. K., Gupta S. K., Rangaiah G. P., Ray A. K. (2001). Multiobjective Optimization of Industrial Hydrogen Plants, Chemical Engineering Science, 56: 999-1010.
    Ramage M. P., Graziani K. R., Krambeck F. J. (1980). Development of Mobil's Kinetic Reforming Model, Chem. Eng. Sci., 35: 41-48.
    Ramage M. P., Graziani K. R., Schipper P. H., Krambeck F. J., Choi B. C. (1987). KINPTR (Mobil's Reforming Model), A Review of Mobil's Industrial Process Modeling Philosophy, Adv. in Chem. Eng., 13: 193-266.
    Rao S. S., Xiong Y. (2005). Mixed-discrete Fuzzy Multiobjective Programming for Engineering Optimization Using Hybrid Genetic Algorithm, AIAA Journal, 43(7): 1580-1590.
    Rechenberg I. (1973). Evoluntions Strategie-Optimierung Technischer System nachPrincizipien der Biologischen Evolution, Friedrich Frommann Verlag.
    Sarkany A., et al. (1987). Applied Catal, 30: 69~80.
    Schaffer J. D. (1985). Multiple Objective Optimization with Vector Evaluated Genetic Algorithms in Genetic Algorithms and Their Applications, Proceedings" of the First lnternational Conference on Genetic Algorithms, Lawrence Erlbaum, 93-100.
    Schipper P. H., Graziani K. R., Choi B. C., Ramage M. P. (1984). The Extension of Mobil's Kinetics Reforming Model to Include Catalyst Deactivation, Inst. Chem. Eng. Symp. Series, 37: 33-39.
    Schipper P., et al. (1988). Acc Symposium, 87: 33~44.
    Sequeira S. E., Herrera M., Graells M., Puigjaner L. (2004). On-line Process Optimization: Parameter Tuning for the Real Time Evolution (RTE) Approach, Computers and Chemical Engineering, 28(5): 661-672.
    Smith R. B. (1959). Kinetic Analysis of Naphtha Reforming with Platinum Catalyst, Chem. Eng. Progress, 55(6): 76-80.
    Somasundaram P., Lakshmiramanan R., Kuppusamy K. (2005). Hybrid Algorithm Based on EP and LP for Security Constrained Economic Dispatch Problem, Electric Power Systems Research, 76: 77-85.
    Srinivas N., Deb K. (1994). Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms, Evol. Comput., 2(3): 221-248.
    Tarafder A., Lee B. C. S., Ray A. K., Rangaiah G. P. (2005). Multiobjective Optimization of an IindustriaI Ethylene Reactor Using a Nondominated Sorting Genetic Algorithm, Industrial and Engineering Chemistry Research, 44(1): 124-141.
    Taskar U., Riggs J. B. (1997). Modeling and Optimization of a Semiregenerative Catalytic Naphtha Reformer, AIChE J., 43(3): 740-753.
    Trimpont P. A., Matin G. B., Froment G. F. (1988). Reforming of C_7 Hydrocarbons on a Sulfided Commercial Pt/Al_2O_3 Catalyst, Ind. Eng. Chem. Res., 27: 51-57.
    Van Trimpont P. A., Marin G. B., Froment G. F. (1988). Reforming of C7 Hydrocarbons on a Sulfided Commercial Pt/Al_2O_3 Catalyst, Ind. Eng. Chem. Res., 27: 51-57.
    Van Z., Jakobus E., Savic D. A., Waiters G. A. (2004). Operational Optimization of Water Distribution Systems Using a Hybrid Genetic Algorithm, Journal of Water Resources Planning and Management, 130(2): 160-170.
    Wollf A., Kramaraz J. (1979). Kinetics Models of Catalytic Reforming, Khim. Technol. Topl. Masel., 12: 10-16.
    Wei J., Proter C. D. (1969). A Lumping Analysis in Monomolecular Reaction System, Ind. Eng. Chem. Fund, 8(1): 114-124.
    Wei L. Y., Zhao M. (2005). A Niche Hybrid Genetic Algorithm for Global Optimization of Continuous Multimodal Functions, Applied Mathematics and Computation (New York), 160(3): 649-661.
    Yuen C. C., Aatmecyata G. S. K., Ray A. Y. (2000). Mulh-objective Optimization of Membrane Separation Modules Using Genetical Algorithm, J. of Membrane Sci., 176: 177-196.
    Zhorov Y. M., etc. (1980). Mathematical Model of Platforming for Optimization of a Process(1), Khim. Technol. Topl. Masel., 7: 9-12.
    Zitzler E. Thiele L. (1999). Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach, IEEE Trans. On Evol. Comput., 3(4): 257-271.
    Zitzler E., Kalyammy D., Lothar T. (2000). Comparison of Multiobjective Evolutionary Algorithms: Empirical Results, Evolutionary Computation, 8(2): 173-195.
    蔡大用,白峰杉(1997)。高等数值分析,北京:清华大学出版社.
    陈钟秀,顾飞燕(1996)。化工热力学,北京:化学工业出版社.
    程国香,谭汉森(1995)。CB-8催化剂重整反应产品分布的动力学计算,催化重整通讯,3:36-41.
    戴星(1988)。六碳重整反应体系的反应动力学研究,石油学报(石油加工),4(4):1-9.
    戴星(1988)。试差矩阵法及其在复杂反应动力学研究中的应用,化学反应工程与工艺,4(3):19-30.
    邓正龙(1992)。化工中的优化方法,北京:化学工业出版社.
    丁福臣,周志军,高强等(2001)。十三集总催化重整反应动力学模型研究,炼油设计,31(8):14-16.
    丁福臣,周志军,杨桂忠等(2002a)。十七集总催化重整反应动力学模型研究(1)——模型的建立,石油化工高等学校学报,15(1):15-17.
    丁福臣,周志军,杨桂忠等(2002a)。十七集总催化重整反应动力学模型研究(2)——工业装置模拟,石油化工高等校学报,15(2):22-25.
    冯权莉(1996)。通用化工流程模拟技术进展与应用,云南工业大学学报,12(1):52-57.
    耿立群,郭锦标(2004)。催化重整在线计算模型的研究,计算机与应用化学,21(1):65-68.
    郭广智(1997)。石油化工动态模拟软件HYSYS,石油化工设计,14(3):29-33.
    韩方煜,郑世清,荣本光(1999)。过程系统稳态模拟技术,北京:中国石化出版社.
    贺来宾,杨霞,岳金彩,谭心舜(2004)。基于SQP法的ECSS-化工之星优化功能的实现,计算机与应用化学,21(5):753-757.
    侯凯锋,李有润,胡山鹰,沈静珠,易和平,芦蓉(2000)。原油蒸馏装置在线优化软件的工程实施,石油化工,29(12):934-938.
    胡德铭,钱培良,等(1996)。国外催化重整工艺主要进展,催化重整通讯,1:1-19.
    胡德铭(2002)。催化重整工艺进展,当代石油石化,10(9):16-19.
    胡德铭(2004)。我国催化重整装置发展空间的探讨,炼油技术与工程,34(10):5-9
    胡永有,苏宏业,褚健(2002)。催化重整装置模拟研究综述,化工自动纪及仪表,29(2):19-23.
    胡永有,苏宏业,褚健(2003)。工业重整装置建模和仿真,高校化学工程学报,17(4):418-424.
    胡永有(2004)。催化重整流程模拟及优化研究,浙江大学博士论文.
    黄仲文,徐用懋,方崇智,唐杰(1992)。工业过程在线优化技术,机械与电子,6:3-7.
    吉根林(2004)。遗传算法研究综述,计算机应用与软件,21(2):69-73.
    贾春阳(2000)。最优化控制的若干问题探讨,化工自动化及仪表,27(2):1-4.
    姜炳南,林培滋,曾理,刘伟成(1987)。催化重整复杂反应网络动力学模型研究,化学反应工程与工艺,3(3):1-7.
    江洪波,欧阳福生,翁惠新(1994)。催化重整集总动力学模型(Ⅲ)工业应用软件的编制和验证,化工学报,45(5):538-544.
    江洪波,翁惠新(1998)。催化重整生焦动力学模型的研究Ⅰ—生焦动力学模型的建立,华东理工大学学报,24(1):42-45,53.
    江洪波,翁惠新(2000)。集总动力学模型研究的普遍方法与原则探讨,华东理工大学学报,26(2):139-143.
    蒋敏倩,蒋慰孙(1998)。对生产过程优化的若干看法,化工自动化及仪表,25(4):1~7.
    雷腾(1998)。催化重整反应器模拟,石油化设计,15(1):48-53.
    李成栋(1991)。催化重整,北京:中国石化出版社.
    李成栋(2001)。催化重整装置操作指南,北京:中国石化出版社.
    李开宏(1982)。复杂反应体系的集总动力学模型,石油化工,11(9):621-627.
    李绍军,王惠,钱锋(2003)。多目标遗传算法及其在化工领域的应用,计算机与应用化学,20(6):755-760.
    李有法(1996)。数值计算方法,北京:高等教育出版社.
    李玉刚,周传光,郑世清,韩方煜(1997)。联立模块法在流程模拟中的应用,青岛化工学院学报,18(1):17-20.
    林世雄(2000)。石油炼制工程,北京:石油加工出版社.
    刘怀伟(2000)。催化重整软件的二次开发与应用,催化重整通讯,1:54-57.
    刘金琨(2003)。先进PID控制及其MATLAB仿真,北京:电子工业出版社.
    刘瑞兰(2004)。软测量技术若干问题的研究及工业应用,浙江大学博士学位论文.
    刘士荣,俞金寿(1999)。过程控制的若干问题研讨,石油化工自动化,1-6.
    刘耀芳等(1988)。石油炼制,19(11):24-32.
    刘燕萍(1997)。流程模拟技术优化技术在石油化工工业的应用,石油炼制与化工,28(6):48-51.
    刘正庚,赵建华,李制(1993)。石油化工流程模拟与应用,计算机与应用化学, 10(3):161-170.
    卢春喜、赵志海、刘耀芳(2001)。连续重整新型再生器及再生过程动力学模型的开发,炼油设计,31(12):15-18.
    陆恩锡,张慧娟(2000)。化工过程模拟及相关高新技术(Ⅱ)化工过程动态模拟,化工进展,5:76-78.
    牟盛静(2004)。石化工业过程建模与优化若干问题研究,浙江大学博士学位论文.
    牛志华,李乃成,肖国镇(2003)。一种新的求解多目标优化问题的混合遗传算法,计算机工程,29(18):64-66.
    彭秉璞(1990)。化工系统分析与模拟,北京:化学工业出版社
    钱积新、鲍立威、邵之江、张余岳(1998)。生产过程综合自动化中的在线优化(Ⅱ),石油化工自动化,5:2-4,17.
    钱家麟,于遵宏,王兰田等(1987)。管式加热炉,北京:烃加工出版社.
    石油化工科学研究院发展部应用软件组(1983a)。几种炼油化工过程模拟软件简介(Ⅰ)。炼油炼制,1:57-59.
    石油化工科学研究院发展部应用软件组(1983b)。几种炼油化工过程模拟软件简介(Ⅱ)。炼油炼制,2:48-50.
    石油化工科学研究院发展部应用软件组(1983c)。几种炼油化工过程模拟软件简介(Ⅲ)。炼油炼制,3:52-55.
    石油化工科学研究院发展部应用软件组(1983d)。几种炼油化工过程模拟软件简介(Ⅳ)。炼油炼制,4:51-53.
    石油化工科学研究院发展部应用软件组(1983e)。几种炼油化工过程模拟软件简介(Ⅴ)。炼油炼制,5:59-62.
    石油化工科学研究院发展部应用软件组(1983f)。几种炼油化工过程模拟软件简介(Ⅵ)。炼油炼制,6:60-63.
    孙绍庄(1990)。催化重整集总反应动力学模型研究,华东工学院博士学位论文.
    孙绍庄,翁惠新,毛信军,刘馥英(1992a)。催化重整集总反应动力学模型研究—(Ⅰ)六碳反应网络的动力学模型,化学反应工程与工艺,8(1):10-17.
    孙绍庄,翁惠新,毛信军,刘馥英(1992b)。催化重整集总反应动力学模型研究—(Ⅱ)七碳反应网络的动力学模型,化学反应工程与工艺,8(1):18-23.
    孙绍庄,翁惠新,毛信军,刘馥英(1992c)。催化重整集总反应动力学模型研究—(Ⅲ)八碳反应网络的动力学模型,化学反应工程与工艺,8(3):254-259.
    孙绍庄,翁惠新,毛信军,刘馥英(1993)。催化重整集总反应动力学模型研究,石油学报(石油加工),9(3):27-33.
    唐焕文,秦学志(1994)。最优化方法,大连:大连理工大学出版社.
    万百五,黄正良(1998)。大工业过程计算机在线稳态优化控制,北京:科学出版社.
    万志强,杨超,郦正能(2004)。混合遗传算法在气动弹性多学科优化中的应用, 北京航空航天大学学报,30(12):1142-1146.
    王惠文(1999)。偏最小二乘回归方法及基应用,北京:国防工业出版社.
    王基铭(2004)。新世纪石油炼制和石化技术的发展趋势,中国石化,11:4-7.
    王树德(2005)。中国石化催化重整装置面临的形势和任务,炼油技术工程,35(7):1-4.
    魏发远,李世其(2004)。基于混合遗传算法的多目标动态优化设计,宇航学报,25(6):609-615.
    翁惠新,孙绍庄,江洪波(1994a)。催化重整集总动力学模型(Ⅰ)模型的建立,化工学报,45(4):407-411.
    翁惠新,江洪波,陈志(1994b)。催化重整集总动力学模型(Ⅱ)实验设计和动力学参数估计,化工学报,45(5):531-537.
    武建初,林正仙(1987)。六碳组分重整动力学参数估值方法的研究,石油学报(石油加工),3(3),10-20.
    夏军保,元玉台,等(2001)。催化重整工艺技术及其进展——工艺技术,抚顺石油学院学报,21(4):1-5.
    肖薇(1995)。炼油厂催化重整全流程的建模和动态仿真,系统仿真学报,7(1):57-60.
    解新安,彭世浩,刘太极(1995)。催化重整反应动力学模型的建立及其工业应用(1),炼油设计,25(6):49-51.
    解新安,彭世浩,刘太极(1996a)。催化重整反应动力学模型的建立及其工业应用(2),炼油设计,26(1):44-47.
    解新安,彭世浩,刘太极(1996b)。催化重整反应动力学模型的建立及其工业应用(3),炼油设计,26(2):44-48.
    解新安,彭世浩,刘太极(1996c)。催化重整反应动力学模型的建立及其工业应用(4),炼油设计,26(5):27-29.
    解新安,彭世浩,刘太极(1996d)。催化重整反应动力学模型的建立及其工业应用(5),炼油设计,26(6):42-45.
    徐祖华,赵均,钱积新,柳怀年(2003)。PTA溶剂脱水塔先进控制与在线优化,化工自动化及仪表,30(6):16-18.
    玄光男,程润伟(2000)。遗传算法与工程设计,上海:科学出版社.
    闫遂宁(2004)。连续重整再生器的动态烧焦模型,石油炼制与化工,35(4):71-74.
    杨友麟(1995)。过程流程模拟,计算机与应用化学,12(1):1-6.
    杨岩(2004)。数字模拟成就石油化工,数字化工,5:58-59.
    俞金寿,刘爱伦,张克进(2000)。软测量技术及其在石油化工中的应用,北京:化学工业出版社.
    余文,李人厚(2002)。遗传算法对约束优化问题的研究综述,计算机科学,29(6):98-101.
    袁亚湘(1993)。非线性规划数值方法,上海:科学技术出版社.
    袁渭康,周兴贵(2001)。石油化工过程与装置的在线操作优化,金山油化纤,1:1-4.
    张波,孙自强(2004)。含约束条件遗传算法在连续催化重整优化操作中的应用,华东理工大学学报,30(5):564-566,575.
    张红梅,吴慧熊,张树增,王健红(2003)。十七集总催化重整反应器的稳态模拟,北京化工大学学报,30(5):35-39.
    张红梅(2004)。催化重整全流程动态模拟及重整夏应器模拟方法探讨.北京化工大学硕士学位论文.
    张会刚,朱庆山(2003)。遗传算法GA结合BFGS预测玻璃组成,计算机与应用化学,20(3):335-339.
    张建侯,许锡恩(1989)。化工过程分析与计算机模拟,北京:化学工业出版社.
    赵风治,尉继英(1991)。约束最优化计算方法,上海:科学出版社.
    赵亮,方向晨,王海彦(2005)。催化重整与十三集总动力学模型及子模型的研究,工业催化,13(4):23-26.
    赵仁殿(1999)。催化重整工艺技术的选择,催化重整通讯,1:1-6.
    周明,孙树栋(1999)。遗传算法原理及应用,北京:国防工业出版社.
    周齐宏,胡山鹰,李有润,沈静珠,尉志武(2004)。催化重整过程的分子模拟与优化,计算机与应用化学,21(3):447-452.
    周忠清,顾寿康(1990)。催化重整的反应模型和解析方法,金内油化纤,3:13-18.
    朱开宏(1982)。复杂反应体系的集总动力学模型,石油化工,11(9):621-627.
    庄芹仙(1997)。流程模拟技术在石油化工中的应用,化学工程,25(1):59-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700