镁合金不同成形工艺产品组织和性能及相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金作为一种工程材料,具有比重轻、高比强度、高比刚度及良好的电磁屏蔽性能、良好的铸造性能等一系列优点,广泛用于3C产品和汽车产业。镁合金产品的制造方式大多采用压铸制程,尽管压铸理论及设备已基本完善,但压铸制程中仍会出现许多问题,如模具失效。此外,塑性成形以及触变成形镁合金由于其特殊的加工工艺和产品性能,近年来也受到市场的青睐。本课题结合镁合金的实际生产,利用OM、XRD、SEM及TEM等测试手段,对挤压态AZ31产品的组织和性能进行分析;分析了触变成形与高压压铸AZ91D镁合金性能的差异;研究了压铸模具镶块的失效问题,得出以下主要结论:
     1、挤压态AZ31镁合金沿挤压方向侧面和截面的微观组织中发现了大量的孪晶;其拉伸变形具有明显的动态再结晶特征;SEM结果表明拉伸断口为典型的韧窝聚合型断口,是一种韧性断裂断口;TEM观测可见,其晶粒内存在着孪晶,也存在着一些析出物;极化试验显示表面的腐蚀电位比侧面和截面高,腐蚀电流小,耐腐蚀能力略强于侧面和截面。
     2、触变成形铸件在415℃固溶处理时β相溶解入α-Mg固溶体溶解速度比高压压铸的快,固溶处理时,通过合金元素的重新分布促使微观组织的演变。触变成形与高压压铸AZ91D时效处理时,金相显微组织显示,β相存在连续析出和不连续析出两种方式。
     3、用失重法来衡量腐蚀速率,触变成形AZ91D镁合金的腐蚀速率比高压压铸AZ91D镁合金要小得多。其主要原因是由于触变成形AZ91D镁合金被腐蚀的阳极的表面积比高压压铸AZ91D镁合金的要小;此外,触变成形AZ91D镁合金比高压压铸AZ91D镁合金因为气孔率小得多,这也是其腐蚀速率较小的原因之一。
     4、模具镶块的断裂是镁液对镶块连续的高温高速冲击引起的。避免断裂最主要是在模具设计时尽量避免在充型时压铸金属液冲击镶块;其次是改善镶块的热处理工艺,提高镶块的力学性能。
Magnesium alloys have potential as structural materials for aerospace, 3C and other transport applications due to their high specific properties, low density and high damping capacity. Currently, magnesium alloy products are mainly made by die-casting process. Though the theories and facilities of die-casting process are comparatively perfect, there are always many problems in the process of manufacture, such as the die failure. In addition, due to special processing and performance of the products, the magnesium products manufactured by plastic formation and thixomolding are more and more popular in the market. In this work, combined with practice, a series of problems in magnesium alloy were studied by many testing means including OM, SEM, XRD, TEM, and so on. Microstructures and performances of extruded AZ31 Mg alloy were studyed; The failure problem of embedded lump in the die was tried to analyse; The difference of performance of AZ91D Mg alloy produced by high pressure die-casting and Thixomolding were discussed. The main conclusions are as follows:
     1. It can be seen that the side plane and cross-section along extrusion direction have many compound twinings from the optical micrograph. The tensile deformation of specimens indicated that they were of dynamic recrystallization. SEM results revealed that the tensile fractures belong to dimple fracture. The microstructures from TEM observation showed the twining and precipitate interior grains. Polarization tests indicated that the corrosion potential of surface was higher than those of cross-section and side plane; however the corrosion current was lower. The corrosion resistant of surface was appreciably better than that of cross-section and side plane.
     2. Solution treatment of the thixomolding AZ91D alloy at 415℃caused theβ-phase to dissolve intoα-Mg solid solution at a faster dissolution rate than that in the same alloy prepared by high pressure die-casting. During the solution treatment of the Thixomolding AZ91D alloy, the microstructural evolution was accompanied by redistribution of the alloying elements. Both discontinuous and continuous precipitates of the p-phase were observed during the aging treatment.
     3. The experiment results indicated that the corrosion rate of the thixomolding AZ91D alloy was lower than high pressure die-casting AZ91D alloy by analysing the relationship between weight loss and corrosion time. The main reason was that the surface area of anode of thixomolding AZ91D alloy was smaller than that of high pressure die-casting AZ91D alloy. In addition, the porosity of thixomolding AZ91D alloy was lower than high pressure die-casting AZ91D alloy. It was another reason why thixomolding AZ91D alloy had lower corrosion rate.
     4. The failure of embedded lump in the die was caused by the continuous impact of the high-temperature and high-velocity molten metal liquid on the die. To avoid the problem, it was very important not to make the metal liquid plumb impact on the embedded lump. It was also efficient to advance mechanical property of the embedded lump by improving heat treatment technology.
引文
[1]刘正,张全,曾小勤,镁基轻质合金理论基础及其应用,北京:机械工业出版社,2002
    [2]ICapan H I,Basic metallurgy of magnesium die-casting alloys,Die Casting Engineer,1986,11:44-49.
    [3]Friedrich H,Schumann S,Research for a new age of magnesium in the automotive industry,Journal of Materials Processing Technology,2001,117:276-281.
    [4]Ruden T J,Albright D L,High ductility magnesium alloys in automotive applications,Advanced Material & Processes,1994,145(6):28-32.
    [5]许志峰,王梦立,现代科学技术与当代社会,长春:东北师大出版社,1997.
    [6]彭晓光,李玉兰,刘江等,轻金属在汽车上的应用,机械工程材料,1999,23(2):1-4.
    [7]Mitsuguki L Murakami S,Development and application of aluminum extrusion for automotive parts,Journal of Materials Processing Technology,1993,38(4):635-654.
    [8]Nussboum A I,52nd annual IMA world magnesium conference,Light Metal Age,1995,53(8):58-63.
    [9]Brown R E,Magnesium at NADCA congress and exposition,Light Metal Age,2000,58(4):103-105.
    [10]Decker R F,The renaissance in magnesium,Advanced Materials & Processes,1998,9:31-33.
    [11]Robert B,International magnesium association 54th annual world conference,Light Metal Age,1997,8:72-75.
    [12]Froes F H,The science technology and applications of magnesium,Journal of Materials Science,1998,9:30-34.
    [13]Dwain M,Magers A G,Review of magnesium parts in automobile,Light Metal Age,1996,10:62-63.
    [14]Munit A Z,Cotler C,Stem A et al,Mechanical properties and microstructure of gas tungsten arc welded magnesium AZ91D plates,Materials Science and Engineering,2001,302:68-73.
    [15]徐日瑶,刘宏专,镁及其合金的活力及生产,轻金属,1999,41:47-50.
    [16]R Tunold,H Holtan,M B Hagg Berfe,et al,The corrosion of magnesium in aqueous solution containing chloride ions,Corrosion Science,1977,17:353-365.
    [17] G L Makar, J Kruger, A Joshi, The effect of alloying elements on the corrosion resistance of rapidly solidified magnesium alloys,Advances in Magnesium Alloys and Composites, International Magnesium Association and the Non-Ferrous Metals Committee.TMS, Phoenix, Arizona, January 26,1998:105-121.
    [18] Wenyue Zheng, C Derushie, R Zhang, et al, Protection of Mg alloys for structural applications in automobiles, 2004 SAE World Congress,Detroit, Michigan, USA, 2004:1-20.
    [19] S K S Parasher, D K Basu, M K Banerjee, Localised/galvanic corrosion of Mg-Zn-Al alloy, Journal of Metakkurgy and Materials Science, 2003,45(3):137-141.
    [20] Harald Schreckenberger, Matthias Papke, Stephan Eisenberg, The magnesium hatchback of the car, Processing and corrosion protection,SAE 2000 World Congress,Detroit, Michigan, USA, Mar.06-09, 2000:1-9.
    [21] Otto Lunder, Marianne Videm, Kemal Nisancioglu,Corrosion resistant magnesium alloys, SAE International Congress and Exposition, Detroit, Michigan, USA,1995:1-8.
    [22] J I Skar, Corrosion and corrosion prevention of magnesium alloys, Materials and Corrosion. 1999, 50:2-6.
    [23] Guangling Song, Birgir Johannesson, Sarath Hapugoda, Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy,steel and zinc, Corrosion Science, 2004, Vol.46:955-977.
    [24] A Tahara,T Kodama, Potential distribution measurement in galvanic corrosion of Zn/Fe couple by means of Kelvin probe, Corrosion Science, 2000,42:655-673.
    [25] M Starostin, A Smorodin, Y Cohen, Galvanic corrosion of magnesium alloys, In:E.Aghion, D.Eliezer(Eds.), Magnesium 2000,Proceedings of the Second Israeli Interna- tional Conference on Magnesium Science and Technology, Dead Sea, Israel,2000: 363-370.
    [26] G Gao, G Cole, M Richetts,et al, Effects of fastener surface on galvanic corrosion of automotive magnesium components, Magnesium 2000, Proceedings of the Second Israeli International Conference on Magnesium Science and Technology, Dead Sea,Israel,2000: 321-338.
    [27] D L Hawke, Galvanic corrosion of magnesium, SDCE 14th International Die Casting Congress and Exposition,Toronto,Canada,May 1987,G-T:87-004.
    [28]J Senf,E Broszeit,M Gugau,Corrosion and galvanic corrosion of die casted magnesium alloys,Magnesium Technology 2000,TMS,Nashville,2000:137-142.
    [29]E Boese,J Gollner,A Heyn,et al,Galvanic corrosion behaviour of magnesium alloy in contact with coated components,Materials and Corrosion.2001,52:247-256.
    [30]Dong Chaofang,Xiao Kui,Li Jiuqing,et al,Atmospheric corrosion evaluation of AM50 magnesium Alloy coupled with different metales.16th International Corrosion Congress,2005,19-24,Beijing,China.
    [31]A M Lafront,W Zhang,S Jin,et al.,Pitting corrosion of AZ91D and AJ62x magnesium alloys in alkaline chloride medium using electrochemical techniques,Electrochimica Acta,2005,26:1-13.
    [32]Luo A,Renaud J,Nakatsugawa,Magnesium castings for automotive applications,JOM,1995,47(7):28-31.
    [33]刘止,刘重阳,王中光等,固溶和时效对压铸AZ91HP合金力学性能的影响,金属学报,1999,35(8):869-873.
    [34]林金宝,王渠东,陈勇军,镁合金塑性成形技术研究进展,轻合金,2006,10:76-80.
    [35]黄守汉,塑性变形与轧制原理,北京:冶金工业出版社,1997.
    [36]陈力禾,赵慧捷,刘止,等,镁合金压铸及其在汽车工业中的应用,铸造,1999,10:45-50.
    [37]赖华清,压铸工艺及模具,北京:机械工业出版社,2004.
    [38]F Czerwinski,The generation of Mg-Al-Zn alloys by semisolid state mixing of particulate precursors,Acta Materialia,2004,52:5057-5069.
    [39]Bradley N L,Wieland R D W,Schafer W J,et al,Method and apparatus for the injection molding of metal alloys,US Patent,No 040589,1991.
    [40]陈振华,严红革,陈吉华等,镁合金,北京:化学工业出版社,2004.
    [41]Stephen LeBeau,Joseph Maffia,Thixomolding:Plastic injection molding turns to metal.Engineered Casting Solutions,2002,2:33-35.
    [42]Ray Decker,Magnesium composites molded without melting,Modern Metals,1990,8:10-22.
    [43]毛卫民,半固态金属成形技术,北京:机械工业出版社,2004.
    [44]康永林,毛卫民,胡壮麒,金属材料半固态加工理论与技术,北京:科学出版社,2004.
    [45]Ann Arbor,Thixomolding of Magnesium components experiencing rapid commercial growth,Die casting World,1996,6:26-28.
    [46]Thixomat Inc,Thixomolding recognition grows,Foundry Trade Journal,1999,2:21-25.
    [47]Carnahan R D,Decker R F,Vining R,et al,Influence of solid fraction on the shrinkage and physical properties of Thixomolded Mg alloys,Die Casting Engineer,1996,5-6:54-59.
    [48]Decker R F,Carnahan R D,Babij E,et al,Magnesium semi-solid metal forming,Advanced Materials & Processes,1996,2:41-42.
    [49]Couret A,Cailiard D,An in situ study of prismatic glide in magnesium rate controlling mechanism,Acta Metallurgica,1985,33(8):1447-1454.
    [50]Christian J W,Mahajan S,Deformation twinning Progress in,Materials Science,1995,39:1-157.
    [51]Yoo M H,Morals J R,Ho K M,et al,Nonbasal Deformation Modes of HCP Metals and Alloys:Role of Dislocation Source and Mobility,Metallurgical and Materials Transactions,2002,A 33(3):813-822.
    [52]刘楚明,刘子娟,朱秀荣等,镁及镁合金动态再结晶研究进展,中国有色金属学报,2006,16(1):1-12.
    [53]Partridge P G,The crystallography and deformation modes of hexagonal close-packed metals,Metallurgical Reviews,1967,12:169-194.
    [54]钟家湘,郑秀华,刘颖编著,金属学教程,北京:北京理工大学出版社,1995.
    [55]Yoshinage H,Horiuchi R,On the nonbasal slip in magnesium crystals,Transactions of Japan Institute of Metals,1963,5:14-21.
    [56]Bacon D J,Vitek V,Atomic-scale modeling of dislocations and related properties in the hexagonal-close-packed metals,Metallurgical and Materials Transactions,2002,A33:721-733.
    [57]Yoo M H,Agnew S R,Morris J R,et al,Non-basal slip systems in HCP metals and alloys:source mechanisms,Materials Science and Engineering,2001,A319:87-92.
    [58]Galiyev A,Sitdikov O,Kaibyshev R,Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy,Materials Transactions,2003,44(4):426-435.
    [1]Mordike B L,Ebert T,Magnesium properties-applications-potential,Materials Science and Engineering,2001,302(1):37-45.
    [2]Kojima Y,Plat form science and technology for advanced magnesium alloys,Material Science,2000,350(351):3-18.
    [3]Amy L.Rudd,Carmel B.Breslin,Florian Mansfeld,The corrosion protection afforded by rare earth conversion coatings applied to magnesium,Corrosion Science,2000,42(2):275-288.
    [4]Wang R M,Microstructures and dislocations in the stressed AZ91D magnesium alloys,Materials Science and Engineering,2002,A 344(1):279-287.
    [5]SONG Guangling,Atrens A,Corrosion Mechanisms of Magnesium Alloys,Advanced Engineering Materials,1999,1(1):11-33.
    [6]刘晓菲,严巍等,AZ31B镁合金塑性变形动态再结晶的试验研究,塑性工程学报,2005,3:10-13.
    [7]翟秋亚,王智民等,挤压变形对AZ31镁合金组织和性能的影响,西安理工大学学报,2002,3:254-258.
    [8]黄光胜,汪凌云等,镁合金挤压材的组织演变,轻合金加工技术,2004,9:35-37.
    [9]余琨,黎文献,细晶粒AZ31(Ce)镁合金板材的组织与性能,金属热处理,2005,30(4):34-37.
    [10]郭强,严红革,陈振华,AZ31镁合金高温热压缩变形特性,中国有色金属学报,2005,15(6):900-906.
    [11]SONG Guangling,Atrens A,The Electrochemical Corrosion of Pure Magnesium in 1N NaCl,Corrosion Science,1997,39(5):855-875.
    [1]吴春苗,镁合金压铸件应用示例,特种铸造及有色合金,2002,(4):50-51.
    [2]Spencer D B,Mehrabian R,Flemings M C,Theological behavior of Sn 15 per P bin the crystallization range,Metallurgical Transactions,1972,3(7):19-25.
    [3]Kang C G.,Jung H K,Semisolid forming process Numerical simulation and experimental study,Metallurgical Transactions,1972,32(2):363-371.
    [4]Cerri E,Evangelists E,Spigarelli S,et al.,Effects of thermal treatment on microstructure and mechanical properties in thixo-cast319 aluminum alloy,Materials Science and Engineer,2000,A284(1):254-260.
    [5]毛卫民,半固态金属成形应用的新近展与前景展望,特种铸造和有色合金,1998,6:33.
    [6]刘正,张奎,曾小勤,镁基轻质合金理论基础及其应用,北京:机械工业出版社,2002.
    [7]陈振华,镁合金,北京:机械工业出版社,2000.
    [8]轻金属材料加工手册编写组,轻金属材料加工手册(上册),冶金工业出版社,1979.
    [9]崔晓鹏,刘海峰,刘勇兵,镁合金半固态触变注射成形过程中固相形成机制,铸造,2007,(56)11:1147-1150
    [10]程健杰,袁森,王武孝,半固态镁合金中液相的凝固方式及组织形貌,铸造2005,(54)5:442-445
    [11]崔忠圻,金属学与热处理,北京:机械工业出版社,2000.
    [12]王金国,王建国,张胜男,热处理对半固态触变成形镁合金组织与力学性能的影响,材料热处理,2006(35),24,46-48.
    [13]Xinghao Du,Erlin Zhang,Microstructure and mechanical behaviour of semi-solid die-casting AZ91D magnesium alloy,Materials Letters,2007,61(1):2333-2337.
    [14]于海朋,王峰,于宝义,工艺参数和热处理对压铸AZ91D力学性能的影响,特种铸造及有色合金,2002(2):27228.
    [15]王锰,卢治森,于光等,轻金属材料加工手册,北京:冶金工业出版社,1979.
    [16]王越,吴伟,刘正等,AZ91Hp非连续析出的组织转变特点,沈阳工业大学学报,2000,22(6):465-470.
    [17]《有色金属及热处理》编写组,有色金属及热处理,北京:国防工业出版社,1981.
    [18]Porter D A,E cling ton J W,Microanalysis and cell boundary velocity measurements for the cellular reaction in a Mg 9%Al alloy,Proc R S oc A,1977,358(3):70-75
    [19]肖晓玲,罗承萍,刘江文等,AZ91镁铝合金中HCP/BCC相界面结构,中国有色金属学报,2003,13(1):15-20.
    [20]Clark J B,Age Hardening in A Mg-9wt.%Al Alloy,Acta Metallurgic,1968,16(2):141-152
    [1]Mordike B L,Ebert T,Magnesium properties-applications-potential,Materials Science and Engineering,2001,A 302(1):37-45.
    [2]刘正,张奎,曾小勤,镁基轻质合金理论基础及其应用,北京:机械工业出版社,2002.
    [3]夏兰廷,高珊,罗小萍等,影响镁合金腐蚀性能的因素分析,铸造,2005,54(8):794-796.
    [4]Amy L.Rudd,Carmel B.Breslin,Florian Mansfeld,The corrosion protection afforded by rare earth conversion coatings applied to magnesium,Corrosion Science,2000,42(2):275-288.
    [5]Song G L,Andrej Atrens,Matthew Dargusch,Influence of microstructure on the corrosion of diecast AZ91D,Corros.Sci,1999,41:249-273
    [6]Ambat Rajan,Aung Naing Naing,Zhou W,Evaluation of micro structural effects on corrosion behaviour of AZ91D magnesium alloy,Corrosion Science,2000,42:1433-1455.
    [7]Lunder O,Lein J E,The role of Mg_(17)Al_(12)phase in the corrosion of Mg alloy AZ91,Corrosion,1989,45(9):741-748
    [8]Mathieu S,Rapin C,Steinmetz J,et al,Corrosion study of the main constituent phases of AZ91 magnesium alloys,Corrosion.Science,2003,45:2741-2755.
    [9]Singh Raman R.K.,The role of microstructure in localized corrosion of magnesium alloys,Metall.Mater.Trans,2004,A35:2525-2562.
    [10]程健杰,袁森,王武孝等,半固态镁合金中液相的凝固方式及组织形貌,铸造,2005,54(5):442-445.
    [11]刘道新,材料的腐蚀与防护,西安:西北工业大学出版社,2005.
    [12]赖华清,压铸工艺及模具,北京:机械工业出版社,2004.
    [1]Mordike B L,Ebert T,Magnesium properties-applications-potential,Mater Sci and Eng,2001,A102(1):37-45.
    [2]Kojima Y,Platform science and technology for advanced magnesium alloys,Mater Sci Forum,2000,350-351:3-18.
    [3]Ying-hui Wei,Formation mechanism of pits on the surface of thin-wall die-casting magnesium alloy components,Engineering Failure Analysis,2006,13(4):558-564.
    [4]周光垌,流体力学,北京:高等教育出版社,2000
    [5]赖华清,压铸工艺及模具,北京:机械工业出版社,2004
    [6]王国凡,材料成形与失效,北京:化学工业出版社,2002
    [7]Kosec B,Analysis of casting die failures,Engineering Failure Analysis,2001,8(4):355-359.
    [8]胡心平,压铸模具型芯变形失效的研究分析,铸造,2004,53(1):34-37.
    [9]朱远志,压铸模具用ES2344ESR钢的失效分析,铸造,2005,54(2):157-160.
    [10]郑文龙,钢的环境敏感断裂,北京:化学工业出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700