半固态铝合金的超声振动制浆及其流变成形技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半固态成形作为一种新型的材料加工技术能够生产出形状复杂且力学性能优异的近净形零件。半固态成形包括流变成形和触变成形,流变成形以其低成本和高生产率等优点成为近年来半固态成形领域研究的热点,流变成形的关键在于开发高效的制浆工艺,超声振动制浆工艺就属于其中的一种。5000系列变形铝镁合金广泛应用于飞机、汽车、舰船、家电等领域,而传统的塑性成形工艺难以制造壁厚差别大的零件,半固态成形工艺有望解决这一问题并扩大该类合金的应用范围。本文利用直接超声振动法制备出5052铝合金半固态浆料,并开发出一种新型的间接超声振动制浆技术,将制得的铝合金半固态浆料直接压铸或挤压铸造成形。
     首次探索了制备5052变形铝镁合金半固态浆料的可行性及其充型能力。利用直接超声振动法制备半固态浆料,系统地研究了启振温度、超声作用时间和后续保温时间对半固态浆料组织的影响。结果表明,在665~675℃这一温度区间开始对5052铝合金熔体进行超声处理,90s后可获得初生α-Al晶粒直径在110μm左右、形状系数在0.4以上的非枝晶半固态浆料。当浇注温度为637℃、压射比压为80MPa、压射速度为3.5m/s时,浆料具有最佳的充型能力。
     开发出一种新型的间接超声振动制浆装置,通过对样杯底部施加超声振动以间接的方式处理杯内铝合金熔体。借助统计能量分析法(SEA)计算了样杯内铝液的声压分布情况以及样杯各处的均方振速。结果表明,超声波主要通过样杯底部发生的共振传入铝液,并在铝液内产生一自杯底向液面递减的声压梯度,杯底附近铝液的声压达到了4.86MPa,样杯与变幅杆共振时杯底均方振速为5.393m/s。物理模拟试验证明间接超声振动能使液体内部产生声流效应、空化效应和热效应。
     采用间接超声振动法制备出高质量的铝合金半固态浆料。与直接超声振动法相比,间接超声振动法制浆效率更高,制浆效果更好,且避免了铝液对钛合金变幅杆的腐蚀。系统地研究了间接超声振动启振温度和超声作用时间对5052、5083和ZL101铝合金半固态浆料组织的影响。在一定的制浆时间内,为避免浆料中出现大量的玫瑰状组织,启振温度设置在合金的液相线为宜。在液相线温度开启振动30s后,初生α-Al相的平均晶粒直径和平均形状系数均随超声作用时间的延长而不断增大,在50s左右能获得晶粒直径和形状系数匹配良好的半固态浆料,此时三种铝合金半固态浆料的初生α-Al相平均晶粒直径在75μm以下,平均形状系数高于0.52。间接超声振动对半固态浆料还兼具除气作用。
     结合高固相分数半固态浆料中非枝晶组织的演化过程,探讨了间接超声振动的制浆机理。样杯底部产生的空化效应促进熔体非均质形核,同时,对熔体有冷却作用的样杯底也是形核的重要场所。附着在杯底的细小晶粒在高频机械振动作用下于杯底-晶粒界面处产生微裂纹,随后被空化泡和液流冲击脱落进入熔体内部而成为异质核心。在声流效应和空化效应的搅拌下,熔体中的晶核直接生长为球晶。
     研究了间接超声振动时间对半固态流变压铸件的组织和力学性能的影响。由超声处理50s的浆料压铸而得的铸件具有最佳的力学性能,该条件下的ZL101和5083铝合金的力学性能优于传统液态压铸件。
     开发出5052、5083和ZL101铝合金的流变挤压铸造工艺,获得了力学性能优异的半固态成形件。重点研究了间接超声振动时间、挤压压力和模具预热温度对5052铝合金流变挤压铸件的组织与力学性能的影响规律。当超声处理时间为50s、挤压压力为100MPa、模具预热温度为300℃时铸件具有最佳的力学性能,铸件的抗拉强度和伸长率分别为225MPa和17.8%,与液态挤压铸件相比,分别提高了9.7%和42.4%。在此工艺条件下,5083铝合金流变挤压铸件的抗拉强度和伸长率分别为274MPa和13.5%;经T6热处理的ZL101铝合金流变挤压铸件的抗拉强度达到338MPa,伸长率为8%。
The semisolid metal processing, including thixoforming and rheocasting, offers the opportunity to manufacture net-shaped components with complicated shape and good mechanical properties. More and more researches have been focused on rheocasting in recent years because of its low cost and high productivity. The most critical task in rheocasting is to develop efficient processes for making of semisolid slurry, and the ultrasonic vibration process is one of these processes. The 5000 series Al-Mg alloys have been found a large variety of applications in aircraft, automobiles, ships and home appliances. Nevertheless, it is hard for traditional plastic forming technologies to produce components with great difference in thickness. Rheocasting process is expected to solve this problem and expand the application fields of these alloys. In this paper, semisolid slurry of 5052 Al alloy was prepared by direct ultrasonic vibration (DUV). A new type of indirect ultrasonic vibration (IUV) process was developed based on DUV. The semisolid slurry was formed by rheo-diecasting or rheo-squeeze casting.
     The feasibility of preparing 5052 Al alloy semisolid slurry and its filling capability were firstly explored. The effects of vibration starting-temperature, treatment time and isothermal holding time on the microstructure of semisolid slurry produced by DUV were systematically investigated. The results indicate that non-dendritic 5052 Al alloy semisolid slurry with average particle diameters about 110μm and average shape coefficients above 0.4 could be obtained when the melt is treated by DUV for 90s with starting-temperatures between 665℃and 675℃. The slurry has the best filling ability when the pouring temperature, specific pressure of injection and injection speed are 637℃,80MPa and 3.5m/s, respectively.
     A new IUV apparatus, in which the horn was vibrated under the bottom of the metallic cup containing alloy melt, has been developed in this research. Statistical energy analysis was employed to calculate the acoustic pressure distribution of the melt and the mean-square vibration velocity of the cup. The results indicate that the ultrasound is mainly introduced into the melt through the resonance of the cup bottom, and an acoustic pressure gradient is induced by IUV. The acoustic pressure of the melt has a maximum value of 4.86MPa near the bottom and decreases from the bottom to the melt surface. The mean-square vibration velocity of the cup bottom reaches 5.93m/s. Physical simulation experiments confirm that acoustic stream, cavitation and thermal effect can be induced by IUV.
     The IUV process can produce excellent Al alloy semisolid slurry. IUV process not only has a higher efficiency and better effect for preparing slurry but also avoid the erosion problem of titanium alloy horn by the melt, compared to DUV process. The effects of processing parameters such as IUV starting-temperature and treatment time on the microstructures of semisolid slurry of ZL101,5052 and 5083 Al alloys were investigated. In order to eliminate rosettes in the slurry, the optimum vibration starting-temperature is the liquidus temperature of an alloy in a specified time. When the alloys are treated by IUV for more than 30s, the average diameters and shape coefficients of primary a-Al particles increase with the time. Semisolid slurry with good combination of grain size and shape coefficient could be obtained by IUV treatment for 50s. In this case, the average diameters of the ZL101,5052 and 5083 Al alloys are less than 75μm, and shape coefficients above 0.52. Apart from preparing semisolid slurry with fine microstructure, IUV had degassing effect on semisolid slurry.
     The mechanism of preparing semisolid slurry with IUV was discussed by analyzing the evolution of non-dendritic grain in the semisolid slurry with high solid fraction. Cavitation generated by IUV enhances heterogeneous nucleation in the melt, and the cup bottom plays an important role in producing nuclei because of its cooling effect for the melt. High frequency vibration causes micro-cracks on the interface between the cup and grains, and then cavitation and acoustic streaming infiltrate liquid into the cracks and lead to the separation of the grains which act as heterogeneous nuclei. The nuclei directly grow into spherical particles under stirring by cavitation and acoustic streaming.
     The effects of IUV treatment time on the microstructures and mechanical properties of rheo-diecasting samples were studied. The rheo-diecasting samples of ZL101 and 5083 Al alloys treated by IUV for 50s have the maximum mechanical properties which are superior to liquid diecasting samples.
     The rheo-squeeze casting of 5052,5083 and ZL101 alloys was studied, and semisolid components with good mechanical properties were obtained. The emphasis was to study the effects of processing parameters such as IUV treatment time, squeeze pressure and mould preheating temperature on the micro structure and mechanical properties of 5052 Al alloy. The best mechanical properties of rheo-squeeze casting 5052 Al alloy were achieved under a squeeze pressure of 100MPa, IUV treatment time of 50s and mould preheated temperature of 300℃. The tensile strength and elongation were 225MPa and 17.8% respectively, which were improved by 9.7%and 42.4%respectively compared to conventional squeeze casting sample. Under this processing conditions, the tensile strength and elongation of 5083 Al alloy were 274MPa and 13.5%respectively, and the T6 heat treated ZL101 Al alloy with a tensile strength of 338MPa and an elongation of 8%.
引文
[1]Jung H K, Kang C G. Reheating process of cast and wrought aluminum alloys for thixoforging and their globularization mechanism. Journal of Material Processing Technology,2000,104(2):244-253.
    [2]Mao W M, Cui C L, Zhao A M, et al. Dynamical coarsening processes of microstructures in non-dendritic AlSi7Mg alloy remelted in semi-solid state. Transaction of Nonferrous Metals Society of China,2000,10(1):25-28.
    [3]Jorstad J L. SSM Processes-an overview. In:Apelian D, Alexandrou A, Georgiou G, et al. Proeeedingss of the 8th International Conference on Semi-Solid Processing of Alloys and Composites. Cyprus:Limassol,2004.15-24.
    [4]毛卫民.半固态金属成形技术.北京:机械工业出版社,2004.6-10.
    [5]Lee J, Kim Y, Lee J, et al. Microstructural study of primary solid particles in high density semi-solid Al-Zn-Mg alloy during stirring. Solid State Phenomena,2006, 116-117:308-311.
    [6]Ghahremainian M, Niroumand B. Compocasting of an Al-Si-SiCp composite using powder injection method. Solid State Phenomena,2008,141-143:175-180.
    [7]Abbasipour B, Niroumand B. Compocasting of A356-CNT composite. Transaction of Nonferrous Metals Society of China,2010,20:1561-1566.
    [8]Tahamtan S, Fadavi Boostani A. Evaluation of pitting corrosion of thixoformed A356 alloy using a simulation model. Transaction of Nonferrous Metals Society of China,2010,20:1702-1706.
    [9]Mao Weimin, Zhao Aimin, Li Yanjun, et al. Temperature field and microstructural formation of semi-solid AlSi7Mg alloy. Journal of University of science and Technology Beijing,2000,7(2):99-102.
    [10]Mao Weimin, Zhao Aimin, Li Yanjun, et al. The formation mechanism of non-dendritic primary a-Al phase in semi-solid AlSi7Mg alloy. Science and Technology of Advanced materials,2001,29(1):97-99.
    [11]毛卫民,赵爱民,钟雪友.电磁搅拌对半固态AlSi7Mg合金初生α-Al的影响规律.金属学报,1999,35(9):971-974.
    [12]毛卫民.非枝晶AlSi7Mg合金半固态浆料组织形成规律及成形研究.[博士学位论文].北京:北京科技大学,1999.
    [13]Ilaga T, Suzuki S. Casting of aluminium alloy for thixoforming using a cooling slope. Journal of Material Processing Technology,2001,118:169-172.
    [14]Yurko J A, Martinez R A, Flemings M C. Development of the semi-solid rheocasting (SSR). In:Tsutsui Y, Kiuchi M, Ichikawa. Proceedings of the 7th International Conference on Semi-Solid Processing of Alloys and Composites. Tsukuba:National Institute of Advanced Industrial Science and Technology, Japan Society for Technolgy of Plasticity,2002.659-664.
    [15]Shibata R. SSM activities in Japan. In:Dardano C, Francisco M, Proud J. Proceedings of the 5th International Conference on Semi-Solid Processing of Alloys and Composites. Colorado:Golden,1998.1-6.
    [16]Doutre D, Hay G, Wales P. Semi-Solid Concentration Processing of Metallic Alloys. United States Patent,6428636,2002.
    [17]Langlais J, Lemieux A. The SEED technology for semi-solid processing of aluminum alloys:A metallurgical and process overview. Solid State Phenomena, 2006,116-117:472-477.
    [18]Nafisi S, Ghomashchi R. Effect of stirring on solidification pattern and alloy distribution during semi-solid-metal casting. Materials Science and Engineering A, 2006,437:388-395.
    [19]Birol Y. Semisolid processing of near-eutectic and hypereutectic Al-Si-Cu alloys. Journal of Materials Science,2008,43:3577-3581.
    [20]Liu C, Pan Y, Aoyama S. Microstructure evolution of semi-solid Al-7Si-0.4Mg alloy by short time supersonic vibrations. In:Dardano C, Francisco M, Proud J. Proceedings of the 5th International Conference on Semi-Solid Processing of Alloys and Composites. Colorado:Golden,1998.439-447.
    [21]Dai S L, Delplanque J P, Lavernia E J. Grain growth in reactive spray depositied 5083 alloys. Scripta Materialia,1999,40(2):145-151.
    [22]Saklakoglu Nursen, Saklakoglu I Etem, Tanoglu Metin, et al. Mechanical properties and microstructural evaluation of AA5013 aluminum alloy treated in the semi-solid state by SIMA process. Journal of Materials Processing Technology, 2004,148:103-107.
    [23]Piao Longyun, Tetsuichi Motegi. Solidified structure of a 5052 aluminum alloy obtained by semisolid casting. Journal of Japan Institute of Light Metals,2005, 55(2):86-90.
    [24]Kaibyshev R, Musin F, Lesuer D R, et al. Superplastic behavior of an Al-Mg alloy at elevated temperatures. Meterals Science and Engineering A,2003,342:169-177.
    [25]Lin Shuang-ping, Nie Zuo-ren, Huang Hui, et al. Annealing behavior of a modified 5083 aluminum alloy. Materals and Design,2010,31:1607-1612.
    [26]潘复生,张丁非.铝合金及应用.北京:化学工业出版社,2006.
    [27]Kirkwood D H. Semisolid metal processing. International Materials Reviews,1994, 39:173-189.
    [28]谢水生,黄声宏.半固态金属加工技术及其应用.北京:冶金工业出版社,1999.
    [29]康永林,毛卫民,胡壮麒.金属材料半固态加工理论与技术.北京:科学出版社,2004.
    [30]Flemings M C. Behavior of metal alloys in the semi-solid state. Metallurgical Transactions A,1991,22(5):957-981.
    [31]Fan Z. Semisolid metal processing. International Materials Reviews,2002,47(2): 49-85.
    [32]Flemings M C, Riekrg Youngkp. Rheocasting. Materials Science and Engineering, 1976,25:103-117.
    [33]Spencer D B, Mehrabian R, Flemings M C. Rheological Behaviour of Sn-15%Pb in the Crystallization Range. Metallurgical Transactions,1972,3(7):1925-1932.
    [34]Hong C P, Kim J M. Development of an advanced rheocasting process and its applications. Solid State Phenomena,2006,116-117:44-53.
    [35]Hirt G, Bleck W, Buhrig-Polaczek, et al. Semi solid casting and forging of steel. Solid State Phenomena,2006,116-117:34-43.
    [36]Plato K. Semi-solid metal processing-a process looking for a market. Solid State Phenomena,2008,141-143:1-8.
    [37]Kang C G, Seo P K, Lim M D. Rheo and thixo die casting for automobile suspension parts. In:Apelian D, Alexandrou A, Georgiou G, et al. Proceedings of the 8th International Conference on Semi-Solid Processing of Alloys and Composites. Cyprus:Limassol,2004.
    [38]Cezard P, Sourmail. Thixoforming of steel:a state of the art from an industrial point of view. Solid State Phenomena,2008,141-143:25-35.
    139] Quaak C J, Horsten M G, Kool W II. Rheologial behavior of partially solidified aluminum matrix composites. Material Science Engineering,1994,183A:247-256.
    [40]Mehrabian R, Rick R G, Flemings M C. Preparation and casting of metal-particulate non-metal composites. Metallurgical Transactions,1974,5(8): 1899-1905.
    [41]Czerwinski F. The generation of Mg-Al-Zn alloys by semisolid state mixing of particulate precursors. Acta Malerialia,2004,52:5057-5069.
    [42]Niroumand B, Xia K.3D study of the structure of primary crystals in a rheocast Al-Cu alloy. Materials Science and Engineering A,2000,283:70-75.
    [43]Falak P, Niroumand B. Rheocasting of an Al-Si alloy. Scripta Materialia,2005,53: 53-57.
    [44]Mirzadeh H, Niroumand B. Effects of rheocasting parameters on the microstructure of rheo-centrifuged cast Al-7.1wt%Si alloy. Journal of Alloys and Compounds, 2009,474:257-263.
    [45]Ji S, Fan Z, Bevis M J. Semi-solid processing of engineering alloys by a twin-screw rheomoulding process. Meterals Science and Engineering A,2001,229:210-217.
    [46]Das A, Ji S, Fan Z. Morphological development of solidification structures under forced fluid flow:a Monte-Carlo simulation. Acta Materialia,2002,50:4571-4585.
    [47]Qin R S, Wallach E R. Phase-field simulation of semisolid metal processing under conditions of laminar and turbulent flow. Materials Science and Engineering A, 2003,357:169-177
    [48]Fan Z, Liu G. Solidification behaviour of AZ91D alloy under intensive forced convection in the RDC process. Acta Materialia,2005,53:4345-4357.
    [49]李涛,黄卫东,林鑫.半固态处理中球晶形成与演化的直接观察.中国有色金属学报,2000,10(5):636-839.
    [50]Abramov O V. High-intensity Ultrasonics:theory and industrial applications. US: Gordon and Breach Science Publishers,1998.
    [51]Jian X, Xu H, Meek T T, et al. Effect of power ultrasound on solidification of aluminum A356 alloy. Materials letters,2005,59:190-193.
    [52]Campbell J. Effect of vibration during solidification. International Materials Reviews,1981,26(2):71-104.
    [53]Eskin G I. Ultrasonic treatment of light alloy metals. Amsterdam:Gordon & Breach, 1998.
    [54]赵君文,吴树森,万里,等.超声场中金属半固态浆料组织的演化.金属学报,2009,45(3):314-319.
    [55]赵君文.振动制备Ai-Si合金半固态浆料及其组织与性能的研究.[博士学位论文].武汉:华中科技大学,2009.
    [56]Shibata R, Kaneuchi T, Soda T, et al. New semi-liquid metal casting process. In: Kirkwood D H, Kapranos P. Proceedings of the 4th International Conference on Semi-Solid Proeessing of Alloys and Composites. England:University of Sheffield, 1996.296-300.
    [57]洪俊杓,金灾民,金坟秀,等.用于流变铸造的模铸法和设备.中国专利,03141281.5,2003.
    [59]Wang W, Peng H, Wang K K. Assessment of porosity level in rheomoldcd parts. In: Kirkwood D H, Kapranos P. Proceedings of the 4th International Conference on Semi-Solid Processing of Alloys and Composites. England:University of Sheffield, 1996.342-346.
    [60]Wang N, Wang K K. A study of rheomolded parts of No.2 die casting alloy at semi-solid state. In:Dardano C, Francisco M, Proud J. Proeeedings of the 5th International Conference on Semi-Solid Processing of Alloys and Composites. Colorado:Golden,1998.521-528.
    [61]Wang K K, Peng H, Wang N, et al. Method and apparatus for injection molding of semisolid metals. US Patent,5501266,1996.
    [62]张奎.合金半固态浆体制备及成形的装置.中国专利,02253647.7,2002.
    [63]彭暄,蔡浪富,徐文敏,等.半固态金属射出成型的方法和装置.中国专利,97120579.5,1998.
    [64]Fan Z, Fang X, Ji S. Microstructure and mechanical properties of rheo-diecast (RDC) aluminum alloys. Materials Science and Engineering A,2005,412: 298-306.
    [65]Zhen Z, Qian Ma, Ji S, et al. The effects of rheo-diecasting on the integrity and mechanical properties of Mg-6Al-lZn. Scripta Materialia,2006:207-211.
    [66]Wu S, Luo J, Mao Y, et al. Microstructure and property of AZ91D alloy produced by semi-solid rheo-diecasting. In:Tsutsui Y, Kiuchi M, Ichikawa. Proeeedings of the 7th International Conference on Semi-Solid Processing of Alloys and Composites. Tsukuba:National Institute of Advanced Industrial Science and Technology, Japan Society for Technolgy of Plasticity,2002.843-848.
    [67]罗吉荣,吴树森,宋象军,等.半固态合金浆料制备装置.中国专利,01212744.2,2001.
    [68]Haghayeghi R, Liu Y, Fan Z. Melt conditioned direct chill casting (MC-DC) of wrought Al-alloys. Solid State Phenomena,2008,141-143:403-408.
    [69]Toshio H, Kapranos P. Simple rheocasting process. Journal of Material Processing Technology,2002,130-131:594-598.
    [70]Ramadam M, Takita M, Nomura H. Effect of semi-solid processing on solidification microstructure and mechanical properties of gray cast iron. Materials Science and Engineering A,2006,417:166-173.
    [71]Kaufmann H, Mundi A, Uggowitzer P J, et al. An update on the new rheocasting-devclopment work for Al-and Mg-alloys. Die Casting Engineer,2002, 4:16-19.
    [72]Dasgupta R. Industrial applications-the present status and challenges we face. In: Apelian D, Alexandrou A, Georgiou G, et al. Proeeedings of the 8th International Conference on Semi-Solid Processing of Alloys and Composites. Cyprus:Limassol, 2004. Keynote 1.
    [73]Flemings M C, Martinez R A, Figueredo A M. Metal alloy compositions and process. US Patent,20020096231,2002.
    [74]Martinez R A, Flemings M C. Evolution of particle morphology in semisolid processing. Metallurgical Transactions A,2005,36:2205-2210.
    [75]Mao W M, Bai Y L, Gao S Fu, et al. Research on the Composite Slurry Preparation and Rheocasting of Aluminum Alloy. Solid State Phenomena,2006,116-117: 410-416.
    [76]毛卫民,赵爱民,崔成林.球状初晶半固态金属浆料或连铸坯料的制备方法和装置.中国发明专利,00109540.4,2000.
    [77]毛卫民,白月龙,高松福,等.半固态A356铝合金的新型流变成型.材料研究学报,2006,20(5):469-473.
    [78]杨湘杰,郭洪民.低转速输送管制备近球晶铝合金半固态浆料的方法.中国发明专利,200710053643.2,2007.
    [79]郭洪民.半固态铝合金流变成形工艺与理论研究.[博士学位论文].南昌:南昌大学,2007.
    [80]Guo Hong-min, Yang Xiang-jie. Continuous fabrication of sound semi-solid slurry for rheoforming. Solid State Phenomena,2006,116-117:425-428.
    [81]Guo H M, Yang X J. Rheoforming of wrought aluminum alloys. Solid State Phenomena,2008,141-143:271-276.
    [82]毛卫民,杨小容,汤国兴,等.一种半固态合金浆料的制备和流变成型的设备.中国发明专利,200710063091.3,2007.
    [83]毛卫民,高冲,朱平达,等.蛇形通道制备半固态铝合金浆料的研究.特种铸造及有色合金,2009,29(10):915-917.
    [84]杨小容,毛卫民,高冲.采用蛇形管通道浇注法制备半固态浆料.中国有色金属学报,2009,19(5):869-872.
    [85]Pan Q Y, Findon M, Apelian D. The continuous rheoconversion process(CRP):A novel SSM approach. In:Apelian D, Alexandrou A, Georgiou G, et al. Proeeedings of the 8th International Conference on Semi-Solid Proeessing of Alloys and Composites. Cyprus:Limassol,2004.2-4.
    [86]Midson S P. Rheocasting processes for semi-solid casting of aluminum alloys. Die Casting Engineer,2006,50(1):48-51.
    [87]管仁国,石路,刑振环,等.新型倾斜板技术制备半固态AlSi6Mg2合金及触变成形.铸造,2007,56(7):694-697.
    [88]谢丰广,管仁国,王付兴,等.新型倾斜板技术制备A2017半固态合金.特种铸造及有色合金,2008,28(10):766-768.
    [89]Guan Ren-guo, Zhang Luo-lian, Wang Chao, et al. Three-dimensional analysis of themodified sloping cooling/shearing process. Journal of University of Science and Technology Beijing,2007,14(2):146-150.
    [90]Zeng Y D, Zhang Z F, Xu J, et al. The MSMT process for semi-solid slurry production. Solid State Phenomena,2008,141-143:421-426.
    [91]张小立,谢水生,李廷举,等.阻尼冷却管法制备A356句号合金半固态浆料的研究.特种铸造及有色合金,2007,27(3):188-190.
    [92]Yang Xiao-rong, Mao Wei-min, Pei Sheng. Preparation of semisolid A356 alloy feedstock cast through vertical pipe. Materials Science and Technology,2007, 23(9):1049-1053.
    [93]杨小容,毛卫民,裴胜.直管浇注法制备半固态坯料的研究.特种铸造及有色合金,2008,28(3):186-188.
    [94]Wannasin J, Martinez R A, Flemings M C. Grain refinement of an aluminum alloy by introducing gas bubbles during solidification. Scripta Materialia,2006,55: 115-118.
    [95]Wannasin J, Junudom S, Rattanochaikul T, et al. Development of the gas induced semi-solid metal process for aluminum die casting application. Solid State Phenomena,2008,141-143:97-102.
    [96]Wannasin J, Junudom S, Rattanochaikul T, et al. Research and development of gas induced semi-solid process for industrial applications. Transaction of Nonferrous Metals Society of China,2010,20s:1010-1015.
    [97]邹莹,董选普,张洁,等.气流搅拌镁合金半固态铸造新技术.铸造,2008,57(3):215-218.
    [98]Jian Xiaogang. The effect of ultrasonic vibration on the solidification of light alloys. [D]. Knoxville:The University of Tennessee,2005.
    [99]Abramov V, Bulgakov V, Sommer F. Solidification of aluminum alloys under ultrasonic irradiation using water-cooled resonator. Materials Letters,1998,42: 27-34.
    [100]Feng H K,Yu S R, Li Y L, et al. Effect of ultrasonic treatment on microstructures of hypereutectic Al-Si alloy. Journal of Materials Processing Technology,2008,208: 330-335.
    [101]Yu S R, Feng H K, Li Y L, et al. Study on the properties of Al-3%Si alloy treated by ultrasonic wave. Journal of Alloys and Compounds,2009,484:360-364.
    [102]Jian X, Meek T T, Han Q. Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration. Script Materialia,2006,54: 893-896.
    [103]Gao Deming, Li Zhijun, Han Qingyou, et al. Effect of ultrasonic power on microstructure and mechanical properties of AZ91 alloy. Materials Science and Engineering A,2009,502:2-5.
    [104]赵忠兴,穆光华,黄金日,等.超声波对铸造合金组织和性能的影响.铸造,1996,(3):21-25.
    [105]Liu Qingmei, Qi Feipeng, Zhai Qijie, et al. Influence of power ultrasonic treatment on solidification structure and segregation of 1Cr18Ni9Ti stainless steel. Materials and Design,2007,28:1949-1952.
    [106]Liu Qingmei, Zhai Qijie, Qi Feipeng, et al. Effects of power ultrasonic treatment on microstructure and mechanical properties of T10 steel. Materials Letters,2007, 61(11-12):2422-2425.
    [107]大澤嘉昭,佐藤彰.超音波振动にょる凝固组織の微细化.铸造工学,2000,72(11):733-738.
    [108]李军文,桃野正.超声波振动处理时间对铸锭组织的影响.铸造技术,2004,25(1):44-46.
    [109]Li Jun-wen, Momono T, Fu Ying, et al. Effect of ultrasonic stirring on temperature distribution and grain refinement in Al-1.65%Si alloy melt. Transaction of Nonferrous Metals Society of China,2007,17:691-697.
    [110]李军文,桃野正.铸型对超声波铸锭组织的影响.轻合金加工技术,2004,(6):12-14.
    [111]Das A, Kotadia H R. Effect of high-intensity ultrasonic irradiation on the modification of solidification microstructure in a Si-rich hypoeutectic Al-Si alloy. Materials Chemistry and Physics,2011,125:853-859.
    [112]Eskin G I. Cavitation mechanism of ultrasonic melt degassing. Ultrasonics Sonochemistry,1995,10(2):137-141.
    [113]Eskin G I. Principles of ultrasonic treatment:application for light alloys melts. Advanced Performance Materials,1997(4):223-232.
    [114]Xu H B, Jian X G, Meek T T, et al. Degassing of molten aluminum A356 alloy using ultrasonic vibration. Materials Letters,2004,58(29):3669-3673.
    [115]Xu H B, Han Q Y, Meek T T, et al. Effects of ultrasonic vibration on degassing of aluminum alloys. Materials Science and Engineering A,2008,473 (1-2):96-104.
    [116]马倩倩,吴树森,毛有武,等.超声振动对半固态铝合金浆料含气的影响.热加工工艺,2010,39(19):19-23.
    [117]白晓清,李东辉,张林,等.流动液体中夹杂物超声去除的影响因素.金属学报,2002,38(5):483-489.
    [118]Hatanaka S I, Taki T, Kuwabara M, et al. Effect of process parameters on ultrasonic separation of dispersed particles in liquid. Japanese Journal of Applied Physics, 1999,138:3096-3100.
    [119]Hatanaka S I, Kuwabara M, Asai S. Design of ultrasonic field in liquid metal processing. Tcstu-to-Hagane.2000,9:55-62.
    [120]Gabathuler J P, Buxmann K. Process for producing a liquid-solid metal alloy phase for further processing as material in the thixotropic state. US Patent,5186236, 1993.
    [121]Dobatkin V I, Eskin. Ingots of aluminium alloys with nondendritic structure produced by ultrasonic treatment for deformation in the semi-solid state. In: Kirkwood D H, Kapranos P. Proceedings of the 4th International Conference on Semi-Solid Processing of Alloys and Composites. England:University of Sheffield, 1996.193-196.
    [122]Eskin G I. Broad prospects for commercial application of the ultrasonic (Cavitation) melt treatment of light alloys. Ultrasonics Sonochemistry,2001(8):319-325.
    [123]Abramov V O, Abramov O V, Straumal B B, et al. Hypereutectic Al-Si based alloys with thixotropic microstructure produced by ultrasonic treatment. Materials and Design,1997,18(4-6):323-326.
    [124]Pola A, Arrighini A, Roberti R. Effect of ultrasounds treatment on alloys for semisolid application. Solid State Phenomena,2008,141-143:481-486.
    [125]Khalifa W, Tsunekawa Y, Okumiya M. Effect of reheating to the semisolid state on microstructure of the A356 aluminum alloy produced by ultrasonic melt-treatment. Solid State Phenomena,2008,141-143:499-504.
    [126]赵君文,吴树森,毛有武,等.超声振动对过共晶Al-Si合金半固态浆料凝固组织的影响.中国有色金属学报,2008,18(9):1628-1633.
    [127]赵君文,吴树森,谢礼志,等.超声波振动制备ZL101铝合金半固态浆料.特种铸造及有色合金,2007,27(11):846-849.
    [128]Zhao Junwen, Wu Shusen, An Ping, et al. Preparation of Semi-Solid Slurry of Hypereutectic Al-Si Alloy by Ultrasonic Vibration. Solid State Phenomena,2008, 141-143:767-771.
    [129]Wu Shusen, Zhao Junwen, Zhang Liping, et al. Development of Non-dendritic Microstructure of Aluminum Alloy in Semi-solid State under Ultrasonic Vibration. Solid State Phenomena,2008,141-143:451-456.
    [130]吴树森,赵君文,万里,等.高能超声波制备铝合金半固态浆料技术的研究.特种铸造及有色合金,2009,29(1):1-4.
    [131]Zhong Gu, Wu Shusen, Jiang Huawen, et al. Effects of ultrasonic vibration on the iron-containing intermetallic compounds of high silicon aluminum alloy with 2% Fe. Journal of Alloys and Compounds,2010,492(1-2):482-487.
    [132]Wu Shusen, Zhong Gu, Wan Li, et al. Microstructure and properties of rheo-diecasted AlSi20Cu2NilMg0.4 alloy with direct ultrasonic vibration process. Transactions of Nonferrous Metals Society of China,20(3):s763-s767.
    [133]Zhong Gu, Wu Shu-sen, An Ping, et al. Study of microstructure and properties of high silicon aluminum alloy with 2% Fe prepared by rheo-casting. Transactions of Nonferrous Metals Society of China,2010,20(9):1603-1607.
    [134]钟鼓.耐热低膨胀高硅铝合金及其超声半固态成形技术的研究.[博士学位论文].武汉:华中科技大学,2011.
    [135]Zhong Gu, Wu Shusen, Jiang Huawen, et al. Effects of Ultrasonic Vibration Treatment on Microstructure of Heat-Resistant Al-Si Alloy. Advanced Materials Research,2009,79-82:1523-1526.
    [136]钟鼓,吴树森,万里,等.半固态流变压铸Al-20%Si合金充型能力的研究.铸造,2010,59(10):1044-1048.
    [137]姚德源,王其政.统计能量分析及其应用.北京:北京理工大学出版社,1995.
    [138]和卫平,陈美霞,高菊,等.基于能量统计法的环肋圆柱壳中、高频率振动与声辐射性能数值分析.中国舰船研究,2008,3(6):7-12.
    [139]Qian M, Ramirez A, Das A, et al. The effect of solute on ultrasonic grain refinement of magnesium alloys. Journal of Crystal Growth,2010,312:2267-2272.
    [140]Ohno A. Solidification:The Separation Theory and Its Practical Applications. Berlin:Springer,1987.1-82.
    [141]Qian M, Ramirez A, Das A. Ultrasonic refinement of magnesium by cavitation: Clarifying the role of wall crystals. Journal of crystal growth,2009,311: 3708-3715.
    [142]刘荣光.超声波在铝熔体中的声场分布和空化效应及其对凝固过程影响.[硕士学位论文].长沙:中南大学,2007.
    [143]Taghavi F, Saghafian H, Kharrazi Y. Study on the ability of mechanical vibration for the production of thixotropic microstructure in A356 aluminum alloy. Materials and Design,2009,30:115-121.
    [144]丁惠麟,辛智华.实用铝、铜及其合金金相热处理和实效分析.北京:机械工业出版社,2007.44-63.
    [145]Zhang Songli, Zhao Yutao, Cheng Xiaonong, et al. High-energy ultrasonic field effects on the microstructure and mechanical behaviors of A356 alloy. Journal of Alloys and Compounds,2009,470:168-172.
    [146]Brabazon D, Browne D J, Carr A J. Mechanical stir casting of aluminium alloys from the mushy state:process, microstructure and mechanical properties. Materials Science and Engineering A,2002,326:370-381.
    [147]Gourlay C M, Laukli H I, Dahle A K. Defect band characteristics in Mg-Al and Al-Si high-pressure die castings. Metallurgical and Materials Transactions A,2007, 38A:1833-1844.
    [148]Gourlay C M, Dahle A K. Dilatant shear bands in solidifying metals. Nature,2007, 445(4):70-73.
    [149]Hitchcock M, Wang Y, Fan Z. Secondary solidification behaviour of the Al-Si-Mg alloy prepared by the rheo-diecasting process. Acta Materialia,2007,55: 1589-1598.
    [150]Lee J H, Kim H S, Hong S I, et al. Effect of die geometry on the microstructure of indirect squeeze cast and gravity die cast 5083 wrought Al alloy and numerical analysis of the cooling behavior. Journal of Materials Processing Technology,1996, 96:188-197.
    [151]Lee J H, Kim H S, Won C W, et al. Effect of the gap distance on the cooling behavior and the microstructure of indirect squeeze cast and gravity die cast 5083 wrought Al alloy. Materials Science and Engineering A,2002,338:182-190.
    [152]Bray Jack W, ASM Handbook. (10th). Ohio:ASM International,1990.192.
    [153]Moller H, Govender G, Stumpf W E. Application of shortened heat treatment cycles on A356 automotive brake calipers with respective globular and dendritic microstructures. Transaction of Nonferrous Metals Society of China,2010,20: 1780-1785.
    [154]Haga T, Kapranos P. Thixoforming of laminate made from scmisolid cast strips. Journal of Materials Processing Technology,2004,157-158:508-512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700