半再生重整反应规律及掺炼FCC汽油可行性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以大庆石脑油为原料,研究了重整反应温度、压力及空速对重整效果的影响,优化得到了最佳工艺条件。
     研究了重整催化剂的金属功能和酸性功能对不同反应的影响规律;探讨了水氯平衡的原理,并推导了反应系统补水(氯)量的计算公式。结果表明,在一定工艺条件下,在已知反应物的物量及物性后,确定了反应区的合适水气氛(水分压)范围以后,就可计算出重整进料中水含量。经过蒸发塔后进料中水含量低于此值的差额量,就是应补的水量。而对一定的催化剂,当确定了最佳氯含量以后,就可以确定其对应的标准温度下的水氯分子比。然后校正到反应温度下的水氯分子比,就可以依据公式计算出重整进料中的氯含量。
     论文还对重整原料中掺炼催化汽油的可能性及效果进行了研究,实验研究和工业试生产表明,催化重整装置掺炼催化裂化汽油是可行的。根据重整原料和催化原料的性质差异,确定适当的掺炼比例,在实际的掺炼过程中,基于混合原料性质的劣质化,需要提高预加氢精制催化剂的性能及精制深度。
Aiming at the present semi-regeneration catalytic reforming technology, the thesis investigated the effects of temperature, pressure and space velocity on the reforming reaction by experimental method and determined the optimum process conditions at last.
     The different effects of reforming catalyst of dual function on the reforming reaction were studied. The formula for calculating the mount of supplying chlorine to the reaction system was deducted and verified according to the water-chlorine balance principle. The results show that under certain technological conditions, the water content of the reforming feed stocks are calculated with knowing the amount and properties of the reaction products and determining the appropriate partial pressure of water. The supplement water amount is the difference between the water content of the feed going through the evaporating column and the above calculated value. To a certain catalyst, after determining the optimum chlorine content, the water-chlorine molecular ratios at the standard temperature and the reaction temperature can be confirmed. On the above basis, the chlorine content of the reforming feed can be calculated according to the above formula.
     The thesis also discussed the feasibility of mixing catalytic gasoline into the reforming feed. The results of experimental and industrial tests showed that it is necessary to fix the proper mixing proportion according to the different properties of reforming feed and catalyzing feed as the precondition of blending catalytic gasoline in the reforming feed in the refinery with rich pre-hydrogenation capability, i.e with deficient naphtha feed. And sometimes we should contact academes to perform the mixing experiments in question. During the practical blending process, the effects of the properties of mixed feed on the pre-hydrogenation catalyst need to be considered and the pre-hydrogenation catalyst can be changed according to the practical situation of the refinery.
引文
[1]马爱增.国内外连续重整催化剂技术进步及展望[R].重整年会报告,青岛,2006:15-20.
    [2] J·F勒巴日.接触催化[M].北京:石油工业出版社,1984,214.
    [3]柯晓明.催化重整装置挖潜改造的措施和建议[J].石油炼制与化工,1997,28(7):17-20.
    [4]李国友,候特超,谢英奋等.GcR-10连续重整催化剂的工业应用[J].石油炼制与化工,2001,28(2):1-4.
    [5]冀琳.催化重整装置改造的技术要点及措施[J].石油炼制与化工,2003,28(8),68- 69.
    [6]关冠军.重整催化剂的氯流失[J].催化重整通讯,2003(3):28-30.
    [7]马爱增.芳烃型和汽油型连续重整技术选择[C].重整年会报告,青岛,2006:1-11.
    [8]李彬,汤杰国.催化重整装置扩能改造的工艺技术探讨[J].催化重整通讯,2002(3):24-26.
    [9]国外催化重整资料汇编[G],石科院综合所,2001.9.
    [10]罗家弼.连续重整漫话[A].催化重整科技情报站.2006年年会论文集[C].青岛,催化重整科技情报站,2006:1-10.
    [11]张德义.近年来世界炼油工业发展动态和趋势[J].当代石油化工.2005,13(8):6-10.
    [12]中国石油天然气华东勘察设计研究院.中国石油催化重整装置调研总结报告(摘要)[R].青岛:催化重整科技情报站,2006.
    [13] SharmaLD,ManojKumarAK,Saxena,etal.The determination of accessible Pt metals fractionin Pt-SnAl2O3 reforming catalysts[J].Appl.Catal.,1998,168:251-259.
    [14] Li Feng yi, Lu Weiqi, Li Jianhui.Magnetic properties and activity of Pt-Dy/γ-Al2O3 and Pt-Gd/γ-Al2O3 [J].React Kinet Catal Lett,1990,41(2):245-249.
    [15] ZhangT,ZhangJ,LinL.Relation between surface structureand carbon deposition on Pt/γ-Al2O3 and Pt-Sn/γ-Al2O3 catalysts[J].Catal Deactivation,1991,68:143-150.
    [16] CB-8重整催化剂使用手册[M].抚顺石化研究院内部资料,2003.
    [17]李成栋.催化重整操作指南[M].北京:中国石化出版社,2001.
    [18] Heptane Reforming over Pt–Re/Al2O3: Reaction network, kinetics, and apparent selective catalyst deactivation[J].Journal of Catalysis,2002, 206( 2): 188-201.
    [19]黎先财.载体对重整催化剂催化性能的影响[J].石油与天然气加工.2005.34(5):344-345.
    [20] K. Liu, S. C. Fung, T. C. Ho, D. S. Rumschitzki.Deactivation of Pt-Re/Al2O3 catalysts with different metallic charge[J].Applied Catalysis,1991, 70( 1): 9-18.
    [21]王树德.中国石化催化重整装置面临的形势与任务[J].炼油技术与工程,2005.135(7):1-4.
    [22] CB-6重整催化剂工艺操作手册[M].石科院,2001.
    [23]胡德明.催化重整工艺进展[J].当代石油化工,2002,10(9):17-19.
    [24] Rafael Mariscal, JoséL.G. Fierro, Juan C. Yori, JoséM. Parera, Javier M. Grau. Evolution of the properties of Pt-Ge/Al2O3 reforming catalysts with Ge content[J].Applied Catalysis A: General, 2007, 327 (2): 123-131.
    [25]姚国新.国外炼油技术新进展及其启示[J].当代石油化工,2005.28(3),22-29.
    [26]徐承恩.催化重整工艺与工程[M].北京:中国石化出版社,2006.
    [27]侯福麟..中国炼油技术[M].北京:中国石化出版社,2001.
    [28]冀琳.催化重整装置操作和设计中的几个概念[J].石油炼制与化工,1997:28(8),66-67.
    [29]张大庆.高苛刻度下铂铼重整催化剂反应性能的评价[J].石化技术与应用,2003,21(2):85-105.
    [30]金国干.催化重整[M].北京:中国石化出版社,2004.
    [31]吕家欢.提高我国汽柴油质量的相关问题的思考[J].当代石油化工,2004,12(4):8-11.
    [32]孙逢铎.CB-8重整催化剂的工业应用[J].石油炼制与化工,1998,28(5):51-57.
    [33]日本石油学会.石油炼制工艺方法手册[M].北京:石油工业出版社, 1979.
    [34] K. Liu, S.C. Fung, T.C. Ho, D.S. Rumschitzki. An experimental protocol for studying kinetics and catalyst deactivation: Application to heptane reforming on Pt-Re/Al2O3[J].Studies in Surface Science and Catalysis,1997, 111(3): 625-638.
    [35] CB-8重整催化剂水-氯平衡控制[R].抚顺石化研究院,2004.
    [36]付尚年.大庆炼化公司炼油一厂35万吨重整装置标定报告[R].大庆炼化公司,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700